ENERGY SPECTRA OF THE TUNGSTEN ION 4s²4p^N, 4s²4p^{N-1}4d AND 4s4p^{N+1} CONFIGURATIONS

P. Bogdanovich, R. Karpuškienė, and R. Kisielius

Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania E-mail: pavelas.bogdanovicius@tfai.vu.lt

Received 31 March 2015; revised 4 June 2015; accepted 4 June 2015

The *ab initio* quasirelativistic Hartree–Fock approximation was used to determine spectroscopic parameters for the multicharged tungsten ions with an open 4p shell. The configuration interaction method based on the transformed radial orbitals was applied to include the electron-correlation effects. The relativistic effects were taken into account in the Breit–Pauli approximation for the quasirelativistic Hartree–Fock radial orbitals. The complete energy level spectra were calculated for the $4s^24p^N$, $4s^24p^{N-1}4d$ and $4s4p^{N+1}$ configurations of the tungsten ions from W⁴³⁺ to W³⁸⁺.

Keywords: quasirelativistic approach, many-electron ions, energy levels, tungsten

PACS: 31.10.+Z, 31.15.ag, 32.70.Cs

1. Introduction

Owing to its unique physical features, metallic tungsten is widely utilized in various high-temperature devices, including fusion reactors [1, 2]. Even if tungsten resists vaporization, highly-charged ions of tungsten can emerge in fusion plasma and decrease its temperature.

A wide compilation of the spectroscopic data for the tungsten ions was published [3], where the semiempirical data were also included. Later those data were supplemented in [4]. Although the energy spectra of the configurations with open 4p shells are quite simple, the experimental data are usually known only for few levels of the ground configuration and for some levels of excited configurations. Even if the theoretical and the experimental studies of the tungsten ions are important in fusion plasma research, both the experimental and the theoretical spectroscopic data for the ions from W³⁸⁺ to W⁴³⁺, i. e. the ions with the ground configuration 4s²4p^N, are scarce. Just few ions are investigated theoretically in more detail. The investigation of the W³⁹⁺ ion radiative transition properties is discussed in [5], where the energy level spectra of the Br-like tungsten ion with the ground configuration 4s²4p⁵ are determined using the quasirelativistic approach. This ion is also included in the present investigation as we want to study consistently the entire set of the tungsten ions with the ground configurations 4s²4p^N.

The theoretical investigation of several excited configurations of various tungsten ions is presented in [6]. The calculations are performed applying a fully-relativistic parametric-potential code RELAC [7]. Unfortunately, the results for the energy levels in [6] are incomplete – quite a large number of the excited state levels is missing.

The fully relativistic multiconfiguration Dirac–Fock (MCDF) approach is applied to determine the energy levels of the ground configurations for the ions from W²⁹⁺ to W⁴²⁺ in [8]. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities among the levels of the ground configurations are also calculated.

The W⁴³⁺ ion with only one electron in the 4p shell was investigated using various theoretical approaches [9–12]. The ion W⁴²⁺ was also investigated in [12]. Unfortunately, most of these studies do no present complete energy level spectra for the lowest to excited configurations – usually, data for one or more of the excited configuration levels are missing. In the present work we study the tungsten ions with an open 4p shell, i. e. ions from W³⁸⁺ to W⁴³⁺. The ground configuration 4s²4p^N and two excited configurations 4s²4p^{N-1}4d and 4s4p^{N+1} are investigated. These excited configurations are investigated as a unified system as they are energetically very close. The main goal of the present study is to determine complete and as accurate as possible energy level spectra of the tungsten ion configurations under study.

In Section 2 we provide a short description of the adopted calculation method. Since this approximation completely matches the one applied for the tungsten investigation in [13–16], here we provide only a brief summary of our quasirelativistic approach. The calculation results are discussed and compared with the results of other authors in Section 3. The summary and the main conclusions are presented in Section 4.

2. Calculation method

Similarly to our previous investigations, we perform the calculations using the solutions of the quasirelativistic Hartree–Fock equations [17–19]. The details of the quasirelativistic approximation are decribed in more detail in [20]. A brief description of our quasirelativistic method is given in [14, 15].

The radial orbitals (RO) describing the electrons of the configurations under study (adjusted configurations) are determined by solving the quasirelativistic Hartree-Fock equations (QRHF) [18, 19] for the ground configuration. The quasirelativistic RO of 4d electron and 4f electron are calculated using the frozen-core potential for the 4p^{N-1}nl configuration. The virtually excited electrons with n > 4 are decribed by the quasirelativistic transformed radial orbitals (TRO) [20]. Like in the previous investigations of tungsten ions [13-16], the variable parameters of TRO are determined by ensuring the maximum value of the correlation correction. TRO are determined for the radial orbitals with the principal quantum number $5 \le n \le 10$ and with all possible values of the orbital quantum number *l*.

This set of RO is used for both the even and the odd configurations. By applying such an approximation, we are able to avoid the problems of non-orthogonality in the calculation of the radiative transition parameters and the electron-impact excitation data. Therefore we must include more configurations in the CI wavefunction expansion in order to determine accurate energy level eigenvalues and eigenfunctions. For the calculation of the level energies, the one-electron and the two-electron relativistic corrections are included in the Breit–Pauli approximation. Their adoption for the quasirelativistic approach is described in [20].

The correlation corrections are included by applying the configuration interaction (CI) method. The CI wavefunction expansion is based on the set of the admixed configurations that are produced by promoting one or two electrons from the 3*l* and 4*l* shells of the adjusted configurations to all states possible in the generated RO basis.

This large basis of determined radial orbitals allows us to construct a large number of the admixed configurations, and consequently to include various types of the correlation effects, including the core-polarization correction. The total number M of possible admixed configurations is very large due to a large basis of TRO. Nevertheless, some of these generated admixed configurations are not important when the level energies of the adjusted configurations are calculated. So further selection of the admixed configurations is performed employing the average weights $\bar{w}_{\rm PT}$ of the admixed configurations. These weights are determined in the second order of the many-body perturbation theory [21]. If $\bar{w}_{\rm PT}$ of the particular admixed configuration is larger than the arbitrary selection criterion $w_{\rm min}$, then that configuration is included into the CI wavefunction expansion. The selection criteria applied here for the investigated ions are smaller than 1×10^{-6} in the present work.

