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The aim of this study was to assess combined effect of 1 kJm–2d–1 
UV-B radiation and substrate acidity (pH 4.8) on photosynthe-
sis and growth of summer rape (Brassica napus) in a controlled 
environment. Rape were sown in a neutral (pH  6.0–6.5) peat 
substrate, when 2nd true leaf unfolded, growth substrate was aci-
dified using 0.07 mM H2SO4 concentration solution and UV-B 
radiation exposure was started. Duration of the experiment: five 
days. Gas exchange parameters were measured with portable 
photosynthesis system LI-6400. Content of chlorophyll was 
evaluated spectrophotometrically. The results showed that the 
highest inhibition on Brassica napus growth and photosynthe-
tic parameters was under combined effect of 1 kJm–2d–1 UV-B 
radiation and pH  4.8 substrate acidity. The impact of single 
1 kJm–2d–1 UV-B radiation on investigated parameters was low 
and statistically insignificant, except transpiration rate and 
water use efficiency. Single substrate acidity affected in 58.6% 
(p  <  0.05) decrease in photosynthetic rate, almost twofold 
decrease of transpiration rate, and 3.8% (p  <  0.05) decrease 
in intercellular CO2 concentration, and 27.1% (p  <  0.05) in-
crease in water use efficiency, compared to the reference 
treatment. Combined substrate acidity and UV-B radiation 
effect on photosynthetic rate was the highest, when the decrease 
was 80.6% (p  <  0.05), compared to the reference treatment. 
The changes of transpiration rate under combined effect of 
investigated stressors compared to the reference treatment 
were insignificant (p > 0.05). The increase (by 2%, p < 0.05) of 
intercellular CO2 concentration of Brassica napus affected by 
combined impact of investigated stressors shows that higher 
negative impact was on enzymatic reactions of photosynthesis 
than on transpiration. The highest negative effect on content of 
photosynthetic pigments and biomass accumulation also was of 
combined effect of investigated stressors.
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INTRODUCTION

Abiotic and biotic stresses cause alterations 
in normal physiological processes of all plant 
organisms. Recently, along natural stress 
factors plant organisms are imposed to a large 
scale of new stressors related to human activity. 
All these stresses decrease the biosynthetic ca-
pacity of plant organisms, alter their normal 
functions and cause damages which may lead 
to plant death [1, 2].

During the later part of the 20th century the 
average of UV-B irradiances in the biosphere 
has increased. Ultraviolet wavelengths greater 
than 280 nm (UV-B radiation) are an ubiquitous 
component of the solar radiation, but their le-
vels considerably vary in the biosphere spatially 
and temporally [3]. UV-B causes damage 
to DNA, proteins and membranes, impedes 
photosynthetic activities, and disturbes plant 
growth [4]. Other studies demonstrate that 
increased levels of UV-B mainly affect PS II 
in the thylakoid membranes, specifically the 
functionality of the D1 protein, decreasing 
the electron transport efficiency [5]. UV-B 
has been also shown to affect the activity of 
enzymes of the carbon reduction metabolism, 
mainly Rubisco, and in this way directly 
involved in the CO2 assimilation and biomass 
production [6]. UV-B radiation decreases 
plant height, stem length and leaf area in a 
number of species including wheat, rice, pea, 
sunflower, tomato and lettuce [7]. Since UV-B 
induces general stress responses in plants, the 
syntheses of a broad variety of metabolites 
regarding growth, development and defence 
may be affected [8]. Plant tissues respond to 
UV-B by inducing cellular protective pro-
cesses that include changes in phenylpropanoid 
metabolism with increased synthesis of UV-B 
absorbing compounds, mostly flavonoids and 
other related phenolics [9]. Although UV-
absorbing compounds primarily protect the 
DNA molecule [3]. Also, the effects of UV-B 
radiation on photosynthesis vary among 
species. In some species, UV-B radiation can 
negatively affect leaf photosynthesis [10, 11], 
but in some others it has little or no effect [12].

