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The knowledge of exact wave functions is required in calculating physical parameters such as optical dipole 
moments, scattering matrix elements, or in wave function engineering. In this report we describe how a system 
of algebraic equations that follows from the Schrödinger equation can be reduced to a Gröbner basis from 
which the exact wave function can be easily constructed. As an example, closed form solutions for a cylindrical 
electronic waveguide and double quantum well nanostructures are presented.
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1. Introduction

There is only a small number of quantum systems 
for which the exact wave functions are known. 
However, they play a crucial role in interpreting 
the quantum mechanics. The problem of finding 
a wave function can be solved numerically with 
powerful computers, however, a set of numbers 
in computer memory represents a particular case 
which may not always be true. In this report we 
shall demonstrate that the computer algebra may 
be useful in finding analytical solutions for com-
plex wave functions which are not accessible by 
pen-and-paper methods. The key to the problem 
is the Gröbner basis [1, 2].

Roughly speaking, a Gröbner basis (GB) for 
a system of polynomial equations is a different 
system of simpler polynomials having the same 
roots as the original one [1, 2]. In paper [3] and 
handbook [4] various computer algorithms that 
exploit GB are summarized. The finding of the GB 
requires a lot of sorting work, therefore, as a rule, 
it is done by advanced computer algebra packages 

such as Mathematica or Maple. In this report we 
shall describe how the system of algebraic equa-
tions that follows from the Schrödinger equation 
can be reduced to GB and the exact wave functions 
extracted from therein. In Sec. 2 the Gröbner basis 
is explained for a novice in this field. In Sec. 3, as 
an example, closed form solutions for a cylindrical 
electronic waveguide and double quantum well 
nanostructure are presented.

2. The concept of GB

Many problems in physics lead to multivariate pol-
ynomial equations of type 

f1(x1, x2, ..., xn) = 0,
………………… … … (1)
fm(x1, x2, …, xn) = 0,

where f1,  ...,  fm are polynomials in n unknowns xi. 
The main task is to solve this system analytically. 
However, the solution is not always possible, or it 
may not exist at all. The GB algorithm tries either to 
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Fig. 1. Profiles of potential energy as a function of radius ρ for various semiconductor electronic guides having cy-
lindrical symmetry: (a) simple guide, (b) higher-mode-stripper that supports only the lowest energy quasistationary 
modes with long tunneling lifetime, (c) tube-type, (d) cylindrical double quantum well (CDQW). Vertical dashed 
line indicates symmetry axis.
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direction ρ.  is the normalization constant. The 
radial part  satisfies equation (ħ = 1)

 (7)

where the wave vector Kρ depends on kinetic E and 
potential Vρ energies. In the following we shall limit 

ourselves to CDQW, Fig. 1(d), where regions I and 
III represent cylindrical wells. For CDQW having 
flat energy bands the potentials and electron effec-
tive masses in the wells are Vρ = V0 = 0, mρ = m*

0    , 
while in the barrier regions they are Vρ  =  Vi  >  0, 
mρ = m*

i . Then the wave vector Kρ becomes 

 (8)

solve the polynomial system, or if the explicit solu-
tion is not possible to extract maximum of useful 
information about properties of the polynomial 
(1). The GB algorithm can be used to solve linear 
systems of equations as well, however, the strength 
of GB emerges in more difficult problems. The re-
sult is usually another system of simpler multivari-
ate polynomials which has the same zeroes as the 
original one. For example, if the solved polynomial 
system, with x1 = x and x2 = y, is

x3 + yx2 – y2 = 0,
2xy2 + x2 – y + 1 = 0, (2)

then its GB found by Mathematica has the follow-
ing form:

1 –3y + 4y2 – 3y3 – 2y4 + 4y5 – 4y7 + 8y8 = 0,
x – 1 + y + y2 + 2y4 + 4y5 = 0. (3)

The original (2) and GB (3) polynomials have the 
same roots. However, the GB representation has 
advantage that at least one of the polynomials has 
the leading terms as a pure power of sought vari-
able. In our case this is the first polynomial of 8th 
power in variable y. From (3) it is clear that the 
initial polynomial (2) cannot be solved exactly. 
If we know one of the roots yi, the second poly-
nomial in (3) shows how another root xi can be 
found. In manipulations with multivariate poly-
nomials the ordering of individual polynomial 
terms is important, since when more than one 
variable is involved we need a rule to decide which 
of the terms in the polynomial is larger or smaller. 
This brings into play lexicographic, graded lexico-
graphic or other orderings of the GB polynomi-
als [1, 2] that can be used in finding the optimal 
solution.

