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The aim of the paper is to highlight some of the newest research 
data and to present a summary of tissue-specific mechanisms in-
volved in breast cancer metastasis. Breast cancer spreads to differ-
ent distant organs, preferentially to bones, lung, liver and brain. 
Tumor cell migration and colonization requires a successful cas-
cade of molecular events where different gene mutations and al-
tered expression play an important role. The molecular basis of 
breast cancer metastatic process, especially the mechanism of 
organ-specific metastasis, is poorly understood and is presently 
extensively studied. Recent research data suggest that primary 
tumor gene signatures predict tumor metastatic potential and 
organ-specific tropism. The advanced knowledge and better un-
derstanding of metastatic process should help to tailor treatment 
directed towards preventing or delaying metastasis formation.
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INTRODUCTION

Cancer related morbidity and mortality are 
mainly associated with its metastatic potential. 
Breast cancer (BC) metastasizes to many distant 
organs. The most common is metastasis to bone, 
lung, liver and brain. The metastases significant-
ly, from 89% to 23%, reduce 5-year relative sur-
vival (Howlader et al., 2011). Untreated BC brain 
metastasis considerably (till 1 month) decreases 

patient life expectancy (Wadasadawale et al., 
2007).

Breast cancer is known as a highly heteroge-
neous disease. The intratumor heterogeneity is 
due to genetic instability, increased mutation rate, 
epigenetic alterations and selective pressure. Dur-
ing primary tumor formation cells with advanced 
features such as increased proliferation capacity, 
motility and invasiveness are favored. They form 
a subpopulation of cells, which are genetically 
prog rammed to enter circulation and form distant 
metastasis. Today it is not entirely clear whether 
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metastasizing cells are cancer stem cells or any tu-
mor cell with acquired invasive features.

A process of metastasis formation is a multi-
step cascade of molecular events where different 
gene mutations and altered expressions take place. 
Theoretically, it could be divided into cell migra-
tion and colonization. Metastatic cell migration 
includes local invasion, intravasation, dissemi-
nation and extravasation. A number of genetic 
mechanisms have been reported to be implicated 
at different stages of metastasis formation (Chiang 
et al., 2008; Weber et al., 2008). They are all aimed 
at increasing cell adaptation to constantly chang-
ing environment what results in aggressive cell 
phenotype.

The molecular basis of breast cancer meta-
static process, especially the mechanism of or-
gan-specific metastasis, is poorly understood and 
presently is extensively studied. It is obvious that 
new knowledge could help in the development of 
target therapeutics, directed towards preventing 
or delaying metastasis formation. The aim of the 
paper is to highlight some of the newest research 
data and to present a summary of tissue-specific 
mechanisms involved in breast cancer metastasis.

The molecular basis of BC metastasis forma-
tion. Local invasion and intravasation
At the very beginning of local invasion cancer cells 
interact tightly with their microenvironment. This 
crosstalk results in stroma activation and cytokine 
release. Epidermal growth factor (EGF), insulin-
like growth factor (IGF), fibroblast growth factor 
(FGF), transforming growth factor β (TGFß), he-
patocyte growth factor (HGF) and platelet-derived 
growth factor (PDGF) have been reported to be 
the key molecules at this stage of local invasion 
(Yang et al., 2008). They are known as epithelial-
mesenchymal transition (EMT) inducing factors 
which are released from cancer-associated fibro-
blasts (CAFs). Cancer-associated fibroblasts to-
gether with stromal pericytes support tumor pro-
liferation (Spaeth EL, 2009). In response to EMT 
inducing factors, cancer cells release EMT activat-
ing transcription factors (EMT-TFs) and undergo 
EMT (Thiery et al., 2009). During EMT epithelial 
cancer cells lose epithelial and gain mesenchymal 
markers. They protect tumor cells during metasta-
sis formation and enable further transformation. 
The process of EMT is reversible as cancer cells 

redifferentiate back to epithelial cells after having 
set into distant organs.