The problem of soil acidification resulting 
from the acid rains and application of fer-
tilizers has been known for many years. The 
acidification can result in negative impact on 
root metabolism and decrease plant growth 
and yields when soil pH falls to less than critical 
thresholds (usually less than 5.5) which leads 
to increased activity of aluminum (Al) and 
manganese (Mn) [13, 14]. Increased concent-
ration of aluminium ions (Al3+) in soil inhibits 
root elongation by disrupting the function of 
the plasma membrane, cell wall, Ca homeostasis 
and signal transduction pathways [15]. This 
reduces the capacity of roots to explore soil for 
moisture and nutrients [16]. Soil acidification 
can also lead to leaf yellowing and whole plant 
net photosynthetic rate decrease [17], because 
of all the mentioned negative impacts on root 
[15, 16] and reduced content of chlorophylls 
[17].

Several studies have demonstrated that 
other environmental factors can influence 
the effect of UV-B on plants, which may 
explain the inconclusive results of many field 
studies. For example, water supply has been 
shown to influence the effect of supplemental 
(1.2 kJm–2d–1 UV above ambient) UV-B on the 
growth and photosynthetic electron flow of 
several Arctic bryophytes [18]. Paoletti [19] has 
studied UV-B and acid rain effects on beech 
(Fagus sylvatica  L.) and holm oak (Quercus 
ilex L.) leaves. Beech leaves were more sensitive 
to UV-B radiation and to acid fog spraying than 
those of holm oak. The combined treatment 
of UV-B radiation and acid fog induced the 
highest level of necrosis in leaf tissues, but of 
the two factors it was the acid fog that caused 
the most severe damage [19]. While our earlier 
experiments with radish showed a slightly 
different plant response to combined effect of 
the mentioned stressors, i.  e. the decrease of 
photosynthesis of radish plants treated with 
substrate acidity and UV-B radiation was lower 
compared to the single impact of the substrate 
acidity. And UV-B radiation stimulated both 
enzymatic reactions of photosynthesis and 
water use efficiency of radish plants grown 
in acidified peat substrates [20]. So this 
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study focused on the combined impact of 
low UV-B radiation and substrate acidity on 
photosynthesis and growth of summer rape 
(Brassica napus) plants.

MATERIALS AND METHODS

Summer rape (Brassica napus; cv.  ‘Landmark’) 
was chosen for investigation. Experiments 
were carried out in a vegetation room with 
controlled environment: photoperiod  –  14  h, 
average temperature of 20–25  °C, relative 
humidity – 60%. “Philips Master Green Power 
CG T” 600 W lamps, light intensity at the level 
of plants 14000 Lx, provided light.

Rape (10  per  pot) were sown in a neutral 
(pH 6.0–6.5) peat substrate in 5 L pots (21 cm 
in diameter). In each treatment there were 
three pots of replication. When 2nd true 
leaf unfolded, i.  e. at leaf development stage 
(BBCH-12) [21] rape plants were divided 
into four groups: I) reference treatment group 
(substrate pH 6.5) was watered with distillated 
water all the time; II) rape plants were exposed 
to 1  kJm–2d–1 UV-B radiation; III)  growth 
substrate of rape plants was watered with 
0.07  M concentration H2SO4 solution and 
growth substrate acidified till pH  4.8; 
IV)  plants growth substrate was acidified as 
mentioned above till pH  4.8 and rape plants 
exposed to 1  kJm–2d–1 UV-B radiation. The 
treatment variants were chosen according 
to earlier experiments at the Environmental 
Department of the VMU [20]. Duration of the 
experiment was five days.

Investigated indices net photosynthetic rate, 
intercellular CO2 concentration, transpiration, 
water use efficiency, photosynthetic pigments 
and leaf area, fresh and dry biomass of shoot 
(foliage) of rape were measured at the end of 
the experiment.

Gas exchange parameters were measured 
with portable photosynthesis system LI-6400 
(LI-COR, USA). Net photosynthetic rate (Pn) 
(µmol  CO2 m

–2s–1), intercellular CO2 concent-
ration (Ci) (µmol CO2 mol air–1), transpiration 
(Tn) (mmol H2O m–2s–1) and water use efficiency 
(WUE) (µmol  CO2  mmol  H2O

–1) of second 

fully expanded leaves were registered every 
3 se conds for 10 minutes; from these data were 
calculated a mean of day of measured indices. 
Environment conditions during experiments 
were as follows: air flow rate – 400 µmol s–1; block 
and leaf temperature – 23  °C; CO2 concentra-
tion in sample cell – 380–400 µmol CO2 mol–1; 
relative humidity in sample cell – 30%; lightness 
in quant – 110 µmol m–2 s–1.