As a second example let us consider the follow-
ing parametric equation of variable t that describes 
the curve on x–y plane,

x = t (t – 1) (t –2),
y = (t – 1) (t – 2) (t –3). (4)

The aim is to eliminate the parameter t and find 
a polynomial equation p(x, y) = 0. The solution is 
straightforward if the lexicographical order is used 
and the parameter t is allowed to be the first in the 
Mathematica GB package, i. e. the order in the in-

put should read {t, x, y}. The calculations give the 
following GB that consists of four GB basis equa-
tions:

– 6x2 + x3 – 15xy – 3x2 y – 6y2 + 3xy2 – y3 = 0,
6x – x2 – 6y + 9ty + 2xy – y2 = 0,

– 21x + 9tx – x2 – 6y + 2xy – y2 = 0,
6 – 9t + 3t2 – x + y = 0. (5)

Only the first of equations in (5), which is inde-
pendent of t, provides the required solution to the 
posed problem. This problem may be also looked 
upon as a projection of the spatial curve in vari-
ables {t, x, y} onto x–y plane.

Below we shall demonstrate how to apply GB 
theory in solving a kind of a combination of the 
two above-discussed examples, where both the so-
lution of polynomial system and projection onto a 
smaller subspace is required. In particular, we want 
to find the coefficients that characterise the wave 
function of the nanostructure and at the same time 
to eliminate the eigenenergies. The complication 
is that the eigenenergies are determined by a tran-
scendental dispersion equation which cannot be 
solved explicitly.

3. Application of GB to nanostructures

Figure  1 shows possible profiles of cylindrical 
electronic guides that are important in semicon-
ductor nanoelectronics. Below only a cylindrical 
double quantum well (CDQW) is considered. We 
shall demonstrate that with the help of GB algo-
rithm it appears possible to find analytical closed 
form solutions for wave function in general case 
even when the potential energies and effective 
masses are different in all regions as shown in 
Fig. 1(d).

3.1. Cylindrical double quantum well

For cylindrical guides the total eigenfunction is a 
product of three functions:

 (6)

where kz is the wave vector along cylinder axis, 
l = 0, ± 1, ± 2,... is the angular momentum quantum 
number, and n = 0, 1, 2,... is the quantum number 
that describes spatial quantization in the radial 
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Fig. 2. Radial part of the wave function calculated an-
alytically at following radial n and angular l quantum 
numbers: (a) n = 0, 1 and l=0; (b) n = 0 and l = 1, 2, 3. In 
all cases kz = 0. The straight lines show potential profile 
in CDQW in radial direction.

Fig. 3. Dipole matrix elements d1s,  2a and d2a,  3s (s and a 
indicates symmetric and antisymmetric wave functions, 
the numbers 1, 2 and 3 are the lowest energy levels) as a 
function of inner barrier width b for plane double quan-
tum well calculated with the GB algorithm.

(a)

(b)

Ga1–x As/Ga1–x Alx As with V0  =  0, V1  =  177  meV, 
V2  =  256  meV and respective masses 

 
where me is the electron mass in vacuum. It was 
assumed that radii in Fig.  1(d) are R1  =  2  nm, 
R2 = 4 nm, R3 = 8 nm. Under these parameter val-
ues and at kz = 0, we find that only five discrete en-
ergy levels Eln can be supported by CDQW. At zero 
angular momentum, l = 0, the respective energies 
are E00  =  78.4527  meV, E01  =  201.86  meV. Fig-
ure 2(a) shows that the ground level wave function 
is relatively flat, while the first excited one is more 
concentrated in the centre of the CDQW. When 
l ≠ 0 and n = 0 we find that E10 = 106.877 meV, 
E20 = 159.089 meV, E30 = 230.459 meV, and as can 
be seen from Fig. 2(b) the respective wave func-
tions are shifted off the centre of CDQW. The larg-
er quantum number l is, the larger shift is observed 
due to a larger effective centrifugal force.

3.2. Square double quantum well

Similar calculations have been performed for a 
square double quantum well, where instead of Bes-
sel functions, trigonometric and hyperbolic func-
tions appear. Figure  3 demonstrates the electrical 
dipole moment between the lowest energy levels. 
In calculating the dipole moment integrals one has 
to use explicit expressions for wave functions. The 
GB algorithm allows one to find such wave func-
tions in a closed analytical form without solving 
the transcendental equation for spectrum as well as 
eigenvector equation. For further details the reader 
should refer to the paper [8].

In conclusion, with the help of the Gröbner ba-
sis and computer algebra we have been able to find 
analytical expressions for wave functions of rather 
complicated quantum systems which normally are 
accessible by numerical methods only. This opens 
new perspectives in quantum wave function engi-
neering.
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Santrauka

Skaičiuojant fizikinius parametrus, tokius kaip opti-
nius dipolinius momentus, kvantinių šuolių matricinius 
elementus, o bendresniu atveju dirbant kvantinėje inži-
nerijoje, būtina žinoti tikslias kvantines bangines funk-
cijas. Straipsnyje aprašyta, kaip galima redukuoti algebri-

nių lygčių sistemą, kuri išeina iš Schroedingerio lygties 
į Groebnerio bazę, o iš pastarosios sukonstruoti tikslias 
bangines funkcijas. Kaip metodo taikymo pavyzdys, 
straipsnyje suskaičiuotos elektrono pagrindinio ir suža-
dintų lygmenų banginės funkcijos cilindriniame bango-
laidyje ir dvigubame kvantiniame šulinyje.