The majority of the admixed configurations have several open shells. Therefore, the number of generated *LS*-coupling terms, the so-called configuration state functions (CSF), is very large. The total number of CSF is reduced by moving the shells with the virtual excited electrons to the beginning of the list of the active shells and by excluding the CSF terms that do not interact with the adjusted configuration. This reduction technique is fully described in [22]. Furthermore, the correlation corrections are accounted in full after this reduction procedure, even if the Hamiltonian matrix order becomes significantly smaller.

Table 1 presents the exact numbers M of generated admixed configurations and the numbers S of the selected ones for the ground configuration and for the complex of excited configurations. The index "g" denotes the calculation parameters of the ground configurations, the index "e" denotes the calculation parameters of the complex of the excited configurations. There are also the total numbers C of CSF and the numbers *R* of CSF after the reduction. The data are presented for each investigated ion. From this table one can see clearly that the investigation of the excited configurations is more complicated than the study of the ground configuration. The applied methods of the selection of the admixed configurations and the CSF reduction very effectively simplify the calculations. Finally, the determined sets with R_a and R_a of CSF are employed to compute the level energies of the tungsten ions.

To perform our calculations, we have employed our own original computer codes together with the codes [23–25] that have been adapted for our computing needs. The code from [23] was updated according to the methods presented in [26, 27].

3. Results and discussion

Our calculated level energies are presented in the following tables and are compared with the experimental

	1	0	0		0	
	W ⁴³⁺	W ⁴²⁺	W^{41+}	W^{40+}	W ³⁹⁺	W ³⁸⁺
$M_{ m g}$	3440	3490	3490	3490	3222	3139
Sg	244	420	284	324	191	201
C_{g}	163947	876758	511156	1039490	122078	38023
$R_{ m g}$	2816	20496	19743	24848	2992	749
$M_{ m e}$	7084	8005	8005	8005	7286	4574
Se	1366	1866	830	900	961	880
$C_{ m e}$	3077206	9054212	5477512	7199922	612207	4271190
R _e	95463	439491	395428	539211	432564	119568

Table 1. Calculation parameters for the ground configurations and for two excited configurations.

data from compilation [28], further named as "NIST" and with available theoretical calculations by other authors. The semiempirical data from the NIST collection are placed in the square brackets. All our data tables present the number (index) of level (the levels are numbered according to their QR energy ascending order), CSF in the LS-coupling notation and the total angular momentum J. Our computer code assigns the level to one or another LS term according to their maximum weight in the eigenfunction determined after the diagonalization of the Hamiltonian matrix. This can lead to the situation when several levels with the same *J* can be prescribed with the same *LS* term. We add a supplementary index "a" to the levels with the same LSJ. Along with the level energies we determine the relative deviations Δ from the NIST data:

$$\Delta = \frac{E^{\text{th}} - E^{[28]}}{E^{[28]}} \times 100\%$$

In all level energy data tables for the $W^{43+}-W^{38+}$ ions, we present the comparison of our QR results with the NIST data [28]. Furthermore, the relativistic calculation results from [6], marked as "RELAC" [6], and the theoretical data from the MCDF calculation [8] are given in Tables 2–7. These tables also contain the results of other authors if such data are available. Table 2 contains only the RELAC [6] data as the ion W^{38+} has only one level in the ground configuration $4p^6$. There is no point to present the MCDF [8] results in Tables 2 and 6 as the ground configuration of the ions W^{43+} and W^{39+} has only two levels.

3.1. W⁴³⁺ energy levels

The ground configuration of the gallium-like tungsten is 4s²4p. All three investigated configurations 4s²4p, 4s²4d and 4s4p² have twelve energy levels. The NIST database provides eight level energies, and the energy for one of them is determined from the semiempirical calculations. Our calculated data are presented in Table 2. Here we also tabulate the data from [28] and the theoretical results from [6, 9–12]. According to the MCDF results from [8], the energy of the level 4s²4p ²P_{3/2} is equal to 790710 cm⁻¹ and $\Delta = -0.14\%$. The agreement between our results and the experimental NIST data is

Table 2. The level energies *E* (in 100 cm⁻¹) of the W⁴³⁺ ion and their relative deviations Δ (in %) from the NIST [28] data.

N	CSE	CSE I NIST		QR		RELAC [6]		MCDF [9]		MCDF [10]		MCDHF [11]		FAC [12]	
IN	CSF)	E	Ε	Δ	Ε	Δ	Ε	Δ	E	Δ	Ε	Δ	Ε	Δ
1	4s²4p ²P	0.5	0	0		0		0		0		0		0	
2	$4s4p^{24}P$	0.5	7802	7808	0.07	7870	0.87	7856	0.68	7806	0.05	7802	0.00	7798	-0.06
3	4s²4p ²P	1.5	7918	7915	-0.04	7936	0.23	7909	-0.11	7916	-0.03	7916	-0.02	7915	-0.05
4	$4s4p^{24}P$	1.5	[14660]	14649	-0.08	14626	-0.23	14659	0.00	14638	-0.15	14653	-0.04	14616	-0.30
5	$4s4p^{2}{}^{2}D$	2.5	15336	15328	-0.05	15368	0.21	15361	0.16	15336	0.00	15337	0.00	15315	-0.14
6	$4s4p^{2}{}^{2}D$	1.5	16304	16318	0.08	16442	0.85	16364	0.37	16312	0.05	16308	0.02	16314	0.06
7	$4s4p^{2}{}^{2}P$	0.5	16497	16515	0.11	16701	1.23	16611	0.69	16513	0.09	16505	0.05	16557	0.36
8	4s²4d ²D	1.5	20876	20847	-0.14	20992	0.56	20958	0.40					20928	0.25
9	4s²4d ²D	2.5		22033		22088		22073						22047	
10	$4s4p^{24}P$	2.5		23464		23568		23547				23539			
11	$4s4p^{2}{}^{2}S$	0.5		24420				24502				24435		24441	
12	4s4p ^{2 2} P	1.5		24721				24831				24729		24781	

fine. The largest disagreement appears for the level 8 energy. Even in this case the relative deviation $\Delta = -0.14\%$ is rather small. It looks favourable when compared to the data from other sources [6, 9], whereas the data for this level are missing in [10, 11]. The deviations are even smaller for other levels. Therefore we assume that the level energies for the next four higher levels have similar accuracy.