The second fully expanded leaves were 
harvested and photosynthetic pigments were 
analysed using a spectrophotometer (Genesys 6, 
ThermoSpectronic, USA) in 100% acetone ex-
tracts prepared according to Wettstein’s me-
thod [21]. Photosynthetic pigments were ex-
pressed in mg g–1 of fresh weight.

The leaf area was determined using 
millimeter graph paper method. The leaves of 
five randomly taken plants from each variant 
were cut and spread over millimeter graph 
paper, and the area of the leaf was counted. The 
leaf area was expressed in cm2 plant–1.

At the end of the experiment the plants were 
harvested and dried in an oven at 60  °C until 
constant dry foliage biomass was obtained. The 
biomasses were expressed in mg plant–1.

ANOVA was used to determine the effects of 
substrate acidity and UV-B. For the comparison 
of independent variables Student’s t and U tests 
were used. All analyses were performed by 
STATISTICA and the results were expressed as 
mean values and their confidence intervals (CI) 
(p < 0.05).

RESULTS

Single 1  kJm–2d–1 UV-B radiation had no 
statistically significant effect on net pho to-
syn thesis of rape plants, while substrate aci di-
ty decreased it markedly (Fig. 1). On the last 
day of the experiment the substrate acidity 
(pH 4.8) decreased the net photosynthesis of 
Brassica napus by 58.6% (p < 0.05) compared 
to the reference treatment (substrate pH 6.5). 
The inhibition of net photosynthesis of rape 
plants treated with both investigated factors 
(UV-B and substrate acidity) were the highest 
compared to the single impacts of the substrate 
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acidity and UV-B radiation, when 
4.8  pH substrate and 1  kJm–2d–1 
UV-B radiation dose decreased the 
net photosynthesis by 80.6%, com-
pared to the reference treatment 
(pH 6.5). Compared to the combined 
impact of the investigated factors 
on photosynthesis of rape with 
single impact of UV-B radiation 
the net photosynthesis decreased 
by 76.4% (p < 0.05) and with pH 4.8 
substrate – by 21.9% (p < 0.05).

Single 1 kJm–2d–1 UV-B radiation 
had no statistically significant effect 
on intercellular CO2 concentration of 
Brassica napus (Fig. 2). Intercellular 
CO2 concentration of rape leaves 
grown in pH 4.8 acidified substrate 
decreased by 3.8% (p < 0.05), but it 
increased by 1.6% (p  <  0.05) under 
the combined impact of pH 4.8 and 
UV-B radiation (Fig. 2).

The changes of transpiration rate 
under investigated factors varied 
a slightly different tendency as net 
photosynthesis (Fig.  1), i.  e. single 
1  kJm–2d–1 UV-B radiation caused 
statistically significant increase 
in Tn of rape plants, while single 
sub strate acidity decreased it 2.2 
times (Fig.  3). The combined sub-
strate pH  4.8 and 1  kJm–2d–1 UV-B 
radiation dose impact decreased 
the Tn only by 4.5% (p > 0.05) com-
pared to the reference treatment 
(pH 6.5).

Both investigated factors affect-
ed water use efficiency of rape too 
(Fig.  4). Single 1  kJm–2d–1 UV-B 
radiation decreased WUE by 24.9% 
(p  <  0.05) of rape plants, while 
single substrate acidity increased 
it by 27.1% (p < 0.05) (Fig. 4). The 
combined substrate pH  4.8 and 
1  kJm–2d–1 UV-B radiation impact 
affected the decrease of WUE by 
72.6% (p  <  0.05) compared to the 
reference treatment (pH 6.5).