Once mesenchymal markers are gained, can-
cer cells get attracted to the chemoattractants 
from the circulation. That is an important signal, 
which triggers cell migration towards vasculature. 
Before cancer cells get launched into the circu-
lation, they have to break down intraepithelial 
junctions and invade the surrounding stroma. E-
cadherin-catenin complex is the most important 
for intraepithelial connections. It forms an ad-
herence junction in normal and cancerous cells. 
Mutations in E-cadherin, α- and β- catenins or 
epigenetic silencing of E-cadherin results in the 
destruction of this protein complex and increased 
cell motility (Sarrio et al., 2003). The down regu-
lation of E-cadherin by EGFR, FGFR, IGFR and 
HGFR was also reported (Thiery, 2002). Further-
more, EMT induces epithelial E-cadherin switch 
to mesenchymal N-cadherin. That is followed by 
increased cancer cell affinity to the cells of mesen-
chymal origin (Hulit et al., 2007).

Loosened cells are ready to start extracellular 
matrix (ECM) invasion. They communicate with 
activated stroma cells, macrophages, which re-
lease a wide variety of matrix metalloproteinases 
(MMP). MMP is a group of proteolytic enzymes, 
involved in connective tissue remodeling. They 
destroy extracellular matrix components such as 
fibronectin, type I collagen and laminin. Dur-
ing metastatic process the enhanced expression 
of MMP leads to extracellular stroma disruption 
forming an artificial path for cancer cell invasion 
towards the vasculature. MMP are also known to 
support vascular remodeling (Gupta et al., 2007). 
The increased MMP expression correlates with 
tumor invasiveness and poor prognosis (Turpeen-
niemi-Hujanen, 2005).

A number of different molecules facilitating 
tumor cell invasion were reported (Wang, Zhang, 
2005). For example, cathepsins were demonstrat-
ed to be involved in ECM degradation and other 
crucial steps of carcinogenesis (Gocheva et al., 
2006). The overexpression of cathepsins D in pri-
mary tumors is known as a poor prognosis mark-
er (Foekens et al., 2009). Additionally, urokinase-
type plasminogen activator (uPA) system was 
reported to be involved in ECM destruction. It is 
responsible for degradation of fibrin, fibronectin 
and laminin. The data suggest that increased uPA 
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levels correlate with decreased relapse-free sur-
vival and overall survival (Look et al., 2002).

Invadopodia, invasive feet, is a three-dimen-
sional structure similar to podosome (two-di-
mensional structure), which enables cancer cell 
motility. Actin filaments are the basic structural 
elements of invadopodia. Cell membrane remo-
deling and increased local actin synthesis forms 
a protuberance – invadopodia. It is a dynamic 
structure with stability lasting for a few minutes. 
Formation of invadopodia is initiated by the re-
lease of colony stimulating factor-1 (SCF-1) and 
phoshatidylinositol-glycan biosynthesis class F 
protein (PIGF) from activated tumor cells. SCF-1 
and PIGF attract and activate tumor associated 
macrophages (TAM). They secrete a huge variety 
of factors, responsible for invadopodia formation 
(Wyckoff et al., 2004). Additionally, activated CAF 
release epidermal growth factor (EGF), HGF and 
TGFß. They could also contribute to invadopodia 
composition (Oxmann et al., 2008). Recently a few 
actin regulators such as cortactin and N-WASP 
(neuronal Wiskott–Aldrich Syndrome protein) 
have been reported. They act together with adap-
tor proteins, Tks4 and Tks5, and proteases (for ex-
ample, MMP2, MMP1 and MT1-MMP). All those 
molecules are crucial not only for invadopodia 
formation but also for local (at the very top of in-
vadopodia) proteolytic MMP activity (Murphy, 
Courtneidge, 2011). Summarizing, cytoskeleton 
remodeling and locally increased MMP expres-
sion participate in cancer cell motions towards 
the circulation.

Additionally, Sidani et al. demonstrated that 
tumor cells have the ability to use extracellular 
matrix components to speed up their migration. 
The researchers documented cancer cells to per-
form inch worm-like movements along ECM fi-
bers in primary breast tumors. This type of high 
velocity migration appeared to be important for 
cancer cell translocation during local invasion. 
The ECM fibers are sometimes referred to as can-
cer cell highways (Sidani et al., 2006).

