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Electrochemical processes are central to energy storage, catalysis, corrosion and 
sensing, yet understanding and optimising these systems remains challenging. 
Physics-informed neural networks (PINNs) offer a promising approach by inte-
grating physical laws into machine learning models for improved interpretabil-
ity and accuracy. In this work, we develop a PINN to simulate the diffusion and 
electric-field-driven transport of Zn2+ ions released from ZnO nanoparticles in 
the beetroot – Swiss chard – leaf tissue. The model embeds the Poisson’s equation 
for electric potential and the Nernst–Planck equation for ion flux into the net-
work’s loss function, enabling it to learn physically consistent potential and con-
centration fields with minimal data. The PINN predictions reveal that Zn2+ ions 
accumulate near leaf edges, a phenomenon also observed experimentally. Using 
the trained model, we evaluate microelectrode sensor array designs and find that 
a  hexagonal electrode layout would capture the  edge-concentrated Zn2+ distri-
bution more effectively than a uniform grid. This case study demonstrates how 
AI modelling informed by physics can accurately replicate experimental trends 
and guide the  design of better electrochemical sensors. The  results highlight 
the broader potential of PINNs to advance electrochemical research by combining 
data-driven learning with established physical electrochemical principles.
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INTRODUCTION

Electrochemistry is pivotal in energy storage, catal-
ysis, corrosion prevention, sensing, and chemical 
synthesis. Electrochemical sensing is one of the ap-
plication areas of electrochemistry, and it is expe-
riencing a renaissance due to the need for a wide 
variety of minimised sensors for the  Internet of 
Things (IoT) approach [1].

Recent advances in artificial intelligence (AI) 
and machine learning (ML) have begun to revo-

lutionise these areas by accelerating discovery and 
optimising complex systems [2, 3]. AI increasingly 
shapes how researchers tackle challenging scientific 
questions, opening doors we never knew existed. 
While some fear machines replacing human intui-
tion, others see AI as an advanced tool that comple-
ments our natural curiosity. The application of AI 
and ML in electrochemistry has expanded rapidly 
in recent years, encompassing energy storage, cor-
rosion, sensing, catalysis, and more  [4]. Physics-
informed neural networks (PINNs) are a  class of 
deep learning models that embed governing physi-
cal laws (expressed as differential equations) into * Corresponding author. Email:  simona.tuckute@lei.lt
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the  training process  [5]; researchers increasingly 
view PINNs as a pathway to more explainable ma-
chine learning, as embedding prior scientific knowl-
edge leads to ‘better accountability, interpretability, 
and generalization’ in predictive models [6]. By in-
corporating scientific domain knowledge directly 
into the loss function, PINNs ensure solutions that 
are consistent with known physics while reducing 
reliance on large datasets. Since their introduc-
tion by Raissi et al., PINNs have gained popularity 
across many fields of science and engineering; in 
particular, they have been widely applied to model 
and analyse complex systems such as lithium-ion 
batteries and fuel cells [5, 7].

AI/ML techniques are seen as a  huge shift in 
electrochemistry, e.g. battery research, enabling 
a  faster development by handling high-dimen-
sional data beyond human intuition  [8, 9]. Da-
ta-driven models can predict battery aging and 
state-of-health, supplementing or even surpass-
ing traditional physics-based models when large 
datasets are available  [8, 10]. Beyond batteries, 
AI has penetrated electrocatalysis, corrosion sci-
ence, sensing, and reaction discovery. In electroca-
talysis, which drives processes like water splitting 
and CO2 reduction, determining optimal catalyst 
compositions and conditions is a  complex, time-
intensive task. Recent studies show that ML can 
greatly accelerate catalyst optimisation, saving sig-
nificant time and resources [11]. For instance, ML 
models have been used to screen catalyst shapes 
or alloy compositions to maximise activity/selec-
tivity, rapidly narrowing design candidates. Like-
wise, physics-informed ML strategies are being ex-
plored in catalysis to incorporate reaction kinetics 
and thermodynamics into predictive models [12], 
yielding more interpretable guidance for catalyst 
development. In corrosion modelling, data-driven 
approaches help predict material degradation and 
identify protective measures. ML models have been 
trained to predict corrosion potential and current 
for various alloys with a good accuracy [13]. How-
ever, a  common challenge in corrosion research 
is the scarcity of large labelled datasets (e.g. elec-
trochemical measurements under diverse condi-
tions). Here, advanced deep learning techniques 
like generative adversarial networks (GANs) are 
being used to expand datasets synthetically [14].