Fig. 1. The effects of 1 kJm–2d–1 UV-B radiation and different 
(pH  6.5  –  reference treatment, pH  4.8) substrate acidity on 
net photosynthetic rate (Pn) of Brassica napus. The values 
are means ± CI0.05. Significant differences (p < 0.05) between 
treatments are denoted with different letters

Fig. 2. The effects of 1 kJm–2d–1 UV-B radiation and different 
(pH  6.5  –  reference treatment, pH  4.8) substrate acidity on 
intercellular CO2 concentration (Ci) of Brassica napus. The 
values are means ±  CI0.05. Significant differences (p  <  0.05) 
between treatments are denoted with different letters
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Single 1  kJm–2d–1 UV-B dose 
impact decreased chlorophyll 
a and chlorophyll b content 
by 23.2% (p  >  0.05) and 26.5% 
(p  >  0.05) respectively, compared 
to the reference treatment (Fig.  5). 
While the single pH  4.8 substrate 
acidity effected in chlorophyll a 
and b content increase by 25.0% 
and 15.4% respectively, but also 
statistically insignificant compar ed 
to the reference treatment (pH 6.5). 
Chlorophyll b was more sensiti-
ve to combined UV-B radiation 
and substrate acidity impact than 
chlorophyll a and carotenoids. 
Thus the combined UV-B and 
substrate acidity effect caused 
91.7% (p < 0.05), 2.1 times (p < 0.05) 
and 82.6% (p  <  0.05) decreases 
of chlorophyll a, chlorophyll b 
and carotenoids respectively, 
compared to the reference treat- 
ment.

Combined impact of UV-B 
radiation and substrate acidity on 
biomass accumulation followed 
the same tendency as on other 
investigated indices, i.  e. the de-
creases were higher compared to 
the single impact of the investigated 
factors. Leaf area, fresh and dry 
foliage biomasses of Brassica napus 
plants exposed to single UV-B ra-
diation increased by 11.3, 14.3 and 
22.6% respectively, but statistically 
insignificant (Fig.  6a,  b,  c). Single 
and combined substrate acidity ef-
fect decreased leaf area by 77.6% 
(p < 0.05) and 73.2% (p < 0.05) re-
spectively, compared to the refe rence 
treatment. Only combined im pact 
of substrate acidity (pH  4.8) led 
to statistically significant de crease 
of dry biomass of foliage, when it 
decreased by 70.6%, compar ed to 
the reference treatment (pH  6.5) 
(p < 0.05).

Fig. 3. The effects of 1 kJm–2d–1 UV-B radiation and different 
(pH  6.5  –  reference treatment, pH  4.8) substrate acidity on 
transpiration rate (Tn) of Brassica napus. The values are means 
± CI0.05. Significant differences (p < 0.05) between treatments 
are denoted with different letters

Fig. 4. The effects of 1 kJm–2d–1 UV-B radiation and different 
(pH  6.5  –  reference treatment, pH  4.8) substrate acidity on 
water use efficiency (WUE) of Brassica napus. The values 
are means ± CI0.05. Significant differences (p < 0.05) between 
treatments are denoted with different letters
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Fig. 5. The effects of 1 kJm–2d–1 UV-B radiation and different (pH 6.5 – reference treatment, 
pH 4.8) substrate acidity on content of chlorophyll a (Chl a), chlorophyll b (Chl b) and 
carotenoids in Brassica napus leaves. FW – fresh weight. The values are means ± CI0.05. 
Significant differences (p < 0.05) between treatments are denoted with different letters
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Fig. 6. The effects of 1 kJm–2d–1 UV-B radiation and different (pH 6.5 – reference 
treatment, pH 4.8) substrate acidity on leaf area (a), content of fresh (b) and dry (c) 
shoot biomasses of Brassica napus plants. The values are means ± CI0.05. Significant 
differences (p < 0.05) between treatments are denoted with different letters
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DISCUSSION