Once cells arrive to the capillary wall, the pro-
cess known as intravasation starts. Cells have to 
get through the basal membrane and inner layer 
of endothelial cells. The earlier acquired mecha-
nisms of cytoskeleton remodeling and increased 
MMP activity play a major role in passing this 
barrier. It has been reported that intravasating 

cells act as macrophages. They form pseudopo-
dia, which helps them to penetrate (Gonda et al., 
2010).

Dissemination and extravasation
During the process of metastasis formation spe-
cific genetic alterations enable cancer cells to pass 
beyond their limits. For example, epithelial mes-
enchymal transition enhances cell motility and af-
finity to mesenchymal signals. Furthermore, EMT 
increases the chances of circulating tumor cell 
(CTC) survival in the vasculature. It has been re-
ported that during dissemination cancer cells ex-
press unknown cell surface markers which attract 
platelets. Surrounded by platelets, CTCs seem to 
be protected (Jin et al., 2006). Moreover, cancer 
cells have been reported to mimic macrophages. 
Cancer cells express CD11b, CD45, CD68, CXCR, 
F4/80 and Iba1 molecules that are known as mac-
rophage markers (Huysentruyt et al., 2008). Both 
molecular mechanisms protect CTCs from the 
host immune system on their way to distant or-
gans. Furthermore, most tumor cells have a re-
duced or abolished expression of metastasis sup-
pressor CD82. Normally, the interaction between 
CD82 and endothelial cell DARC (Duffy antigen 
chemokine receptor) results in cancer cell an-
chorage to capillary wall. The loss of CD82 was 
reported to facilitate cell migration (Bandyopad-
hyay et al., 2006).

The next step of metastasis formation is ex-
travasation. For successful completion of this pro-
cess, cells must adhere to vascular endothelium 
and escape from the circulation. The increased 
expression of specific cell adhesion molecules is 
known to be extremely important for this process. 
For example, metadherin participates in CTC ad-
hesion to lung and brain endothelium (Brown, 
Ruoslahti, 2004). Once the cells are stuck, differ-
ent molecular mechanisms of cytoskeleton re-
modeling take place. They increase cell elasticity 
and stiffness. The former is important for cross-
ing the vasculature and invading distant organ as 
it requires cell passage through extremely small 
intracellular spaces. On the other hand, increased 
cytoskeleton stiffness plays an important role in 
cell survival within a capillary. It is known that 
during extravasation cells are squeezed as a capil-
lary diameter is at least 3 times smaller than that 
of a cancer cell.
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Colonization
The majority of the molecular alterations are 
bounced to protect cancer cells on their way from 
primary tumor to distant organs. Despite of huge 
variety of “protective” mechanisms, metastasis 
formation is accomplished with losses. It has been 
reported that only a small proportion (<0.01%) of 
tumor cells entering circulation colonize distant 
organs (Fidler, 1970). Therefore distant meta-
stases are often referred to as a successful sequence 
of molecular events.

The layout of circulation is the most impor-
tant for most tumor metastatic tropism; however 
a few molecular mechanisms have been reported 
to be responsible for organ-specific colonization. 
Generally, distant organ colonization depends 
on the structure of the capillary. There are two 
types of capillaries: fenestrated and continuous. 
The former are found in bones and liver, while 
the latter in brain and lung. Cancer cell penetra-
tion through continuous capillary requires en-
hanced expression of cell adhesion molecules. For 
example, elevated expression of cyclooxygenese 
2 (COX2), EGFR and heparin binding epidermal 
growth factor (HBEGF) facilitates BC seeding 
to brain (Bos et al., 2009), while COX2, EREG, 
MMP1 and MMP2 – to lung (Gupta et al., 2007). 
As far as fenestrated capillary are concerned, they 
allow spontaneous cell passage. It is believed that 
capillary structure (fenestrated) makes bones the 
most frequent site of distant metastasis.

The successful cell seeding might require ex-
tra molecular events. Weber et al. described a li-
gand, osteopontin, which facilitates CD44+ cell 
homing (Weber et al., 1996). Most of the distant 
organs (bone, liver, lung and lymph nodes) phy-
siologically express osteopontin. That increases 
the probability of CD44+ cell “accommodation”. 
Additionally, specific molecules, participating in 
organ-specific colonization, have been reported. 
For example, enhanced matrix metalloproteinase 
expression is usually detected in metastatic bone 
lesions (Smid et al., 2006). A comprehensive over-
view of genes and protein facilitating organ-spe-
cific colonization is presented below.

