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Ridge-like correlations in high-energy proton–proton collisions reported by the CMS collaboration suggest a collective flow 
that resembles the one in heavy-ion collisions. If the hydrodynamic description is valid, then the effect results from the initial ani-
sotropy of the colliding matter which depends on the structure of protons. Following recent theoretical developments, we propose 
several phenomenological models of the proton structure and calculate the anisotropy coefficients using the Monte Carlo Glauber 
model. Our estimates suggest that the event multiplicity dependence allows one to discriminate between different proton models.
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1. Introduction

The analysis of two-particle angular correlations in 
pp collisions at  revealed an unexpected near 
side (Δϕ  =  0) correlation in the  azimuthal angle of 
produced particles (‘ridge effect’) [1]. There is no ob-
vious reason why such a  long-range pseudorapidity 
correlation should occur [2, 3]. The ridge effect has 
been previously observed in relativistic heavy-ion 
collisions and it was explained by a collective aniso-
tropic flow of a hot and dense medium (hadronic gas 
or quark gluon plasma) created at the collision.

It is possible that the  hydrodynamic explanation 
applies to high-multiplicity pp events which are sufi-
ciently energetic for the collision products to thermal-
ize [4]. In this paper we assume validity of such a sce-
nario and postulate that the proton internal structure 
can manifest itself in the ridge effect. During the hy-
drodynamic expansion, the  spatial anisotropies of 
the collision area are transformed into an anisotropic 
flow of produced particles. Thus, the spatial anisotro-
pies due to the proton structure should be reflected in 
the measurable collective flow coefficients.

Actually, in the  literature there exist estimates of 
the possible elliptic flow in pp collisions [5–13]. We 
basically follow the approach of [5] in order to make 

a  link between the  proton models considered by us 
and the experimental data. Within the framework of 
the Glauber model [14], we calculate the initial spatial 
anisotropies for each model: eccentricity, denoted by 
ϵ2, and triangularity, denoted by ϵ3, in proton–proton 
collision taking into account event-by-event fluctua-
tions in the proton density profile.

The considered phenomenological proton densi-
ties are inspired by the quark–diquark [17] and RG-
PEP (renormalization group procedure for effective 
particles) [18] models of the proton. We find that it is 
possible to distinguish highly eccentric (rod-like) and 
highly triangular (triangle-like) fixed proton densities 
by looking at distributions of ϵ2 and ϵ3 and the multi-
plicity dependence of their RMS values. We also cal-
culate these quantities for the fluctuating anisotropic 
proton configurations (Gaussian-fluctuating model).

We do not explicitly present the results for the ani-
sotropic flow coefficients υn because we limit our dis-
cussion to the comparison of predictions of different 
models for the initial states in hydrodynamic evolu-
tion, and the prediction of the exact shapes of the re-
sulting final flow anisotropies is beyond the scope of 
this work. Our calculations concern the initial spatial 
anisotropies, though we emphasize that they should 
correspond to the  flow coefficients measurable in 
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multi-particle correlations in a fashion that is unlikely 
to be far from linear [15, 16].

2. Glauber model for pp collisions

The optical limit of the Glauber model treats the col-
lision of two composite particles as a  superposition 
of independent binary collisions between their con-
stituents. In the case of pp collisions, we assume that 
the  constituents are partons of one type, and their 
smoothed distribution is given by a proton density pro-
file. We fix the partonic cross section σgg = 4.3 mb [15] 
and adjust the number of partons in proton Ng so that 
the experimental inelastic pp cross section σpp ≈ 60 mb 
[19] is reproduced.

The geometrical quantities calculated within 
the Glauber formalism correspond to the impact plane 
of the collision (xy) such that any z-dependence is inte-
grated out. The density of binary collisions is given by 
the expression:

 
(1)

where ρ(x, y, z; Σ) is a proton density profile, b is an 
impact parameter, and by Σ we mean a set of fluctuat-
ing parameters describing the proton internal struc-
ture and orientation in space (for fixed configuration 
models Σ dependence will correspond only to pos-
sible rotations in space) [14].

For each event characterized by b, ΣA and ΣB we cal-
culate eccentricity ϵ2 and triangularity ϵ3. We choose 
the following definition of spatial anisotropy [20]:

 , (2)

where ϕ is an azimuthal angle in the  xy plane and 
s2 = x2 + y2. The curly brackets {...} stand for the av-
erage taken with respect to the  impact plane binary 
collision density ncoll(x, y; b, ΣA, ΣB):

 . (3)

The differential cross section (probability) of a given 
event depends only on the integrated number of binary 
collisions Ncoll(b, ΣA, ΣB) = ∫dx dy ncoll(x, y; b, ΣA, ΣB):

. (4)

The expectation value of the quantity Q is calcu-
lated in the following way:

,
 (5)

where σpp = ∫0
∞2πb db∫P(ΣA)dΣA ∫P(ΣB)dΣBσ(b, ΣA, ΣB) 

and P(Σ) is the probability density of proton configu-
ration Σ.

