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Motivated by recent experimental and computational results concerning a three-dimensional structure of vortices behind 
a  vortex shedding flow meter  [M.  Reik  et  al., Forsch. Ingenieurwes. 74, 77 (2010)], we study the  Strouhal–Reynolds number 
dependence in the vortex street in two dimensions behind a  trapezoid-shaped object by employing two types of Frisch–Has-
slacher–Pomeau (FHP) models. Our geometry is intended to reproduce the operation of a vortex shedding flow meter in a two-di-
mensional setting, thus preventing the formation of a three-dimensional vortex structure. In particular, we check if the anomalous 
Reynolds–Strouhal number dependence reported for three dimensions can also be found in our two-dimensional simulation. As 
we find that the Strouhal number is nearly independent of the Reynolds number in this particular setup, our results provide sup-
port for the hypothesis that three-dimensional flow structures are responsible for that dependence, thus hinting at the importance 
of the pipe diameter to the accurate operation of industrial vortex flow meters.
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1. introduction

Hydrodynamic theories have been studied for a long 
time, but they still provide new insights in various 
problems of physics and engineering, from nondissi-
pative currents in ultracold atomic vapour [1] to sta-
bility of tall buildings [2], in addition to posing some 
extremely challenging questions along the way [3]. 
Several branches of the field remain particularly vig-
orous, including studies of flow instabilities [4]. Be-
sides being of fundamental importance, flow insta-
bilities in general, and the renowned Kármán vortex 
street [5, 6], in particular, can be readily observed in 
everyday life [7], and also have important practical 
uses.

The vortex shedding flow meter stands out as 
a  direct industrial application of the  phenomenon 
of the  Kármán vortex street. This device consists 
of a blunt object positioned inside a pipe, and a de-
tector of vortices. As liquid (or gas) flows through 
the  pipe sufficiently fast, the  vortex street forms 
downstream from the blunt object. Since the vortex 

shedding frequency is dependent on the  hydrody-
namic properties of the flow, the signal of the vortex 
detector can be converted to the velocity measure-
ment of the  flow. This type of a  device is uniquely 
suitable for operation in an industrial setting, as it is 
fully contained inside the pipe, has no moving parts, 
and is both robust and reliable [8].

It turns out that even in this seemingly mun-
dane setting of a tested industrial application, nov-
el physics can be uncovered. In particular, it has 
been recently suggested that the vortex pattern that 
forms downstream from the vortex flow meter has 
a  three-dimensional structure  [9], in the  shape of 
the  so-called horseshoe vortices. In turn, this spa-
tial structure alters the  flow in the  pipe, introduc-
ing an anomalous relation between the  Reynolds 
and the Strouhal numbers. This anomalous relation 
violates the main operating assumption of the flow 
meter, therefore leading to inaccurate flow measure-
ments in certain regimes. In this paper, we provide 
an additional check if the spatial structure is indeed 
to blame for the anomalous relation by numerically 
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studying the same problem in two-dimensional ge-
ometry, where horseshoe vortices cannot form.

The traditional approach to hydrodynamics, 
namely solving the Navier–Stokes equations, is con-
sidered to be both analytically and computationally 
complicated. Analytical solutions of hydrodynamic 
problems are possible only in a  limited number of 
cases of flows at small Reynolds numbers and in 
relatively simple geometries. Some hydrodynamic 
instabilities can be investigated analytically and nu-
merically using dynamical systems approaches. For 
example, expansion around instabilities may result in 
equations that are simpler than Navier–Stokes equa-
tions, but which are nevertheless able to reproduce 
the  formation of hydrodynamic patterns  [10, 11]. 
Also, in some cases, weakly or moderately turbu-
lent flows can be described using the so-called shell 
models that rely on replacing the partial differential 
equation with a  system of coupled ordinary differ-
ential equations via discretization and truncation 
in the  Fourier space  [10]. However, for extremely 
high Reynolds numbers, because of a large number 
of relevant degrees of freedom due to a wide range 
of scales, the traditional descriptions of fully devel-
oped turbulence employ statistical methods [12, 13] 
and phenomenological models [14, 15].