Electrochemical sensors and biosensors are 
another domain benefitting from AI. ML meth-

ods – often coupled with chemometrics – are em-
ployed to analyse complex voltametric or imped-
ance data, improving sensitivity and multi-analyte 
detection  [15]. Nonlinear patterns in sensor re-
sponses that were previously difficult to quantify 
can be trained by ML, leading to a more accurate 
calibration and analyte classification [16, 17].

Across all these applications, a key insight is that 
purely data-driven models, while powerful, often 
suffer from a  limited interpretability and may re-
quire infeasibly large datasets for complex electro-
chemical systems. This has led to a growing inter-
est in PINNs and related approaches that embed 
physical laws into AI models. PINNs are a class of 
neural networks trained not only on data but also 
on physical governing equations as part of the loss 
function or model architecture.

The newest trends in agricultural sciences are 
foliar fertilisation. Moreover, sensors are being 
developed to monitor the  concentration of nutri-
ents needed to prevent both overfertilisation and 
deficiency  [18] with Zn-containing nanoparticles 
(NPs) and expect that leaf biota might digest them 
and transfer the  compounds. Zn, as a  microele-
ment for plants, usually comes from soil and can be 
taken in the form of soluble chelate complex com-
pounds via roots [19]. It is usually present in Earth’s 
core in the form of minerals such as Zn carbonates 
(smithsonite), Zn silicates (hemimorphite), or Zn 
sulphides (sphalerite and wurtzite) [20]. Microor-
ganisms of soil biota transform these minerals into 
soluble complex compounds. Since Zn-containing 
NPs are commercially available as ZnO, they were 
tested as a  possible candidate, expecting that leaf 
biota would convert them into Zn2+.

Electrochemical sensors provide a  practical 
and highly sensitive platform for the  in situ de-
tection of metal ions, including Zn2+, in complex 
biological matrices. Zn is a  critical micronutrient 
in plants, influencing enzymatic catalysis, gene ex-
pression, and cellular structure. Its deficiency leads 
to stunted growth and reduced yield, while excess 
becomes phytotoxic. Accordingly, the  electroana-
lytical quantification of Zn2+ in plant tissues is vital 
for understanding nutrient transport, evaluating 
bioavailability, and informing agronomic interven-
tions  [21, 22]. Electrochemical techniques, owing 
to their portability, low cost, and suitability for 
miniaturisation, are ideally positioned to address 
this analytical challenge [23].
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In this work, we explore the  usage of PINNs 
in electrochemistry through a case study of elec-
trochemical Zn2+ detection in plant tissues. We 
first summarise the  governing equations and 
the  PINN model architecture used to simulate 
Zn2+ ion transport and electric potential in a Swiss 
chard leaf. The PINN is trained to satisfy Poisson’s 
equation for the  electric field and the  Nernst–
Planck equation for ionic diffusion-migration, 
embedding these laws into the  neural network 
(NN). Next, we present the  results of the  PINN 
simulation, including the predicted potential and 
concentration fields, and compare them against 
experimental observations. We also evaluate dif-
ferent designs for a  microelectrode sensor array 
(uniform grid vs hexagonal pattern) informed by 
the model’s predictions. In the discussion, we anal-
yse how PINN’s physics-based modelling explains 
why ZnO nanoparticles accumulate at leaf edges 
and how the  model-guided electrode design can 
improve detection. This case study thus validates 
the PINN approach’s ability to accurately capture 
electrochemical phenomena with improved inter-
pretability and reduced data needs. We conclude 
with perspectives on the  broader significance of 
AI and PINNs in advancing electrochemical re-
search, highlighting the balance of data and phys-
ics in next-generation modelling.