Furthermore, the process of colonization de-
pends not only on the readiness of “seed” (meta-
static cell), but also on the maturity of  “soil” (distant 
organ). The recent research suggests that primary 
tumor signaling plays a major role in premeta-

static niche formation. For example, breast can-
cer signaling through vascular endothelial growth 
factor A (VEGF-A), SDF-1, TNF-α, TNF-β and 
PIGF leads to the reorganization of bone struc-
ture. Bone marrow-derived cells are recruited to a 
newly formed premetastatic niche. Consequently, 
cells release chemoattractive factors such as lysyl 
oxidase (LOX), S1000-A8, S100-A9, which facili-
tate CTCs colonization (Peinadoa et al., 2011).

Organ-specific metastasis. BC metastasis to 
bone
Bones are the most frequent sites of breast can-
cer metastasis. A huge variety of crosstalk bet-
ween primary breast tumors and bone microen-
vironment has been reported (Fong, Komarova, 
2011). Firstly, breast cancer inhibits osteoblast 
differentiation. Consequently, immature osteo-
blasts together with hematopoietic stem cells start 
forming a premetastatic niche (Mendoza-Villa-
nueva et al., 2011). Secondly, primary breast tu-
mors are known to release parathyroid hormone 
related protein (PTHrP). It stimulates osteoblasts, 
which in response release RANKL (a receptor 
activator of nuclear factor kappa-B ligand). Its 
partner, RANK, is expressed by CTCs. As a result, 
RANKL / RANK interaction facilitates metastatic 
cell homing to bone (Yin et al., 1999).

Another important interaction involved in 
bone metastasis formation is between SDF-1 
and C-X-C chemokine receptor type 4 (CXCR4). 
SDF-1 is highly expressed in bone, while CX-
CR4 – in breast cancer tissue. The SDF-1/CXCR4 
interaction participates in breast cancer bone me-
tastasis formation. The increased expression of 
CXCR4 in primary tumor correlates with poor 
prognosis (Dewan et al., 2006).

Recently the role of αvβ3 integrin has been em-
phasized. αvβ3 integrin is a receptor for osteopon-
tin, fibronectin and vitronectin, which are highly 
expressed in bone marrow. The circulating breast 
cancer cells, expressing αvβ3 integrin, interact with 
fibronectin and finally attach to it. This interaction 
stimulates MMP2 secretion, and, consequently, 
increases cell invasiveness. To date, αvβ3 integrin is 
considered the most important molecule for CTC 
homing to bones (Takayama et al., 2006).

Despite of the above mentioned verified single 
protein contribution, it has become clear that 
multiple gene expression changes and numerous 
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protein interactions drive successful coloniza-
tion process. Kong et al. analyzed gene expression 
profile in MDA-MB-231 metastatic breast cancer 
cell line. They determined a group of differently 
expressed genes – a gene signature for bone meta-
stasis. When tested on primary tumors, metastatic 
bone signature (52 genes) clearly predicted bone 
colonization (Kang et al., 2003). In a study re-
ported by Smid et al. 69 genes responsible for BC 
metastasis were identified. Gene expression pro-
file analysis enabled a correct identification of pri-
mary breast tumors relapsing to bone (Smid et al., 
2006). The recent research data provide strong 
evidence that primary tumor gene signatures 
predict its metastatic potential (Weigelt et al., 
2003; Ramaswamy et al., 2003; Wang et al., 2005; 
van de Vijver et al., 2002).

Furthermore, gene signature appeared to com-
prise even more meaningful information. Kleina et 
al. analyzed gene expression profile in the samples 
excised from BC brain and bone metastasis. They 
identified 73 differently expressed genes while com-
paring brain to bone metastasis and their matched 
primary tumors. Gene cluster analysis identified 
two differently expressed gene groups. One set of 
genes (51 gene) was characteristic for brain, while 
the other (22 genes) – for bone metastasis. The au-
thors demonstrated that primary tumor gene ex-
pression analysis predicts BC organ-specific meta-
static tropism (Klein et al., 2009).