An altogether different approach to hydrody-
namic problems are the  so-called lattice gas mod-
els [16–18]. These models belong to a wide class of 
discrete systems known as cellular automata. They 
have a direct physical interpretation. Namely, point 
particles occupy nodes of a lattice with the possibil-
ity to jump from one node to a neighbouring one in 
a single time step. In most of these models the parti-
cles move with a single speed in one of several direc-
tions. Collisions of the particles occur at the nodes, 
and are executed according to some simple logical 
rules. Remarkably, if the  lattice has proper sym-
metries and the collision rules satisfy relevant con-
servation laws (e.  g. momentum and energy con-
servation), then the global behaviour of the system 
in a  coarse-grained picture will closely resemble 
the flow of fluid [18, 19].

In this work, two different rule sets of the seven-
particle Frisch–Hasslacher–Pomeau (FHP,  [19]) 
model have been used in order to simulate the vor-
tex flow meter  [9]. These FHP models have been 
successfully employed to attack diverse problems, 
including nucleation in supersaturated liquids [20], 
sand dune growth  [21], as well as flows on curved 
surfaces with dynamical geometry  [22], and pro-
vided insight into various aspects of hydrodynam-
ics [18]. Hence, even though more elaborate methods 
to address fluid dynamics are present (for example, 

the lattice Boltzmann equation [23]), in our case we 
have employed the FHP lattice gas model in order to 
minimize the computation effort, while still obtain-
ing reliable results.

The structure of the  paper is as follows. Sec-
tion  2 introduces the  FHP lattice gas models used 
for the simulations, together with the definitions of 
Reynolds and Strouhal numbers in this framework. 
Then, in Section  3, the  main results are presented 
and discussed. Finally, Section 4 summarizes the re-
sults and draws some conclusions, in addition to 
discussing several promising directions for future 
investigations.

2. methods of simulation

In this section we briefly describe the lattice gas au-
tomata in general, and the FHP models in particu-
lar. Even though several excellent resources on these 
subjects are available (see, e. g. Refs.  [18] and [17] 
as well as the  references within them), we sum-
marize the most important aspects of the methods 
employed in order to make our discussion self-con-
tained.

The lattice gas automata consist of discrete nodes 
arranged geometrically in a Bravais lattice [17, 18, 26]. 
Since the number of nodes is finite, suitable boundary 
conditions (most commonly, periodic ones) must be 
implemented. Each node has a fixed number of chan-
nels that can be either empty or occupied by a single 
particle. The  channels point to the  nearest neigh-
bouring nodes, therefore a  particle in each channel 
is considered to possess a  single speed in the direc-
tion of the neighbouring node to which that channel 
is pointing.

The time evolution proceeds in discrete steps 
where each single step consists of two phases – prop-
agation and collision. During the propagation phase, 
the particles move, i. e. the occupied state of a chan-
nel in each node is transferred to the  channel of 
the same direction in the corresponding neighbour-
ing node. In the  collision phase, the  states of each 
node change locally, according to a set of fixed rules. 
In order to reproduce the macroscopic properties of 
physical fluids, the collision rules and lattice geom-
etry are constructed in such a way that the relevant 
conservation laws and certain symmetries remain in 
tact.

The rigid obstacles and impermeable bounda-
ries are introduced by setting up special collision 
rules describing particle reflection for the  nodes at 
the  boundaries. Also the  sources and sinks may be 
added by special rules of particle creation/destruction 
at some nodes.
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2.1. The FHP models

The FHP models [19] belong to a class of two-dimen-
sional lattice gas models based on the  two-dimen-
sional triangular lattice. There are several versions of 
the FHP models that maintain the same lattice struc-
ture, but differ in collision rules.