3.2. W⁴²⁺ energy levels

The investigated configurations 4s²4p², 4s²4p4d and 4s4p³ of the germanium-like tungsten ion are coupled into 27 *LSJ* levels. The NIST database tabulates energies of ten levels, although two values are deter-

mined from the semiempirical calculations [3]. Our determined results are presented in Table 3. One can see from Table 3 that our QR results are in good agreement with the experimental data. The largest deviation Δ appears for the level $4s^24p^2$ ³P₁ (N = 2). For other levels, Δ is significantly smaller than 0.5%. The Δ values in Table 3 indicate that our QR results are more accurate than the data from [6] and have very similar accuracy to that of the relativistic MCDF results [8]. The comparison with the FAC calculation data from [12] points out that our QR calculation data are slightly less accurate for four levels (out of six) given there. Probably, it is important to note that only four levels of excited configurations (out of 22 levels) are presented in [12].

Table 3. The level energies *E* (in 100 cm⁻¹) of the W⁴²⁺ ion and their relative deviations Δ (in %) from the NIST [28] data.

NT	COL	т	NIST QR		RELAC [6]		MCD	9F [8]	FAC [12]		
IN	CSF		Е	Е	Δ	Е	Δ	Е	Δ	Е	Δ
1	$4s^24p^{23}P$	0	0	0		0		0		0	
2	$4s^24p^{23}P$	1	7383	7336	-0.64	7296	-1.17	7361	-0.30	7373	-0.13
3	$4s^{2}4p^{2}D$	2	7727	7722	-0.07	7659	-0.89	7772	0.57	7728	0.00
4	4s4p ³ (² P) ³ P	2	15138	15152	0.10	15146	0.05			15114	-0.16
5	$4s^24p^{23}P$	2	[15350]	15364	0.09	15347	-0.02	15347	-0.02		
6	$4s^24p^{21}S$	0	[16090]	16130	0.25	16123	0.21	16123	0.21		
7	4s4p ³ (² D) ³ D	1	16312	16372	0.37	16442	0.80			16346	0.20
8	4s ² 4p4d ³ F	2	19734	19800	0.34	19745	0.06			19715	-0.09
9	4s ² 4p4d ³ D	1	21191	21235	0.21	21365	0.82			21273	0.39
10	4s4p ³ (⁴ S) ⁵ S	2		21594						21536	
11	4s ² 4p4d ³ F	3		21950		21950				21911	
12	4s4p ³ (² D) ³ D	2		22915							
13	4s4p ³ (² D) ³ D	3		23276							
14	4s4p ³ (² P) ³ P	0		23546							
15	4s4p ³ (² P) ³ P	1		24104						24055	
16	4s4p ³ (² D) ¹ D	2		24326		24426					
17	4s4p ³ (⁴ S) ³ S	1		24437						24440	
18	4s ² 4p4d ³ D	2		28465							
19	4s ² 4p4d ³ P	1		28567							
20	4s ² 4p4d ³ P	0		28627							
21	4s ² 4p4d ³ F _a	3		28662							
22	4s ² 4p4d ³ F	4		29281							
23	4s ² 4p4d ³ P	2		29334							
24	4s ² 4p4d ³ D	3		30819							
25	4s ² 4p4d ¹ P	1		30921							
26	$4s4p^{3}(^{2}P)^{3}P_{a}$	2		31755							
27	4s4p ³ (² P) ¹ P	1		32798							

3.3. W⁴¹⁺ energy levels

The ground configuration of the arsenic-like tungsten ion 4s²4p³ and its excited configurations 4s²4p²4d and 4s4p⁴ produce 41 levels. Twelve level energies are presented in the NIST database, nevertheless, the energies of two levels are coming from the semiempirical study [3]. These data together with the QR results are presented in Table 4. In the process of the comparison of our QR results with the NIST data, the level 4s4p⁴ (³P) ⁴P_{5/2} (N = 6) stands out. In the NIST database, this level is assigned to the configuration 4s²4p²4d. As mentioned earlier in this section, our computer code assigns the level to one or another LS term according to their maximum weight within the level eigenfunction. The level N = 6 is identified as the $4s4p^{4}(^{3}P)^{4}P$, and its maximum weight equals to 27%. A more detailed analysis of the eigenfunction indicates that the term 4s²4p²(⁴S)4d ⁵D with the weight value of 26% makes the second largest by weight contribution. The sum of the weights of the terms assigned to the 4s²4p²4d in this eigenfunction is close to 70%. Hence the level N = 6 must be assigned to the $4s^24p^24d$ configuration instead of the configuration 4s4p⁴, even if its LS term has the maximum weight. A similar situation occurs for the levels N = 17 and N = 26. The discussed wavefunction expansion of the terms confirms the fact that the excited configurations 4s4p⁴ and 4s²4p²4d mix very strongly. Therefore they must be studied together instead of being investigated separately.

The agreement between our QR results and the NIST data for this ion is slightly worse compared to the ions W⁴²⁺ and W⁴³⁺. The results [6] calculated employing the parametric potential are not highly accurate either as it is evident from the values of the relative deviations Δ . The comparison of our QR results and those from the MCDF approach [8] for the ground configuration indicates that the accuracy of both methods is similar. All available theoretical results significantly differ from the level energies determined by the semiempirical calculation for the level N = 4.

3.4. W⁴⁰⁺ energy levels

The ground configuration of the selenium-like tungsten is 4s²4p⁴. This configuration and two excited configurations 4s²4p³4d and 4s4p⁵ form 47 energy levels. The NIST database contains data for thirteen energy levels. One of them is determined by the semiempirical calculation [3].

Similar to the previous data tables, Table 5 presents our QR results, the NIST data and two theoretical calculations, namely RELAC and MCDF. The agreement with experiment of the QR results is slightly worse compared to the MCDF [8] results. The large difference between the experimental data and the RELAC results for the level N = 2 energy is very uncommon for the data from calculation [6]. For the highly excited levels of the 4s4p⁵ configuration, the agreement with the experimental data is better for the QR results than for the RELAC calculations. The accuracy of the QR results for some levels of the 4s²4p³4d configuration (N = 18, 19, 21) is noticeably worse. This is also the case for the RELAC data.

The level N = 9 is assigned to the configuration $4s4p^5$ according to the maximum weight of term in the CI wavefunction expansion, but the sum of the other term weights confirms that it must be assigned to the configuration $4s^24p^34d$. A similar case was discussed for the level N = 6 of the W⁴¹⁺ ion. The levels N = 11 and N = 12 in our calculation have their position swapped around compared to the NIST data, but the difference of these level energies is tiny. Furthermore, the energy of the level N = 11 in the NIST database is derived from the semiempirical calculations [3] rather than the experiment.