BC metastasis to lung
Lung metastasis gene-expression signature (LMS), 
a set of 54 differently expressed genes, was report-
ed by Minn et al. Firstly, it was identified in the 
experiments with MDA MB-231 human breast 
cancer cell line and mouse xenograft model. Se-
quentially LMS was verified on primary human 
breast cancers. Minn et al. demonstrated that 
LMS clearly predicts patients who are at high risk 
for lung metastasis (Minn et al., 2005). Addition-
ally, in 2007, they demonstrated that LMS affects 
primary tumor growth, which is accomplished by 
LMS+ cell number expansion (Minn et al., 2007). 
A continuous aggressive cell clone selection with-
in the primary tumor is congruent with Darwin’s 
evolution theory.

Landemaine et al. studied gene expression 
profile in metastatic breast cancer. They analyzed 
BC tissue samples, excised from different distant 

meta static sites. Landemaine et al. determined a 
group of genes (21 gene) whose expression sig-
nificantly differed between lung and non-lung 
metastasis. Further functional validation of the 
data brought them to a 6-gene signature. It was 
significantly associated with an increased risk of 
lung metastasis (Landemaine et al., 2008).

BC metastasis to liver
The molecular mechanisms responsible for BC 
liver metastasis are poorly understood. In the 
study of Erin et al. gene expression patterns of 
primary BC and their matched liver metastasis 
were analyzed. The scientists identified a group 
of 4 differently expressed genes, which partici-
pate in tight- and adherence junction formation. 
Erin et al. demonstrated a reduced or abolished 
expression of claudin 4, claudin 7, γ-catenin and 
ZO-1 in the samples excised from liver metasta-
sis. The authors suggest that gene expression diffe-
rences were due to the interaction between tumor 
cells and microenvironment (Erin et al., 2009).

In the study of Sanz-Pamplona et al., a protein-
protein network interaction analysis identified 
15 proteins, which were functional representa-
tives of BC liver metastasis signature. Generally, 
they were involved in inflammation response and 
wound healing. The protein network taxonomy 
showed that liver-specific proteins interact in sig-
nal transduction, proteolysis and hepatic glucose 
metabolism. However, none of the protein from 
liver metastasis signature was verified as liver-
specific metastasis marker (Sanz-Pamplona et al., 
2012).

BC metastasis to brain
Different approaches have been used to track 
genes involved in BC metastasis to brain. In vitro 
cell culture models revealed the importance of 
crosstalk between primary tumor and brain mic-
roenvironment (Carlini et al., 2011). In the stu-
dy of Sierra et al. 435-Br1 breast cancer cell line 
show ed increased growth rates when exposed 
to astrocyte-conditioned medium (Sierra et al., 
2007). Fitzgerald et al. demonstrated that cocul-
ture of MDA-B-231 breast cancer cell line with 
glia cells intensify cancer cell proliferation (Fitz-
gerald et al., 2008).

Combined techniques of cell culture and ani-
mal models were used in the study of Mendes 
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et al. They demonstrated that ENU1564 rat bre-
ast cancer cell line responds to the signals from 
activated astrocytes by increased invasiveness and 
MMP2 expression. Furthermore, tissue inhibitor 
of MMP2 (TIMP2) significantly decreased tumor 
growth and prevented metastasis development 
in vivo. The authors demonstrated that extracel-
lular signal-regulated kinases 1 and 2 (ERK1/2) 
control MMP2 activity. Summarizing, the authors 
suggest that ERK1/2 might be involved in BC 
brain metastasis formation through an increased 
MMP2 activity (Mendes et al., 2007).

It the study of Bos et al. three genes responsib-
le for brain colonization were identified. Two of 
them, COX2 and HBEGF ligand, had been pre-
viously reported to be associated with breast 
cancer metastasis to lung (Minn et al., 2005). 
Bos et al. suggest that the mediators of extrava-
sation play a major role in priming cells for 
brain and lung metastasis. α2,6-sialyltransferase 
(ST6GALNAC5) was the third identified gene. 
It appeared to be exclusively important for brain 
metastasis. α2,6-sialyltransferase is a molecule 
that is normally expressed only in brain tissue. 
Cancer cells, expressing ST6GALNAC5, were ca-
pable of both: adhering to brain endothelium and 
passing through the blood–brain barrier. In this 
study cell-surface glycosylation was first reported 
to be important for organotrophic metastasis for-
mation (Bos et al., 2009). A number of other genes 
have been reported to be important for breast 
cancer brain metastasis (Palmieri et al., 2009; 
Ratmathulla et al., 2012; Saunus et al., 2011).