The simplest version is the so-called FHP-I model 
where each node has 6 channels corresponding to 
6 directions on the triangular lattice. For our simula-
tions we have used the FHP-II and FHP-III versions 
where 7 particles at each node may exist – 6 moving 
and 1 additional particle at rest (having zero velocity). 
Besides having a higher number of possible effective 
collisions, the main feature of the FHP-III model com-
pared to FHP-I and FHP-II models is the property of 
self-duality. This means that the dynamics of particles 
(occupied channels) is equivalent to the dynamics of 
holes (unoccupied channels) and the dynamics, i. e. 
the collision rules for the dual states (with occupied 
and unoccupied channels exchanged), are the same as 
for the original states.

2.2. Averaging and macroscopic observables

The discrete dynamics of the  states of nodes on 
the Bravais lattice described above constitutes the mi-
croscopic dynamics of the  model with microscopic 
quantities, such as local density (number of particles 
at the node), velocities of particles (or local velocity 
field taken as an average velocity of all particles at 
the given node). These quantities have little to do with 
actual microscopic dynamics that takes place in real 
physical fluids. However, under appropriate circum-
stances, the macroscopic properties of lattice gas can 
reproduce the macroscopic properties of real fluids.

The macroscopic observables from the  lattice 
gas simulations are obtained by spatial and tempo-
ral averaging. Spatial averaging consists in averaging 
the microscopic states over blocks of nodes. Temporal 
averaging means that the  value of the  state is taken 
averaged over multiple time steps.

Here we have used spatial averaging over the 16×16 
blocks of nodes and for the velocity field. Also, tem-
poral averaging over 10 time steps has been used un-
less noted otherwise.

2.3. Reynolds and Strouhal numbers

The Reynolds number is a dimensionless number that 
characterizes the flow by showing the relative impor-
tance of inertial and viscous forces [24]. It is widely 
used to quantitatively describe different regimes of 
the flow.

For the FHP-III model, the Reynolds number Re is 
calculated in the following way [18]. First, the density 
ρ of the particles on the lattice is measured. Since it is 
a number from 0 to 7 for each node, it is convenient 
to use the reduced density d = ρ/7. Because of the self-
duality of the FHP-III model, if d > 0.5, then the dy-
namics of holes instead of particles is being observed, 
therefore d → 1 – d in that case. Because of this, certain 
macroscopic observables differ from theoretical ones 
by the density dependent non-Galilean factor [18]:

. (1)

Another important quantity required in order to 
calculate Re is the kinematic viscosity

, (2)

where –d = 1 – d. The Reynolds number is 

, (3)

where u is the average velocity magnitude and L is 
the typical dimension of the obstacle. One readily no-
tices that in order to increase Re you have to choose 
a wide channel, produce high velocity of the flow and 
optimize d. In the present case Re is maximized at 
d ≅ 0.305.

The Strouhal number St is another dimensionless 
quantity characterizing the flow. The function St(Re) 
provides important information about what is hap-
pening at the wake [18]. It is defined by the following 
equation:

. (4)

Here L is again the typical size of the obstacle (in this 
case, the  length of the  triangle base, see Fig. 3). f  is 
the  frequency of the  wake oscillation produced by 
vortex shedding. All the quantities are in natural lat-
tice units (i.  e. the  number of lattice sites and time 
steps).

The industrial vortex flow meters function under 
the assumption of constant St. If this were the case, 
the frequency f of the vortex shedding would depend 
linearly on the flow velocity u. However, this turns out 
not to be true at least in some regimes of the flow [9].

In our case f is determined by lattice gas hot-wire 
anemometry  [18]  –  averaging over a  block where 
the local velocity magnitude is recorded at each step. 



V. Juknevičius  and J. Armaitis / Lith. J. Phys. 56, 191–199 (2016)194

Later on, Fourier analysis and sine function fitting 
are used to determine the low frequency mode from 
the noisy signal, since a direct application of the FFT 
is often not a good option, as it requires many steps 
to obtain reasonably small errors due to fluctuations 
of the  velocity field, which in turn come about due 
to complex flow patterns. The  low frequency mode 
in the  case of Kármán vortex street corresponds to 
the  vortex shedding frequency. A  piece of raw data 
and the corresponding sine function fit are provided 
in Fig. 4.