3.5. W³⁹⁺ energy levels

We investigate the spectroscopic parameters of the bromine-like tungsten ion. The earlier investigation of the radiative transitions for this ion is presented in [5]. The ground configuration $4s^24p^5$ and two excited configurations $4s^24p^44d$ and $4s4p^6$ produce 31 levels. The NIST database reports only 12 level energies for these configurations, all of them are determined from the experiment.

This ion draws more attention than other tungsten ones discussed in the present study. The reported investigation of W³⁹⁺ is not limited to previously discussed studies [6, 8]. The review of the MCDHF calculation methods is illustrated by the study of this ion in [29]. Moreover, the energy level spectra and the radiative transition parameters determined in the MCDF approximation were extensively discussed quite recently in [30, 31]. One can find more details on the subject of these works in [5]. This very recent work presents a comprehensive comparison of the QR data with the results of other theoretical investigations. Although the main purpose of the latter work was to study the radiative transition properties, the energy level spectra of the W³⁹⁺ ion were also studied. The results presented in [5] slightly differ from the results of the present work as here all our calculations are performed in the same way for all tungsten ions with an open 4p shell, i. e. utilizing

NT	CSE	T	NIST	QR		RELAC	C [6]	MCDF [8]		
IN	CSF)	Ε	Ε	Δ	Е	Δ	Ε	Δ	
1	$4s^24p^{32}P$	1.5	0	0		0		0		
2	$4s^24p^{34}S$	1.5	7196	7138	-0.80	7091	-1.46	7160	-0.50	
3	$4s^24p^{32}D$	2.5	7621	7594	-0.36	7555	-0.87	7613	-0.10	
4	4s ² 4p ^{3 2} P	0.5	[8020]	8175	1.93	8278	3.21	8187	2.09	
5	4s ² 4p ² (³ P)4d ⁴ F	1.5	12363	12607	1.97	12496	1.07			
6	4s4p ⁴ (³ P) ⁴ P	2.5	14255	14339	0.59	14327	0.51			
7	$4s^24p^{32}P_a$	1.5	[15280]	15379	0.65			15426	0.96	
8	4s4p ⁴ (³ P) ⁴ P _a	2.5	15411	15479	0.44	15525	0.74			
9	4s4p ⁴ (¹ S) ² S	0.5		16330		16453				
10	4s4p ⁴ (³ P) ² P	1.5	16467	16515	0.29	16643	1.07			
11	4s ² 4p ² (3P)4d ⁴ F	2.5		19725		19617				
12	$4s^{2}4p^{2}(^{3}P)4d ^{4}F_{a}$	1.5	19573	19737	0.84					
13	4s ² 4p ² (³ P)4d ⁴ D	0.5		19761						
14	$4s^{2}4p^{2}(^{1}D)4d^{2}G$	3.5		20174		20079				
15	4s ² 4p ² (³ P)4d ⁴ D	3.5		21277		21226				
16	4s ² 4p ² (³ P)4d ⁴ P	2.5	21147	21298	0.71	21370	1.05			
17	4s4p ⁴ (³ P) ⁴ P	1.5		21312		21326				
18	$4s^{2}4p^{2}(^{1}D)4d^{2}D$	1.5	21255	21391	0.64	21534	1.31			
19	4s ² 4p ² (³ P)4d ⁴ P	0.5		21460		21569				
20	4s ² 4p ² (¹ D)4d ² D	2.5		21638		21660				
21	$4s^{2}4p^{2}(^{1}D)4d^{2}G$	4.5		21774		21743				
22	$4s^{2}4p^{2}(^{1}D)4d^{2}F$	3.5		22884		22910				
23	$4s^{2}4p^{2}(^{3}P)4d ^{4}P_{a}$	2.5		22898		22982				
24	$4s^{2}4p^{2}(^{3}P)4d^{2}D$	1.5		22916						
25	$4s^{2}4p^{2}(^{1}D)4d^{2}S$	0.5		23032		23118				
26	$4s4p^{4}(^{3}P) {}^{4}P_{a}$	1.5		23379						
27	4s4p ⁴ (¹ D) ² D	2.5		23818						
28	$4s4p^{4}(^{3}P) ^{2}P_{a}$	1.5		24611						
29	4s4p ⁴ (³ P) ² P	0.5		24644						
30	$4s^24p^2(^1D)4d ^2D_a$	1.5		28417						
31	$4s^{2}4p^{2}(^{3}P)4d ^{4}P_{a}$	0.5		28447						
32	4s ² 4p ² (³ P)4d ⁴ D	2.5		28486						
33	4s ² 4p ² (³ P)4d ² F	3.5		28673						
34	$4s^{2}4p^{2}(^{3}P)4d^{2}F_{a}$	3.5		29088						
35	4s ² 4p ² (³ P)4d ⁴ F	4.5		29162						
36	$4s^{2}4p^{2}(^{3}P)4d^{2}P$	0.5		29180						
37	$4s^{2}4p^{2}(^{1}S)4d^{2}D$	1.5		29349						
38	$4s^{2}4p^{2}(^{1}S)4d^{2}D$	2.5		30261						
39	$4s^{2}4p^{2}(^{3}P)4d^{2}D_{a}$	1.5		30970						
40	4s ² 4p ² (³ P)4d ² D	2.5		31323						
41	4s4p ⁴ (¹ S) ² S _a	0.5		32459						

Table 4. The level energies *E* (in 100 cm⁻¹) of the W⁴¹⁺ ion and their relative deviations Δ (in %) from the NIST [28] data.