The combined influence of different stress 
factors can lead to death of a plant or 
can increase its resistance to subsequent 
unfavourable impacts. The effects vary among 
species [22]. Some plants respond positively 
to the ambient levels of UV-B radiation, but 
the majority react negatively. Enhanced levels 
of UV-B radiation can commonly negatively 
affect plant physiological processes and 
growth [24]. Decrease in plant growth is 
considered to result from damage of DNA 
[25] to photosynthetic apparatus [12]. In our 
research, the investigated 1  kJm–2d–1 UV-B 
radiation caused photosynthetic rate decrease 
(Fig.  1), but stimulated transpiration rate 
(Fig.  3); compared to non-exposed Brassica 
napus plants. Qaderi and Reid [26] got 
similar results, when low 4.2  UV-B  kJm–2d–1 
radiation affected decrease of photosynthetic 
rate and water use efficiency and increase of 
transpiration rate for Brassica napus plants 
[26]. Single substrate acidity resulted in a 
high (58.6%, p  <  0.05) photosynthetic rate 
inhibition and in the highest (2.2 times, 
p < 0.05) decrease of transpiration rate, com-
pared to the reference treatment (Figs. 1 and 
3). This shows that stomata were closed, WUE 
increased (Fig. 4), and this resulted in 27.1% 
(p < 0.05) decrease of Ci (Fig. 2) as CO2 did 
not reach the intercellular area. In the study of 
Izuta et al. [27], photosynthetic rate was also 
significantly reduced in the seedlings grown 
in the acidified soils. The highest inhibition 
of net photosynthesis and the highest 
intercellular CO2 concentration of Brassica 
napus plants grown in pH  4.8 acidified peat 
substrate and exposed to UV-B shows that 
stress had intense effect on reactions of dark 
phase of photosynthesis. The net rate of CO2 
assimilation is determined by biophysical pro-
cesses, which include CO2 transport through 
the leaf and stomata, and biochemical pro-
cesses located in the cells of plants. In this 
research, under combined impact of inves-
tigated factors stomata were not closed, be-
cause transpiration rate changed statistically 

insignificantly (Fig.  3), hence CO2 transport 
into leaf was normal. Soil acidification inhibits 
biosynthesis of Rubisco in leaves [27], and the 
increase in intercellular CO2 level indicates 
that net photosynthesis is reduced by reducing 
CO2 fixation by Rubisco, or can also include 
conditions in which enzymes of the Calvin 
cycle were affected negatively [28].

Single UV-B radiation affected the non-
significant decrease of content of chlorophyll 
a, chlorophyll b and carotenoids compared 
to the reference treatment (Fig.  5). In some 
studies UV-B radiation increases chlorophyll 
content [29], in others  –  decreases [12, 30], 
or has no affect [31]. UV-B radiation may be 
attenuated in leaves by leaf cuticles, or by UV-
absorbing compounds produced and deposited 
in leaf epidermal cells or hairs [32] or by 
antioxidant systems [33, 4]. The single pH 4.8 
substrate acidity affected also in statistically 
insignificant increase of chlorophyll a and b 
content compared to the reference treatment 
(Fig.  5). In most studies with increasing soil 
acidity, chlorophyll contents linearly decreases 
[34], but there are also different results reported 
earlier by Shan  et  al. [35] when chlorophyll 
contents of the seedlings linearly increased with 
increasing acidity of stimulated acid rain; while 
the combined UV-B and substrate acidity effect 
caused very high decreases of chlorophyll a, 
chlorophyll b and carotenoids. UV-B radiation 
can negatively affect plant physiological pro-
cesses [24] because of the damage of DNA 
[25] and photosynthetic apparatus [12] as also 
shown in Figs.  1,  2,  4 and 5 of this research. 
Additional impact of substrate acidity increased 
this negative effect.

The acidification can result in negative 
impacts on root metabolism and decrease plant 
growth and yields when soil pH falls to less 
than critical thresholds (<5.5 pH) [13, 14]. The 
combined treatment of UV-B radiation and acid 
fog affected the highest level of decreases in the 
research of Paoletti et al. [19]. The results of this 
research showed the same tendency, however, 
a significant impact on biomass accumulation 
was not determined except in case of Brassica 
napus affected by both (substrate acidity and 
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UV-B radiation) factors (Fig. 6). Under single 
and combined UV-B radiation impacts the 
increase of the leaf area of rape was detected, 
but not statistically significant (Fig. 6). Minimal 
effects of low UV-B radiation on biomass 
accumulation of other plants were assessed too 
[36, 18].

CONCLUSIONS

Single 1  kJm–2d–1 UV-B radiation impact on 
most investigated parameters was low and 
statistically insignificant, except transpiration 
rate and water use efficiency. UV-B radiation 
increased transpiration rate by 16.4% and 
decreased water use efficiency by 24.9% of rape 
plants statistically significant compared to the 
reference treatment. 