3. simulation of a vortex flow meter

Even though there is a considerable body of knowl-
edge concerning vortex formation in flows behind 
cylinders  [25], and other highly symmetric objects 
in translationally-invariant geometries, the  par-
ticular case of a prism in a confined setting has not 
been studied yet, to the best of our knowledge. Since 
the main goal of this paper is to simulate the vortex 
flow meter that is usually placed in a pipe, as in [9], 
periodic boundary conditions have been used in 
the x direction being the main direction of the flow 
(from the left to the right in the figures), and the con-
tainment of the flow by the pipe walls has been imple-
mented as impermeable boundaries from the top and 
the bottom (i. e. in the y direction).

This section presents the  results from a  series of 
simulations in several different geometries. First, 
the velocity profile of steady flow without an obstacle 
has been obtained in order to test the velocity profile 
(Fig. 1). Then, the vortex shedding from a triangle has 
been implemented and visualized in both FHP-II and 
FHP-III models (Fig. 2). Finally, the two-dimensional 
model of a vortex flow meter has been simulated by 
placing the blunt prism-shaped vortex shedding de-
vice (Fig. 3) in the flow with two different ratios of an 
obstacle size to a channel width in order to measure 
the dependence of the vortex shedding frequency on 
the flow velocity and determine the Strouhal–Reyn-
olds number dependence (Figs. 5 and 6).

3.1. Velocity profile of the laminar flow

Before starting the  simulation of an unsteady flow 
of the  vortex street behind an obstacle, the  velocity 
profile of an unobstructed flow has been investigated 
using the FHP-II model. On a lattice of 120×48 cells 
(each cell, as mentioned before, being a block of 16×16 
nodes) the  velocity component vx along the  general 
flow direction has been measured. A steady-state ve-
locity profile has been determined for every horizon-
tal block of cells (coordinate y ranging from 1 to 48) 

by spatial averaging of the velocity over cells 40 to 100 
in the  x direction and temporal averaging over 100 
time steps. Two mechanisms of flow induction have 
been considered.

First, the so-called fan approach [17] has been im-
plemented. This approach consists of a vertical zone 
of 1×48 cells where each particle moving to the  left 
(in the opposite direction to x) is being reversed with 
the probability 0.001. Using this approach, however, 
an almost rectangular velocity profile has been ob-
served (the top panel of Fig. 1), instead of the expect-
ed Poiseuille profile [12].

Fig. 1. The  top panel: rectangular velocity profile re-
sulting from the  fan approach. The  bottom panel: ve-
locity profile in the  source/sink case. Circles represent 
the  measured data, and the  solid red (online) line is 
the Poiseuille profile fit.

Next, we have used the  source/sink flow induc-
tion mechanism. A source or a sink is a node where 
each arriving particle is absorbed (destroyed) and 
new particles moving in all available directions (6 in 
the FHP case) are introduced each with some prob-
ability  [17]. If, for example, this probability is 0.2, 
then 6×0.2  =  1.2 particles at the  source/sink node 
are created on average. If, on average, there are more 
particles produced than destroyed, then such a node 
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acts as a source, and, if there are more particles de-
stroyed than created, a node acts as a sink.

We have implemented the  source/sink flow in-
duction by introducing two vertical zones of 1×48 of 
source/sink cells at the opposite sides of our system 
with different particle creation probabilities (0.5 and 
0.4 in this case). After a longer equilibration period 
of about 20000 time steps, the  expected Poiseuille 
velocity profile has been observed (see the  bottom 
panel of Fig. 1). Therefore, the source/sink induction 
of flow has been used for further simulations.

3.2. Vortex shedding in FHP-II and FHP-III versions

The numerical scheme has been tested further by com-
par ing the vortex shedding in the FHP-II and FHP-III 
models. For this, we have introduced a solid obstacle 
shaped as an equilateral triangle in the flow (Fig. 2).