N CSE			NIST	Q	R	RELAG	C [6]	MCDI	F [8]
IN	CSF		Е	Е	Δ	Ε	Δ	Ε	Δ
1	4s ² 4p ^{4 3} P	2	0	0		0		0	
2	$4s^24p^{41}S$	0	721	740	2.58	875	21.40	733	1.60
3	$4s^24p^{43}P$	1	7415	7436	0.28	7412	-0.05	7407	-0.10
4	$4s^{2}4p^{4} {}^{1}D$	2	7774	7770	-0.05	7794	0.26	7780	0.08
5	4s ² 4p ³ (² P)4d ³ D	2		12649		12469			
6	4s ² 4p ³ (² P)4d ³ P	1		12856					
7	4s ² 4p ³ (² P)4d ³ P	0		12893					
8	4s ² 4p ³ (² P)4d ³ F	3		12964		12787			
9	4s4p ^{5 3} P	2	14061	14177	0.82	14175	0.81		
10	4s ² 4p ³ (² P)4d ³ F	4		14314		14199			
11	4s ² 4p4 ³ P	0	[15470]	15459	-0.07			15482	0.08
12	$4s^{2}4p^{3}(^{2}P)4d^{3}D$	3	15181	15461	1.85	15391	1.39		
13	$4s^{2}4p^{3}(^{2}P)4d^{1}P$	1		15619		15604			
14	$4s4p^{53}P_a$	2	15952	15965	0.08	16136	1.16		
15	4s4p ⁵ ¹ P	1	16800	16819	0.11	17043	1.45		
16	$4s^24p^3(^4S)4d^5D$	1		19690					
17	$4s^24p^3(^4S)4d^5D$	0		19699					
18	$4s^24p^3(^2D)4d^3F$	2	20515	19710	-3.92				
19	$4s^24p^3(^2D)4d^3F$	3	21007	20007	-4.76	19847	-5.52		
20	$4s^24p^3(^2D)4d^3G$	4		20374		20218			
21	4s ² 4p ³ (² P)4d ³ F	2	21296	20804	-2.31	20683	-2.88		
22	$4s^{2}4p^{3}(^{2}D)4d^{3}D$	3	21296	21184	-0.52	21115	-0.85		
23	$4s^{2}4p^{3}(^{4}S)4d^{3}D$	4		21266					
24	$4s^{2}4p^{3}(^{2}D)4d^{1}S$	0		21488		01515			
25	$\frac{4s^24p^3(^2D)4d^4P}{4s^24a^3(^2D)4d^4P}$	1		21498		21515			
26	$4s^{2}4p^{3}(^{2}D)4d^{3}P$	2		21525		21617			
27	$4s^{2}4p^{3}(^{1}S)4d^{3}D$			21566		21601			
28	$4s^{2}4p^{3}(^{2}D)4d^{3}P$	1		2158/		21691			
29	$4s^{2}4p^{2}(^{2}D)4d^{3}F$	4		21/30		21702			
21	$4s^{2}4p^{3}(^{2}D)4d^{3}D$	5		210/0		21/92			
22	$43 4p^{(P)}4d^{3}D$	2		22233		22544			
32	484p(P)4dP	2		22310		22302			
34	$454p(T)4dT_a$ $4s^24p^{3}(4S)4d^{3}D$	2		22701		23125			
35	$4s^{2}4p^{3}(4S)^{4}d^{3}D$	1		23112		23125			
36	$4s^24p^3(^2D)4d^{-1}F$	3		23237		23327			
37	$4s^24p^3(^2D)4d^1D$	2		23719		23845			
38	$\frac{13 \text{ p}(D) \text{ tu} D}{4\text{s}4\text{p}^{53}\text{P}}$	0		23730		20010			
39	$4s4p^{5}$ ³ P	1		24551					
40	$\frac{4s^24p^3(^2P)4d^3P}{4s^24p^3(^2P)4d^3P}$	0		28557					
41	$4s^24p^3(^2P)4d^3P_2$	1		28750					
42	$4s^24p^3(^2P)4d^1F$	3		29017					
43	$4s^24p^3(^2P)4d^3D_2$	2		29043					
44	$4s^24p^3(^2P)4d^3F_a$	4		29373					
45	4s ² 4p ³ (² P)4d ¹ D	2		29558					
46	4s ² 4p ³ (² P)4d ³ D _a	3		30003					
47	$4s^24p^3(^2P)4d^1P_a$	1		31708					

Table 5. The level energies E (in 100 cm⁻¹) of the W⁴⁰⁺ ion and their relative deviations Δ (in %) from the NIST [28] data.

the same approach in constructing the RO basis. That RO basis was slightly different in [5].

In Table 6 the QR results are compared with the experimental level energies from the NIST database, the data from RELAC [6] and MCDHF [29] calculations and the fully relativistic results MCDF [31]. In Table 6 we present those level energy values from [31] which the authors consider as their most accurate calculation data. The MCDHF [29] results are determined using the largest CI expansion in their study, consequently, their deviations from the experimental data are the smallest ones compared to those of other results presented in [29]. One can find the detailed comparison of the QR results with other theoretical data in [5].

As one can see from Table 6, the relative deviations from the experimental values are smaller than 1% for the QR and the MCDHF [29] calculation results. The deviations of the RELAC [6] and MCDF [31] results are noticeably larger. The energy of the ground configuration $4s^24p^5 \ ^2P_{1/2}$ level presented in [8] is equal to 747290 cm⁻¹ and deviates from the experimental data by 0.69%. So this calculated level energy is just slightly better compared to our QR results.

The group of three levels with the same experimental energy is identified as the QR levels 20, 21 and 22, same as in [29]. The ordering of the energy levels determined in the QR approach coincides

Table 6. The level energies *E* (in 100 cm⁻¹) of the W³⁹⁺ ion and their relative deviations Δ (in %) from the NIST [28] data.