We calculate the charged hadron multiplicity N for 
each event assuming its linear scaling with Ncoll:

N = α Ncoll, (6)

where α is determined by the demand of reproducing 
the experimental minimum bias charged hadron mul-
tiplicity 〈N〉 = 30 [21].

There is another approach to estimating the multi-
plicities and geometrical quantities within the Glau-
ber formalism, namely, the wounded nucleon mod-
el [22]. Within this model, all the averages denoted 
by {...} are taken with respect to the local density of 
participating constituents instead of the  density of 
binary collisions. However, in high energy hadronic 
collisions, multiple gluonic interactions are expect-
ed to occur, so we think it is more natural to use here 
the density of binary partonic collisions.

3. Models of proton internal structure

The RGPEP [18] suggests that a  proton can be de-
scribed in terms of three effective quarks and a gluon 
body interacting via a  harmonic potential. For eve-
ry considered special case of this picture we model 
the proton as a  sum of isotropic 3D Gaussian densi-
ties  ρq corresponding to effective quarks and aniso-
tropic Gaussians ρg representing the gluonic flux tubes 
connecting the quarks:

, (7)

. (8)

The effective quarks and the gluon body are clus-
ters of partons, as in the two stage and cluster models 
[23–25] used to explain the  shape of deep inelastic 
scattering structure functions.

3.1. Fixed configuration models: I and Y

According to [17], the  ridge effect could be the con-
sequence of large eccentricities ϵ2 in high-multiplicity 
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collisions between aligned quark–diquark states of 
protons which constitute around 20% of all possible 
states.

We model this state, labelling it with the symbol I, 
as a superposition of two effective quark bodies, with 
quark and diquark parton densities generically de-
scribed in terms of simple functions, and two gluon-
ic tubes connecting the  quark bodies (Fig.  1). Such 
greatly simplified density model is sufficient for trac-
ing the effects of a symmetric rod-like shape of proton 
in comparison with other conceivable shapes (see be-
low), leaving the more subtle effects of the asymmetry 
between quark and diquark for further analysis else-
where. Thus, we use here

(9)

For comparison, we also consider a model that we 
label by the symbol Y in which the proton has a high-
ly triangular shape (Fig. 2). The parton density in this 
case is assumed in the form

,
 

(10)

where , ,  

and R[ϑ] is a rotation matrix in the yz plane. In this 
model, the effective quarks are located in the vertices 
of an equilateral triangle and the gluon tubes connect 
them with the center of mass of the system. Again we 
choose rq = 0.25 fm and d = 1.5 fm.

Fig. 2. Constant proton density surface for model Y.

Fig. 1. Constant proton density surface for model  I 
(quark–diquark).

The free parameters of the model are the effective 
quark radius rq, the length of quark–diquark tube d, 
and the percentage of gluon body content κ. Assum-
ing that only effective quark bodies carry net charge 
(+4/3e homogenously distributed in the  diquark 
and –1/3e in the quark), we choose rq = 0.25 fm and 
d  =  1.5  fm, which reproduce the  charge rms radius 
of proton (≈0.9 fm). In this work, we always choose 
κ = 0.5.

The densities of types  I and Y are fixed proton 
structure models in a sense that the only parameters 
that fluctuate event-by-event are the angles describ-
ing proton orientation relative to the direction of its 
velocity (not explicitly introduced above).

3.2. Gaussian-fluctuating configuration model

We also consider a model with a fluctuating proton 
configuration, labelled G-f, in which the relative po-
sitions of effective quarks differ event-by-event. By 
generalizing the  previous formulas for proton den-
sities, we introduce the Gaussian-fluctuating proton 
density
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. (11)

In this expression, R[θ, ϕ] transforms the vector (0, 
0, 1) into (cos ϕ sin θ, sin ϕ sin θ, cos θ) and rk = rk 
(cos ϕk sin θk, sin ϕk sin θk, cos θk) is the position vector 
of kth effective quark.

Following the harmonic oscillator phenomenology, 
we assume that the probability density of finding a pro-
ton whose quarks are in positions r1, r2, r3 is Gauss-
ian with an additional constraint of in the center-of-
mass frame (r1 + r2 + r3 = 0, obtained by recentering of 
the quarks):

. (12)

The free parameters in the G-f model are κ, rq and 
RP. Again we set rq = 0.25 fm, which implies the value 
RP = 0.43 fm if one wants to obtain the experimental 
rms proton charge radius.

4. Results

We present the  event distribution of eccentricities ϵ2 
and triangularities ϵ3 for three classes of pp collision 
models: II, YY and G-f in which colliding protons are 
described by I, Y or G-f model, respectively (Fig. 3, 4). 

We also present the RMS values  and  in 
certain multiplicity bins (Fig. 5, 6) and the distribu-
tion of event multiplicities N (Fig. 7). The reason for 
presenting RMS and not mean values of anisotropies 
is because the former correspond hydrodynamically 
to the  actual anisotropic flow coefficients extracted 
from two particle correlations (we base this approach 
on [12]). The minimum bias (averaged over all events) 

Fig. 3. Distribution of event eccentricities for II, YY and 
Gaussian-fluctuating type (G-f G-f) collisions. The con-
tinuous line is reconstructed from the values in particular 
eccentricity bins and represents the normalized probabil-
ity density of the occurence of an event with certain ec-
centricity. Errors (square roots of variances) follow from 
basic statistics assuming independent events (applies to 
all other figures).