Creation probabilities of 0.6 and 0.1 of the source/
sink zones have been used, and a simulation of 30000 
steps has been carried out on a  lattice of 120×200 
blocks. The  absolute magnitude of the  velocity dis-
played in 100 shades of gray (white being the highest 
magnitude) is shown. Note that the  Kármán vortex 
street is clearly visible in both FHP-II and FHP-III 
models (left and right panels of Fig. 2, respectively). 
However, one can also notice that the FHP-III produc-
es more pronounced vortices than the FHP-II, owing 
to a lower viscosity and therefore a higher Reynolds 
number [26]. The lower viscosity of the FHP-III mod-
el stems from its expanded set of possible collisions. In 
the  latter, 76 configurations participate in collisions, 
as opposed to merely 22 such active configurations of 
the FHP-II model. We refer the reader to Refs.  [26] 
and  [17] where these collisions are listed explicitly. 
For this reason, we consider the FHP-III rule set to 
be more suitable for the measurement of the Strouhal 
number, as it produces clearer vortices with no addi-
tional computational effort. Thus, the FHP-III model 
has been used for the simulations of the vortex flow 
meter.

3.3. Vortex flow meter

The main part of our investigation consists of mea-
surements of the vortex shedding frequency depend-
ence on the flow rate in the  two-dimensional simu-
lation of a  vortex flow meter  [9] using the  FHP-III 
rule set. The results have then been used to determine 
the Reynolds–Strouhal number dependence.

The two-dimensional model of the  vortex flow 
meter consists of a flow in a channel with impermea-
ble walls and a trapezoid-shaped obstacle that consti-
tutes the vortex shedding device. We have considered 
two cases differing in the obstacle to the channel size 
ratio, i. e. the ratio between the length L of the long-
er base of the vortex shedding device and the width 
D of the  channel. All simulations used a  geometri-
cally similar vortex shedding device with the  length 
of the  shorter base and the  height of the  trapezoid 
proportional to L and equal to 0.225L and 1.1L, re-
spectively. The geometry is depicted in Fig. 3. Here, 
the general flow direction is indicated by a gray arrow.

We have investigated a  relatively small vortex 
shedding device with an obstacle to the channel ratio 
L/D = 0.055 and a large vortex shedding device with 
L/D  =  0.27. This particular choice of the  two ratios 
has been made for two reasons. First, these choices 
address the two opposite physical limits: (i) the trans-
parent situation where the vortices may be shed far 
from the  walls of the  pipe (L/D  =  0.055  <<  1), and 
also (ii) the  less intuitive case where the  boundary 

Fig. 2. The wake of a triangular obstacle at the source-
sink ratio 0.6/0.1 for two versions of FHP. The velocity 
magnitude is represented by different shades of gray. 
A white bitmap image of the triangular object has been 
placed by hand on the  top of the  calculated velocity 
field. The top panel: FHP-II. The bottom panel: FHP-III.
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effects should play an important role (L/D = 0.27~1). 
Moreover, number 0.27 has been read off the geom-
etry of the  industrial vortex flow meter investigated 
in Ref. [9], in order to make contact with the results 
presented there. In both cases the  y component of 
the velocity vy (velocity in the direction perpendicu-
lar to the channel flow direction) has been measured 
5 cells downstream from the shorter base of the trap-
ezoid that constitutes our vortex shedding device. 
This corresponds to the lattice-gas implementation of 
hot-wire anemometry. The vortex shedding has pro-
duced a sine-shaped variation in vy. An example piece 
of raw data that has been measured in the simulation 
is depicted in Fig. 4 together with the sine function 
fit from which the vortex shedding frequency is de-
termined.

tuned by changing the source/sink ratio of the parti-
cle-absorbing/producing zones described in Subsec-
tion  3.1. It has been measured by averaging across 
the channel upstream from the obstacle.

3.3.1. Small vortex shedding device

For the simulation with a small vortex shedding de-
vice where L/D  =  0.055, a  system of 120×200 cells 
(each cell, as before, being a 16×16 block of lattice 
nodes) has been used. The  measured vortex shed-
ding frequency f dependence on the flow velocity u 
and the computed St(Re) dependence are shown in 
Fig. 5.