EXPERIMENTAL

Governing equations and physical model
The electrochemical detection of Zn2+ in a leaf can 
be described by coupled field equations for the elec-
tric potential and ion concentration. We employed 
the Poisson–Nernst–Planck (PNP) equation, which 
is commonly used to model ionic transport in an 
electrochemical system [24].

The PNP model comprises Poisson’s equation 
for the electric potential (φ) and the Nernst–Planck 
equation for the concentration (c) of Zn2+ ions. Un-
der steady-state conditions (time-invariant fields), 
the Poisson’s equation is used:

∇ (ε∇φ) = –ρ,	 (1)

where ε is the permittivity of the medium (leaf tis-
sue), and ρ is the volume charge density. This equa-
tion relates the spatial variation of the electric po-
tential to the local charge density (by Gauss’s law). 

For simplicity, ε is treated as constant, and ρ is pri-
marily due to Zn2+, linked directly to the ion con-
centration. Nernst–Planck equation

∇ J = R	 (2)

is used with the ionic flux J given by

J = –D∇c + μc∇φ,	 (3)

where D is the  diffusion coefficient of Zn2+, μ is 
the  ionic mobility, and R is the  reaction term for 
ion generation or consumption. Here, J comprises 
a diffusive term driving ions from higher to lower 
concentrations and an electrophoretic term mov-
ing ions along the  electric field gradients. Under 
steady-state (achieved several minutes after ZnO 
nanoparticle application), time derivatives vanish. 
A  characteristic diffusion timescale supports this 
assumption: with leaf thickness L ~0.5 mm and dif-
fusion coefficient D ~7 × 10–10 m2/s, the diffusion 
time is

 
tdiff ≈ L2/D ≈ 360 s (~6 minutes).	 (4)

Charge density ρ is linked to Zn2+ concentra-
tion, assuming dominant charge carriers: ρ ≈ zFc, 
where z = 2 and F is the Faraday’s constant. An ex-
perimental ZnO concentration of 0.19  mg/L cor-
responds to ρ ≈ 2.91 × 10–6 mol/m3, used as a rep-
resentative. Relative permittivity εr ≈ 50 translates 
to absolute permittivity ε ≈ 50 × 8.85 × 10–12 F/m. 
D = 7 × 10–10 m2/s and μ = 1.7 × 10–8 m2/(V·s) were 
used, based on typical Zn2+ ion properties and 
the Nernst–Einstein relation at room temperature 
(298 K).

For simplicity, the  reaction term was set con-
stant at R = 1.0 (normalised units), representing 
the uniform Zn2+ generation from nanoparticles. 
The  PINN implicitly handles boundary condi-
tions, assuming no-flux boundaries (preventing 
rapid loss at leaf edges), and a  reference poten-
tial φ defined relative to zero at the  boundary. 
Without explicit Dirichlet conditions, PINNs 
naturally learn a  consistent reference potential 
due to the  coupling between φ and c. These re-
alistic parameters ensure that PINN operates in 
a physically accurate regime, effectively capturing 
the steady-state distribution of Zn2+ within the leaf 
structure. The PINN approach implicitly handles 
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the  boundary conditions (described below). We 
assume no-flux boundaries for the concentration 
(leaf edges do not rapidly lose Zn2+, or any loss is 
balanced by intake from adjacent tissue) and a ref-
erence potential such that φ is defined relative to 
zero at the  boundary. In practice, the  PINN can 
learn an effective potential profile without explic-
itly enforcing Dirichlet boundary conditions as 
long as a consistent reference emerges (only dif-
ferences in φ matter for the physics). We do note 
that without a fixed reference, Poisson’s equation 
has gauge freedom (adding a constant to φ); how-
ever, the  coupling to concentration in Nernst–
Planck typically pins the potential when a steady 
state with sources is reached.