NT	COL	T	NIST	QR		RELAC[6]		MCDHF[29]		MCDF[31]	
IN	CSF	J	E	Е	Δ	E	Δ	E	Δ	Ε	Δ
1	4s ² 4p ⁵ ² P	1.5	0	0		0		0		0	
2	4s ² 4p ⁵ ² P	0.5	7422	7481	0.80	7485	0.86	7474	0.70	7461	0.53
3	4s ² 4p ⁴ (³ P)4d ⁴ D	1.5		12222		12178		12165		12357	
4	4s ² 4p ⁴ (³ P)4d ⁴ P	0.5		12390		12377		12347		12545	
5	4s ² 4p ⁴ (³ P)4d ⁴ D	2.5	12322	12402	0.65	12362	0.32	12353	0.25	12540	1.77
6	4s ² 4p ⁴ (³ P)4d ⁴ F	3.5	12520	12626	0.84	12577	0.45	12572	0.42	12745	1.80
7	4s ² 4p ⁴ (¹ S)4d ² D	1.5		13278		13266		13221		13337	
8	4s ² 4p ⁴ (³ P)4d ⁴ D	0.5		13765		13886		13810		13992	
9	4s ² 4p ⁴ (³ P)4d ² P	3.5	13754	13771	0.12	13816	0.45	13855	0.73	14066	2.27
10	4s ² 4p ⁴ (³ P)4d ⁴ F	4.5	13811	13872	0.44	13893	0.60	13916	0.76	14063	1.83
11	4s ² 4p ⁴ (¹ S)4d ² D	2.5		14910		15006		14948		15083	
12	4s ² 4p ⁴ (³ P)4d ⁴ P	1.5	15231	15287	0.37	15406	1.15	15287	0.37	15468	1.56
13	4s ² 4p ⁴ (³ P)4d ² D	2.5	15465	15539	0.48	15655	1.23	15524	0.38	15723	1.67
14	4s4p ⁶ ² S	0.5	16380	16240	-0.85	16560	1.10	16470	0.55	16867	2.97
15	4s ² 4p ⁴ (³ P)4d ⁴ D	0.5		19156				19203		19395	
16	$4s^{2}4p^{4}(^{3}P)4d ^{4}D_{a}$	1.5		19541				19598		19790	
17	4s ² 4p ⁴ (³ P)4d ⁴ F	2.5		19891		19996		19952		20126	
18	4s ² 4p ⁴ (¹ D)4d ² G	3.5		19982				20040		20203	
19	$4s^{2}4p^{4}(^{3}P)4d ^{4}D_{a}$	3.5		20896				21049		21221	
20	4s ² 4p ⁴ (¹ D)4d ² P	1.5	21355	21162	-0.90	21406	0.24	21309	-0.22	21510	0.73
21	4s ² 4p ⁴ (¹ D)4d ² S	0.5	21355	21264	-0.42	21707	1.65	21418	0.30	21759	1.89
22	$4s^{2}4p^{4}(^{3}P)4d^{2}D_{a}$	2.5	21355	21319	-0.17	21651	1.38	21433	0.37	21678	1.51
23	4s ² 4p ⁴ (³ P)4d ² P	1.5		21342		21654		21467		21683	
24	4s ² 4p ⁴ (³ P)4d ² F	2.5		21376		21599		21540		21745	
25	4s ² 4p ⁴ (¹ D)4d ² G	4.5		21407		21587		21570		21726	
26	4s ² 4p ⁴ (¹ D)4d ² D	2.5		21648		21897		21803		22026	
27	4s ² 4p ⁴ (¹ D)4d ² F	3.5		21968		22221		22136		22349	
28	4s ² 4p ⁴ (³ P)4d ² D	1.5		23126		23462		23240		23475	
29	$4s^{2}4p^{4}(^{3}P)4d^{2}P_{a}$	0.5		23578		24025		23701		23947	
30	$4s^{2}4p^{4}(^{1}S)4d^{2}D_{a}$	1.5		28455				28682		28844	
31	$4s^24p^4(^1S)4d^2D_a$	2.5		29080				29365		29515	

with the experimental energy levels order and with that of the MCDHF calculation from [29]. Nonetheless, we have to admit that the level ordering for these three levels in the RELAC and MCDF results is the same but differs from other available data.

3.6. W³⁸⁺ energy levels

The krypton-like tungsten W³⁸⁺ ion has rather simple energy spectra compared to other investigated tungsten ions. The ground configuration 4s²4p⁶ consists only of the closed shells. Furthermore, only one excited configuration 4s²4p⁵4d corresponds to our investigated configurations criteria. These two configurations produce 13 levels, and ten of them are known experimentally [28].

The calculated QR results are presented in Table 7 together with the NIST data and the RELAC [6] calculation. One can see from Table 7 that the QR level energies differ from the experimental values no more than 1%. The QR data are in better agreement with the experimental energy values compared to the RELAC [6] results, although this accuracy improvement is not so apparent when compared to the tungsten ions described in the previous sections.

3.7. Radiative transitions and electron collisions

After the level energies and their eigenfunctions are determined, they are utilized to calculate parameters of the radiative transitions, i. e. the transition line strengths *S*, oscillator strengths *gf*, transition probabilities *A* (A-values).

The emission spectra of the tungsten ions with an open 4p shell contain only few strong single lines that correspond to the electric dipole transitions from several levels [32]. Other excited levels are metastable, therefore the parameters of the higher-multipole order transitions have to be calculated. It was explained in [15, 33] that the transitions from these metastable levels to the levels of different parity, i. e. the magnetic quadrupole and electric octupole transitions must be determined along with the magnetic dipole and electric quadrupole transitions among the levels with the same parity. The parameters for these transition types are determined and included in our calculation of the radiative lifetime of the excited levels. Furthermore, the plane-waves Born approximation is used to calculate the electron-impact cross-sections and collision strengths for all investigated levels of the tungsten ions. The calculation method is described in [34]. In the current work we present only the energy levels and compare them with the experimental, semiempirical and theoretical data from other authors. Nevertheless, all calculated data, including radiative transitions and collisional excitation, can be found in the ADAMANT database (http://www.adamant.tfai.vu.lt/database).

4. Summary and conclusions

The tungsten ions with the ground configuration $4s^24p^N$ were investigated by employing the quasirelativistic Hartree–Fock approach. The extensive configuration interaction wavefunctions were used to include the correlation corrections. The complete energy spectra of the ground configuration $4s^24p^N$ and the excited configurations $4s^24p^{N-1}$ and $4s^24p^{N-1}$ d were determined.

Table 7. The level energies *E* (in 100 cm⁻¹) of the W³⁸⁺ ion and their relative deviations Δ (in %) from the NIST [28] data.

Ν	CSF	T	NIST	Q	R	RELAC[6]		
		J	E	Ε	Δ	E	Δ	
1	$4s^24p^{61}S$	0	0	0		0		
2	4s ² 4p ⁵ 4d ³ P	0	12080	12077	-0.03	11987	-0.77	
3	4s ² 4p ⁵ 4d ³ P	1	12400	12488	0.71	12363	-0.30	
4	4s ² 4p ⁵ 4d ³ F	3	12640	12757	0.92	12613	-0.21	
5	4s ² 4p ⁵ 4d ³ D	2	12728	12842	0.90	12727	-0.01	
6	4s ² 4p ⁵ 4d ³ F	4	13891	13891	0.00	13866	-0.18	
7	4s ² 4p ⁵ 4d ¹ D	2	14090	14072	-0.12	14071	-0.14	
8	4s ² 4p ⁵ 4d ³ D	3	14517	14524	0.05	14524	0.05	
9	4s ² 4p ⁵ 4d ³ D	1	15654	15730	0.49	15791	0.88	
10	4s ² 4p ⁵ 4d ³ F	2		19829		19859		
11	4s ² 4p ⁵ 4d ³ P	2		21301				
12	$4s^24p^54d$ ¹ P	1	21427	21380	-0.22	21672	1.15	
13	$4s^24p^54d^3F_a$	3		21516		21680		

The complete energy level spectra of the investigated configurations for the ions W⁴²⁺, W⁴¹⁺, W⁴⁰⁺ and W³⁸⁺, to our best knowledge, were calculated for the first time. Our calculated level energies were compared with the experimental and available theoretical data.