Fig. 3. Geometry of the vortex flow meter simulation.

Fig. 5. Measurements for the small vortex shedding de-
vice (L/D = 0.055, see Fig. 3). The top panel: vortex shed-
ding frequency dependence on flow velocity with linear 
fit (solid line). The bottom panel: Strouhal–Reynolds 
number dependence.

Fig. 4. Dynamics (in time steps) of the velocity perpen-
dicular to the  channel direction used for the  determi-
nation of wake oscillation frequency. Here the  case of 
a small vortex shedding device at a small flow velocity 
of u = 0.267 (Re = 156) is shown. The black line repre-
sents the output and the red line represents the sine fit 
for the frequency 0.0001.

The Reynolds number Re and the Strouhal num-
ber St have been calculated from the measured flow 
velocity u and the vortex shedding frequency f using 
Eqs. (3) and (4), respectively. The velocity u has been 

An approximate linear dependence of f on the ve-
locity u has been observed: 

f = –(1±0.1) · 10–4 + (7.8±0.3) · 10–4 · u. (5)

Here uncertainties are the  errors in the  least-
squares linear fit of the data.
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However, one notices that the  linear dependence 
is not ideal. First of all, it would give a non-zero fre-
quency f for u = 0. Secondly, one can see a nonlinear 
trend in the data (see the top panel of Fig. 5) which 
suggests that St is not constant. The latter fact is clearly 
visible when looking at the St(Re) dependence com-
puted from the data (see the bottom panel of Fig. 5).

3.3.2. Large vortex shedding device

The authors of Ref.  [9] have observed a decrease in 
the Strouhal number St with increasing the Reynolds 
number Re for Re < 4800 and suggested that the rea-
son for this dependence might be related to the for-
mation of horseshoe vortices along the channel walls 
and the three-dimensional turbulent flow.

Both of these effects are specific for a  three-di-
mensional geometry, and therefore do not exist in our 
flat model. It is thus useful to study if the previously 
reported trend in the St(Re) dependence survives giv-
en the decreased dimensionality of the system.

Results for the simulation of a large vortex shed-
ding device with L/D = 0.27 are shown in Fig. 6. Here, 
a  system of 240×100 cells has been used. The  ratio 
L/D  =  0.27 has been chosen to be the  same as has 
been used in Ref. [9] thus allowing a direct compari-
son of our results with the ones presented in Ref. [9] 
for the  three-dimensional case. Due to the  interac-
tion between the vortex street and the channel walls, 
a very noisy signal has been obtained. The depend-
ence of the frequency f on u might still be considered 
as slightly increasing (the top panel of Fig. 6),

f = –(0.1±0.1) · 10–4 + (1.2±0.5) · 10–4 · u, (6)

but no clear trend in the dependence of St on Re is 
apparent (the bottom panel of Fig. 6).

4. summary and conclusions

In summary, this paper presents three main results 
from a series of two-dimensional hydrodynamic sim-
ulations using the FHP lattice gas models.

First, the  Poiseuille profile for the  laminar flow 
confined in a channel has been demonstrated using 
the source/sink method. It has also been shown that 
the so-called fan approach for induction of the flow 
results in a  different, namely, rectangular, velocity 
profile (Fig. 1).

Moreover, the vortex shedding from a  triangular 
object in the flow has been demonstrated in FHP-II 
and FHP-III models, exhibiting higher viscosity in 
the  FHP-II model (Fig.  2). Therefore, the  FHP-III 
model has been used for further simulations.

The main part of this paper has been the simula-
tion of the vortex shedding from a blunt trapezoid-
shaped obstacle (Fig.  3) in a  confined flow. This 
configuration is a  model for the  vortex flow meter 
described in Ref. [9]. The Strouhal–Reynolds number 
dependence was investigated in two different obsta-
cle-channel size ratios.