Potentially “druggable” targets
The identification of gene signatures responsible 
for BC organ-specific metastasis is a priority field 
of future cancer research. It is believed that gene 
signatures will broaden our knowledge on meta-
static process and will offer an individualized 
treatment for every cancer patient. Generally, the 
final goal is to prevent the metastatic process itself 
by blocking the genes involved in early stage of 
metastasis development. For example, phase 1–2 
trail molecules GC1008 and ARQ197 are the in-
hibitors of metastatic initiator genes TGF-β and 
c-MET, respectively (Smith et al., 2012; Previ-
di et al., 2012).

While a universal antimetastatic treatment is 
under development, high metastasis-risk patients 

could benefit from well established agents. At 
present, in the case of increased risk for bone me-
tastasis, bisphosphonates are proved to be effec-
tive. They prevent or delay metastasis formation 
(Body et al., 2004). Bisphosphonates selectively 
attach to bone and trigger osteoblast apoptosis. 
RALK is another molecule that draws a lot of at-
tention. The efficiency of anti-RANK antibody, 
denosumab, in preventing BC bone metastasis 
is currently under investigation in phase 3 trials 
(Stopeck et al., 2011).

No target therapy for other BC metastatic le-
sions is available. Generally, any molecule par-
ticipating in BC organ-specific colonization could 
be a candidate for further analysis. For example, 
genes involved in LMS or 6-gene signature could 
serve as a background for future search of lung 
specific antimetastatic treatment. Concerning BC 
liver metastases, family of claudin is of interest. 
α2,6-sialyltransferase was first reported to be im-
portant for brain metastasis. It could possibly be a 
therapeutic target for patients with increased risk 
of brain metastasis. In the future, the identifica-
tion of high metastatic-risk patients, who could 
benefit from tailored treatment, might be imple-
mented into treatment protocols.

CONCLUSIONS

Technological progress enabled high throughput 
analysis of primary tumors and their matched 
metastatic lesions. The results are encouraging in 
both disclosing the basis of tumor biology and be-
ing translated into clinics. The organ-specific me-
tastasis signatures were demonstrated to predict 
tumor metastatic potential and organ-specific tro-
pism. The integrated model of research involving 
gene expression analyses, functional and protein 
interaction assays will help to identify the missing 
molecules in the complicated “cobweb” of tumor 
biology.
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MOLEKULINIAI KRŪTIES VĖŽIO 
METASTAZAVIMO MECHANIZMAI

Santrauka
Straipsnyje pateikiami naujausių mokslinių tyrimų 
duomenys, taip pat molekulinių mechanizmų, nule-
miančių krūties vėžio organinių specifinių metastazių 
išsivystymą, apžvalga. Žinoma, kad krūties vėžys me-
tastazuoja į daugumą tolimųjų organų: kaulus, plau-
čius, kepenis ir smegenis. Navikinių lastelių migracijai 
ir kolonizacijai būtina sėkminga molekulinių įvykių 
seka, kurią lemia įvairių genų mutacijos bei jų raiškos 
pokyčiai. Molekuliniai krūties vėžio metastazavimo 
mechanizmai, ypač organinės specifinės metastazės, 
yra mažai žinomi ir šiuo metu intensyviai tiriami. 
Šiuolaikinių tyrimų rezultatai rodo, kad pirminio na-
viko genų parašas nusako naviko metastatinį poten-
cialą bei organinį specifinį tropizmą. Naujos žinios 
ir geresnis metastazavimo proceso supratimas padės 
individualizuoti pacientų gydymą, kuris užkirs kelią 
metastazėms arba atitolins jų formavimąsi.

Raktažodžiai: metastazuojantis krūties vėžys, iš-
gyvenamumas, molekuliniai mechanizmai, organinės 
specifinės metastazės