For the ion W^{43+} the agreement of our quasirelativistic results with the available experimental data is similar or better compared to the results from [6, 9, 12]. Nevertheless, the results from [10, 11] for the larger part of their presented level energies are slightly more accurate. On the other hand, the data from [10, 11] are given for a comparatively small number of energy levels, and some levels existing in the NIST database are not determined. For the ion W^{42+} , only the results from [12] are closer to the experimental data compared to the QR data for a larger part of the presented levels. Nevertheless, data in [12] are presented just for a small part of complete energy level spectra for the investigated configurations.

For the ground configuration of the ions W^{41+} and W^{40+} , the accuracy of our results is similar to that of the MCDF [8]. It is even better than the accuracy of RELAC [6] results for the experimentally known levels. The agreement with the experimental data for the highly excited levels of the W^{40+} ion is worse than for the levels of W^{41+} . The accuracy of the RELAC results is similar to our results. We assume that larger CI wavefunction expansion is necessary for this ion.

The ion W³⁹⁺ with the ground configuration 4s²4p⁵ was investigated by other authors, and the complete level energy spectrum of the excited configurations is available. Our QR results are very similar in accuracy as the results from [29] obtained using the MCDHF approach and more accurate compared to the relativistic results MCDF from [31].

The calculated eigenfunctions for the energy levels are further utilized in order to determine radiative transition properties and electron-impact excitation data using the same uniform and consistent approach. Therefore spectroscopic parameters of the tungsten ions together with the collisional data determined using the quasirelativistic approach can be promptly applied in the spectra modeling for the species with an open 4p shell in the high-temperature plasma.

Acknowledgements

The current research is funded by the European Social Fund under the Global Grant Measure, Project VP1-3.1-ŠMM-07-K-02-013.

References

- J. Reader, Spectral data for fusion energy: from W to W, Phys. Scr. **T134**, 014023 (2009), http://dx.doi. org/10.1088/0031-8949/2009/T134/014023
- [2] C. Skinner, Atomic physics in the quest for fusion energy and ITER, Phys. Scr. T134, 014022 (2009), http:// dx.doi.org/10.1088/0031-8949/2009/T134/014022
- [3] A.E. Kramida and T. Shirai, Energy levels and spectral lines of tungsten, W III through W LXXIV, At. Data Nucl. Data Tables 95, 305–474 (2009), http:// dx.doi.org/10.1016/j.adt.2008.12.002
- [4] A.E. Kramida, Recent progress in spectroscopy of tungsten, Can. J. Phys. 89, 551–570 (2011), http:// dx.doi.org/10.1139/p11-045
- [5] P. Bogdanovich, R. Karpuškienė, and R. Kisielius, Quasirelativistic calculation of 4s²4p⁵, 4s²4p⁴4d and 4s4p⁶ configuration spectroscopic parameters for the W³⁹⁺ ion, Phys. Scripta **90**, 035401 (2015), http://dx.doi.org/10.1088/0031-8949/90/3/035401
- [6] K.B. Fournier, Atomic data and spectral line intensities for highly ionized tungsten (Co-like W⁴⁷⁺ to Rb-like W³⁷⁺) in a high-temperature, low-density plasma, At. Data Nucl. Data Tables 68, 1–48 (1998), http://dx.doi.org/10.1006/adnd.1997.0756
- [7] M. Klapisch, J.L. Schwob, B. Fraenkel, and J. Oreg, The 1s–3p Kβ-like x-ray spectrum of highly ionized iron, J. Opt. Soc. Am 67, 148–155 (1977), http://dx.doi.org/10.1364/JOSA.67.000148
- [8] P. Quinet, A theoretical survey of atomic structure and forbidden transitions in the 4p^k and 4d^k ground configurations of tungsten ions W²⁹⁺ through W⁴³⁺, J. Phys. B 45, 025003 (2012), http:// dx.doi.org/10.1088/0953-4075/45/2/025003
- [9] P. Quinet, É. Biémont, P. Palmeri, and E. Träbert, Multiconfiguration Dirac–Fock wavelengths and transition rates in the X-ray spectra of highly charged Ga-like ions from Yb³⁹⁺ to U⁶¹⁺, At. Data Nucl. Data Tables **93**, 167–182 (2007), http:// dx.doi.org/10.1016/j.adt.2006.09.001
- [10] F. Hu, C. Wang, J. Yang, G. Jiang, and L. Hao, Multiconfiguration Dirac–Fock calculations of transition probabilities of some tungsten ions, Phys. Scripta 84, 015302 (2011), http://dx.doi. org/10.1088/0031-8949/84/01/015302
- [11] L.-H. Hao and X.-P. Kang, Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV, Eur. Phys. J. D 68, 203 (2014), http://dx.doi.org/10.1140/epjd/e2014-50056-0
- [12] J. Clementson, P. Beiersdorfer, T. Brage, and M.F. Gu, Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions, At. Data Nucl. Data Tables 100, 577–649 (2014), http:// dx.doi.org/10.1016/j.adt.2013.07.002
- [13] R. Karpuškienė, O. Rancova, and P. Bogdanovich, An *ab initio* study of the spectral properties of W II, J. Phys. B **43**, 085002 (2010), http://dx.doi. org/10.1088/0953-4075/43/8/085002