As already noticed in classical works (see, e.  g. 
Ref.  [27]), statistical fluctuations play a  prominent 
role in lattice gas automaton simulations in general, 
and in turbulence-related problems in particular. 
Having this limitation of our method in mind, we 
have performed the simulation multiple times in or-
der to investigate run-to-run noise. We have discov-
ered that the differences between runs are appreciable 
only for the large vortex shedding device case. Hence, 
we only show the results of different runs for that case 
(see Fig. 6). However, in order to fully ascertain that 
the results are not dependent on the statistical fluctu-
ations, one should turn to more sophisticated meth-
ods (see Refs. [28, 29]).

Linear dependence (see Eq. (5)) of the vortex shed-
ding frequency on the  flow velocity and increasing 

Fig. 6. Measurements for the large vortex shedding de-
vice (L/D = 0.27, see Fig. 3). The top panel: vortex shed-
ding frequency dependence on flow velocity with linear 
fit (solid line). The  bottom panel: Strouhal–Reynolds 
number dependence.
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Strouhal number with increasing Reynolds number 
has been demonstrated (Fig. 5) for the small vortex 
shedding device.

For the  large vortex shedding device, where 
the vortex street is obstructed by the channel walls, 
only a weak dependence of the vortex shedding fre-
quency on the  flow velocity can be observed (see 
Eq. (6), Fig. 6) and no significant Strouhal–Reynolds 
dependence has been found in contrast to the experi-
mental data and hydrodynamic simulations given in 
Ref. [9]. Therefore, our two-dimensional results sup-
port the hypothesis presented in Ref. [9], namely, that 
flow structures particular to the  three-dimensional 
geometry are responsible for the  strong St(Re) de-
pendence.

In future work, it would be interesting to study 
the transition from two dimensions to three dimen-
sions, as the onset of the strong St(Re) dependence 
is expected to occur when the extent of the smallest 
dimension of the system surpasses the  length scale 
characteristic to the flow. Therefore, in pipes smaller 
than the size of the horseshoe vortex (given a certain 
flow velocity), vortex flow meters operate in the ac-
curate linear regime, whereas when the diameter of 
the pipe is sufficiently large, the accuracy of the said 
flow meters should decrease. These investigations 
might lead to a better understanding of the reliable-
operation bounds of industrial vortex flow meters.
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sŪKurinio tĖKmĖs greiČio matuoKLio modeLiavimas gardeLiniŲ 
duJŲ automatŲ metodais: strouhaLo ir reinoLdso sKaiČiŲ 

priKLausomyBĖ

V. Juknevičius, J. Armaitis

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

santrauka
Naudojant dvimatį FHP-7 gardelinių dujų metodą 

straipsnyje modeliuojamas  sūkurinio skysčių ir dujų 
tėk mės greičio matavimo prietaisas. Sūkurinis tėkmės 
greičio matuoklis matuoja sraute patalpinto prizmės for-
mos objekto keliamų sūkurių atsiradimo dažnį, kuris tu-
rėtų būti proporcingas tėkmės greičiui. Kai kurie ekspe-
rimentiniai ir skaitinio modeliavimo rezultatai [M. Reik 
et al., Forsch. Ingenieurwes. 74, 77 (2010)] liudija apie 
šio proporcingumo pažeidimus,  sukeliančius tėkmės 
greičio matavimo rezultatų paklaidas. Trimatė sūkurių 
struktūra (pasagos formos sūkuriai, susidarantys vamz-

džio sienelės ir tėkmės greičio matuoklio susijungimo 
zonoje) įvardijama kaip galima pažeidimų priežastis. 
Savo straipsnyje nagrinėjame dvimatį sūkurinio tėkmės 
greičio matuoklio modelį, kuriame trimatės struktūros 
sūkuriai susidaryti negali. Mūsų rezultatai rodo, kad pro-
porcingumo pažeidimų nėra. Todėl manome, kad trima-
tė sūkurių struktūra išties lemia minėtos priklausomybės 
pažeidimus. Straipsnyje taip pat trumpai supažindiname 
su hidrodinaminio modeliavimo gardelinių dujų metodų 
principais ir skysčio tėkmę bei sūkurių susidarymą api-
būdinančiais Reinoldso ir Strouhalo skaičiais.
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