Fig. 4. Distribution of event triangularities for II, YY 
and Gaussian-fluctuating type (G-f G-f) collisions.

Fig. 5. RMS eccentricities in collision multiplicity bins 
for II, YY and Gaussian-fluctuating type (G-f G-f) col-
lisions.

 is 0.37, 0.40 and 0.31 for II, YY and G-f mod-
el, respectively, while , corre-
spondingly (these quantities can be calculated using 
probability densities from Figs. 3 and 4).

All the  calculations are performed by means 
of the  Monte Carlo algorithm. 300  000 events are 
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Fig. 6. RMS triangularities in collision multiplicity bins 
for II, YY and Gaussian-fluctuating type (G-f G-f) col-
lisions.

Fig. 7. Event multiplicity distributions for II, YY and 
Gaussian-fluctuating type collisions compared to the ex-
perimental charged hadron distribution in  pp 
collisions [21] for the pseudorapidity range |η| < 2.4.
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generated for each class of collision. The  statistical 
weight of an event is given by Eq.  (4) and the  mean 
values are calculated according to Eq. (5). In the case 
of models I and Y, we average only over the  impact 
parameter b and over all the  possible space orienta-
tions of protons during the collision. In the case of G-f 
model, the additional averaging over the positions of 
effective quarks takes place. The event multiplicity N is 
estimated by the use of Eq. (6).

We set Ng in such a way that the experimental pp 
inelastic cross section of 60  mb is reproduced. This 
is accomplished for Ng in a  range of 7–10. Similarly, 
the parameter α from Eq. (6) is found to vary between 
5 and 11.

5. Conclusions

Our calculations predict quite high values of eccen-
tricities and triangularities in pp collisions. Assuming 
the hydrodynamic limit in which the scaling between 
the  initial spatial and finite momentum anisotropy is 
linear and taking υ2/ϵ2 ~ 0.3 [15], we expect the mini-
mum bias υ2 ~ 0.11, 0.12, 0.09 for the quark–diquark, 
triangular and Gaussian-fluctuating model. Bożek ex-
tracts from the ridge effect υ2 in a range of 0.04–0.08 [4] 
which can potentially be in agreement with our results 
if viscous effects reducing the scaling factor are taken 
into account.

Our models predict that one should be able to distin-
guish quark–diquark (I), triangular (Y) and Gaussian-
fluctuating (G-f) proton configurations by extracting 
the  collective flow coefficients υ2 and υ3 from multi-
particle correlations. The actual shapes of the collective 
flow dependence on multiplicity will differ from Figs. 5 
and 6, though it is reasonable to assume that to the first 
approximation the  scaling of υn with ϵn is linear. In 
general, the anisotropies in collisions of triangular pro-
tons, denoted as YY, are much higher than in those of 
II or G-f G-f. This was expected because irrespective of 
the orientation of Y protons the collision area is always 
anisotropic. We find that the values of anisotropy coef-
ficients in YY collisions increase strongly in high multi-
plicity bins N. Collisions of quark–diquark protons (II) 
are characterised by relatively large eccentricities ϵ2 
(though not as large as in YY collisions) and small tri-
angularities ϵ3. The  distributions of anisotropies and 
the N dependence of their mean values are the most 
smooth for the G-f G-f collisions, which results from 
the existence of additional degrees of freedom.

We observe that the  fraction of high-multiplicity 
events in the  fixed configuration models is smaller 
than in the Gaussian-fluctuating model. Our compari-
son with the experimental data (Fig. 7) indicates that 
a  more realistic model of pp collision should include 
not just one type, but all II, YY, G-f G-f (and IY, IG-f, 
YG-f) types of collision configurations with certain 
probabilities. However, the  G-f model alone can ap-
proximately describe the experimental results for mul-
tiplicity distributions.

Avsar et al. [12] using a DIPSY Monte Carlo genera-
tor predict values of eccentricity which are similar to our 
result for triangular proton configurations. The  distri-
butions of eccentricities within the ‘hot spot’ model [6] 
seem to be centered more towards higher values of ϵ2 
than in our result. The probable reason is that the ‘hot 
spot’ model lacks any constraint on the relative positions 
of quarks. It is hard to make any direct comparison with 
the other mentioned calculations, however, all of them  
[5–13] predict measurable anisotropies in pp collisions.
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6. Summary

In view of the great interest in understanding the proton 
structure, it is pointed out that even simple model ideas 
concerning distribution of quarks and gluons in protons 
lead to the non-trivial multiplicity dependence of initial 
anisotropies in pp collisions. We illustrate this statement 
with the results obtained for phenomenological mod-
els intuitively inspired by RGPEP in QCD and similar 
ideas. Expecting new data on high-energy pp collisions 
from the   runs of the Large Hadron Collider, 
we believe that detailed studies of the  role of proton 
structure models in description of such collisions may 
shed new light on the internal structure of protons.
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