Single substrate acidity affected in 58.6% 
(p  <  0.05) decrease in photosynthetic rate, 
almost twofold decrease of transpiration rate, 
and 3.8% (p  <  0.05) decrease in intercellular 
CO2 concentration, and 27.1% (p  <  0.05) 
increase in water use efficiency compared to the 
reference treatment.

Combined UV-B radiation and substrate 
acidity impact affected the highest 80.6% 
(p  <  0.05) decrease of photosynthetic rate 
compared to the reference treatment. The 
increase (by 2%, p < 0.05) of intercellular CO2 
concentration of Brassica napus affected by 
both investigated stressors shows that higher 
negative impact was on enzymatic reactions 
of photosynthesis than on transpiration (Tn 
changed statistically insignificantly compared 
to the reference treatment).

Also, the highest negative effect on content 
of photosynthetic pigments and biomass 
accumulation was of the combined effect of the 
investigated stressors.
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Irena Januškaitienė

SILPNOS UV-B SPINDULIUOTĖS IR 
SUBSTRATO RŪGŠTUMO POVEIKIS 
BRASSICA NAPUS FOTOSINTEZĖS 
RODIKLIAMS

Santrauka
Tyrimo tikslas – ištirti kompleksinį 1 kJm–2d–1 UV-B 
spinduliuotės ir pH 4,8 substrato rūgštumo poveikį 
vasarinių rapsų (Brassica napus) fotosintezės rodik-
liams bei augimui kontroliuojamoje aplinkoje 

(fito kamerose). Iš pradžių rapsai buvo pasėti į 
neut ralaus rūgštumo (pH  6,0–6,5) substratą. 
Augalams išleidus du tikruosius lapelius jie bu-
vo paveikti UV-B spinduliuote, substratas pa-
rūgš tintas 0,07  mM  H2SO4 koncentracijos tir-
palu. Eksperimento trukmė  –  penkios dienos. 
Fo tosintezės parametrai matuoti nešiojama foto-
sintezės sistema LI-6400. Pigmentų kiekiai lapuo se 
nustatyti spektrofotometriškai. Didžiausius Brassi ca 
napus tirtų rodiklių pokyčius sukėlė kompleksinis 
1 kJm–2d–1 UV-B spinduliuotės ir pH 4,8  substrato 
rūgštumo poveikis. Pavienis 1 kJm–2d–1 UV-B spin-
duliuotės poveikis tirtiems rapsų rodikliams bu-
vo silpnas ir statistiškai nereikšmingas, išskyrus 
trans piracijos intensyvumą bei vandens naudojimo 
efek tyvumą, kai pokyčiai buvo statistiškai reikš-
mingi. Pavienis substrato rūgštumo poveikis rap-
sų fotosintezės intensyvumą sumažino 58,6  % 
(p < 0,05), transpiracijos intensyvumą – net daugiau 
nei du kartus (p < 0,05), o viduląstelinį CO2 kiekį 
3,8 % (p < 0,05), taip pat 27,1 % (p < 0,05) padidino 
vandens naudojimo efektyvumą, palyginti su kont-
roliniais augalais. Patį didžiausią neigiamą po-
veikį fotosintezės intensyvumui sukėlė UV-B spin-
duliuotė ir substrato rūgštumas – nuostoliai siekė 
net 80,6  % (p  <  0,05), palyginti su kontroliniais 
augalais, o kompleksinis tirtų veiksnių poveikis 
trans piracijos intensyvumui buvo statistiškai ne-
reikšmingas (p  >  0,05). Tad nors tik 2  %, bet sta-
tistiškai reikšmingas (p  <  0,05) viduląstelinio CO2 
kiekio padidėjimas Brassica napus lapuose, esant 
kompleksiniam tirtų veiksnių poveikiui, rodo stip-
resnį neigiamą poveikį fermentinei fotosintezės 
sistemai nei transpiracijai. Kompleksinis UV-B ir 
substrato rugšumo poveikis vėlgi buvo didžiausias 
ir fotosintetinių pigmentų bei biomasės pokyčiams.

Raktažodžiai: fotosintezės intensyvumas, vidu-
ląstelinis CO2 kiekis, transpiracija, vandens nau do-
jimo efektyvumas, fotosintetiniai pigmentai, sausa 
biomasė, Brassica napus