- [14] P. Bogdanovich and R. Kisielius, Theoretical energy level spectra and transition data for 4p⁶4d, 4p⁶4f and 4p⁵4d² configurations of W³⁷⁺ ion, At. Data Nucl. Data Tables **98**, 557–565 (2012), http://dx.doi. org/10.1016/j.adt.2011.11.004
- [15] P. Bogdanovich and R. Kisielius, Theoretical energy level spectra and transition data for 4p⁶4d², 4p⁶4d4f, and 4p⁵4d³ configurations of W³⁶⁺, At. Data Nucl. Data Tables **99**, 580–594 (2013), http://dx.doi. org/10.1016/j.adt.2012.11.001
- [16] P. Bogdanovich and R. Kisielius, Energy level properties of 4p⁶4d³, 4p⁶4d²4f, and 4p⁵4d⁴ configurations of W³⁵⁺, At. Data Nucl. Data Tables **100**, 1593–1602 (2014), http://dx.doi.org/10.1016/j.adt.2014.06.003
- [17] P. Bogdanovich, V. Jonauskas, and O. Rancova, Solving quasi-relativistic equations for hydrogenlike ions with account of the finite size of a nucleus, Nucl. Instrum. Methods B 235, 145–148 (2005), http://dx.doi.org/10.1016/j.nimb.2005.03.162
- [18]P. Bogdanovich and O. Rancova, Quasirelativistic Hartree–Fock equations consistent with Breit–Pauli approach, Phys. Rev. A 74(5), 052501 (2006), http:// dx.doi.org/10.1103/PhysRevA.74.052501
- [19]P. Bogdanovich and O. Rancova, Adjustment of the quasirelativistic equations for *p* electrons, Phys. Rev. A 76, 012507 (2007), http://dx.doi.org/10.1103/ PhysRevA.76.012507
- [20]P. Bogdanovich and O. Rancova, Quasirelativistic approach for *ab initio* study of highly charged ions, Phys. Scripta **78**, 045301 (2008), http://dx.doi. org/10.1088/0031-8949/78/04/045301
- [21]P. Bogdanovich and R. Karpuškienė, Numerical methods of the preliminary evaluation of the role of admixed configurations in atomic calculations, Comput. Phys. Commun. **134**, 321–334 (2001), http://dx.doi.org/10.1016/S0010-4655(00)00214-9
- [22] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Some problems of calculation of energy spectra of complex atomic configurations, Comput. Phys. Commun. 143, 174–180 (2002), http://dx.doi. org/10.1016/S0010-4655(01)00446-5
- [23] A. Hibbert, R. Glass, and C. Froese Fischer, A general program for computing angular integrals of the Breit-Pauli Hamiltonian, Comput. Phys. Commun. 64, 445-472 (1991), http://dx.doi. org/10.1016/0010-4655(91)90138-B
- [24]C. Froese Fischer, M.R. Godefroid, and A. Hibbert, A program for performing angular integrations for transition operators, Comput. Phys. Commun. 64,

486–500 (1991), http://dx.doi.org/10.1016/0010-4655(91)90140-G

- [25]C. Froese Fischer and M.R. Godefroid, Programs for computing LS and LSJ transitions from MCHF wave functions, Comput. Phys. Commun. 64, 501–519 (1991), http://dx.doi.org/10.1016/0010-4655(91)90141-7
- [26]G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An efficient approach for spin-angular integrations in atomic structure calculations, J. Phys. B 30, 3747–3771 (1997), http://dx.doi.org/10.1088/0953-4075/30/17/006
- [27]G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, Reduced coefficients (subcoefficients) of fractional parentage for *p*-, *d*-, and *f*-shells, At. Data Nucl. Data Tables **70**, 1–39 (1998), http://dx.doi.org/10.1006/ adnd.1998.0782
- [28]A. Kramida, Yu Ralchenko, J. Reader, and NIST ASD Team (2014), NIST Atomic Spectra Database (version 5.2), http://physics.nist.gov/asd (National Institute of Standards and Technology, Gaithersburg, MD, 2014).
- [29]C. Froese Fischer, Evaluation and comparison of the configuration interaction calculations for complex atoms, Atoms 2, 1–14 (2014), http://dx.doi. org/10.3390/atoms2010001
- [30]S. Aggarwal, A.K.S. Jha, and M. Mohan, Multiconfigurational Dirac–Fock energy levels and radiative rates for Br-like tungsten, Can. J. Phys. 91, 394– 400 (2013), http://dx.doi.org/10.1139/cjp-2013-0013
- [31]K.M. Aggarwal and F.P. Keenan, Energy levels, radiative rates, and lifetimes for transitions in W XL, At. Data Nucl. Data Tables 100, 1399–1518 (2014), http://dx.doi.org/10.1016/j.adt.2014.02.006
- [32]C. Biedermann, R. Radtke, R. Seidel, and T. Pütterich, Spectroscopy of highly charged tungsten ions relevant to fusion plasmas, Phys. Scripta T134, 014026 (2009), http://dx.doi.org/10.1088/0031-8949/2009/T134/014026
- [33]R. Karpuškienė, P. Bogdanovich, and R. Kisielius, Significance of M2 and E3 transitions for 4p⁵4d^{N+1}and 4p⁶4d^{N-1}4f-configuration metastable-level lifetimes, Phys. Rev. A 88, 022519 (2013), http://dx.doi. org/10.1103/PhysRevA.88.022519
- [34]P. Bogdanovich, R. Kisielius, and D. Stonys, Methods, algorithms, and computer codes for calculation of electron-impact excitation parameters, Lith. J. Phys. 54, 67–79 (2014), http://dx.doi. org/10.3952/lithjphys.54201

VOLFRAMO JONŲ 4s²4p^N, 4s²4p^{N-1}4d IR 4s4p^{N+1} KONFIGŪRACIJŲ ENERGIJOS SPEKTRAI

P. Bogdanovičius, R. Karpuškienė, R. Kisielius

Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Taikant kvazireliatyvistinį Hartrio ir Foko artinį, ištirti volframo jonai nuo W³⁸⁺ iki W⁴³⁺. Atlikti skaičiavimai įtraukiant koreliacinius efektus konfigūracijų sąveikos artėjime, naudota transformuotų radialiųjų orbitalių bazė. Suskaičiuotos pagrindinių konfigūracijų 4s²4p^N bei sužadintų konfigūracijų 4s²4p^{N-1}4d ir 4s4p^{N+1} lygmenų energijos. Gauti rezultatai palyginti su esamais eksperimentiniais ir teoriniais duomenimis. Jonams W⁴²⁺, W⁴¹⁺, W⁴⁰⁺ ir W³⁸⁺ visi tiriamųjų konfigūracijų energijos lygmenų spektrai gauti pirmą kartą. Jonų W⁴³⁺ ir W³⁹⁺ energijos lygmenys nustatyti didesniu tikslumu, palyginti su kitų autorių duomenimis.