PINN architecture and training
We implemented a  single neural network 
PINN  [25] that outputs both the  electric poten-
tial ϕ(x,  y) and the  Zn2+ concentration c(x,  y) as 
functions of position in the 2D leaf cross-section. 
The  input features to the  network are the  spatial 
coordinates (x, y) which we normalised to the unit 
square [0.1] × [0.1] representing the region of in-
terest in the  leaf. The  network architecture con-
sists of several fully connected hidden layers with 
nonlinear activation functions, and two outputs 
corresponding to ϕ and c. In our implementation, 
we used 3 hidden layers with 64 neurons each and 
tanh activations (a common choice in PINNs for 
smooth function approximation) for the  hidden 
layers. The output layer is linear (no activation) to 
produce the  real-valued potential and concentra-
tion. This relatively compact architecture was suf-
ficient to approximate the  smooth spatial profiles 
of ϕ and c in the leaf:
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(5)

where the  summations are over N collocation 
points (xi, yi) randomly distributed in the domain. 
In essence, the network adjusts its weights so that it 
outputs ϕ and c fields that make these PDE residuals 
as small as possible at all sampled points. By train-
ing to minimise this physics-based loss, the PINN 
is to produce solutions that satisfy Gauss’s law and 
ion transport conservation everywhere, rather than 

simply interpolating data. We included a small ad-
ditional penalty in the  loss for known boundary 
conditions or symmetry as needed (for example, 
enforcing ϕ = 0 at the boundary in an early stage 
as a reference).

Training was performed using a  gradient-
based optimizer (Adam) to iteratively minimise 
the loss. We initialised N = 100 collocation points 
uniformly across the 2D leaf domain for comput-
ing the  residuals. The  PINN was trained for up 
to 10,000 epochs with an initial learning rate of 
10–3. We employed an early stopping criterion: if 
the loss fell below a threshold (10–5 in normalised 
units) or stopped improving significantly, train-
ing was halted early to prevent overfitting or un-
necessary computation. From the  computations, 
the  model converged well before the  maximum 
epochs. During each training epoch, we used 
automatic differentiation to compute the  neces-
sary spatial derivatives in the  residual terms, as 
shown in Eq. (5) with respect to (x, y), as well as 
the gradients of the  loss with respect to the net-
work weights. This was implemented using Ten-
sorFlow’s built-in automatic differentiation (gra-
dient tape) capability in Python, which allowed 
obtaining exact derivatives of the  network out-
puts with respect to inputs for the PDE residuals. 
These were then combined as per the equations to 
evaluate the  loss, and the  weight gradients were 
obtained via backpropagation.

Despite the  complexity of the  coupled equa-
tions, the PINN training was stable and converged 
to a  low-loss solution. The  final training loss 
achieved was on the  order of 10–6, indicating that 
the  network’s predictions satisfy the  Poisson and 
Nernst–Planck equations to a high accuracy (with 
very small residuals) throughout the  domain. Af-
ter training, we validated the  PINN by evaluating 
ϕ(x, y) and c(x, y) on a fine grid of points covering 
the  leaf area, effectively obtaining continuous pre-
dictions for the  potential field and concentration 
field. The  PINN solution is mesh-free, but for vi-
sualisation purposes, we sampled it on a 100 × 100 
grid to generate smooth contour plots of ϕ and c. 
The results of this PINN simulation are presented 
in the  next section. Additionally, the  simulations 
were conducted in two modes: (1) using nondimen-
sional (arbitrary) units for the different parameters 
and constants during initial development to ensure 
that the PINN could find a consistent solution, and 
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(2) with the  realistic physical constants and units 
given above to tie the predictions to expected actual 
data. The qualitative behaviour of the solution was 
similar in both cases, but using real units allowed 
the direct comparison of the predicted concentra-
tions and potentials with experimental measure-
ments (in absolute terms).

Scanning electron microscopy
Scanning electron microscopy (SEM) was used to 
examine the microstructural features of the Swiss 
chard (Beta vulgaris subsp. cicla) leaf surface. SEM 
characterisation was carried out using a  Hitachi 
S-3400N scanning electron microscope. To pre-
serve the  intrinsic morphology, no conductive 
coating was applied to the  specimens prior to 
imaging. This non-coated approach was deliber-
ately employed to avoid potential topographical 
alterations or artifacts typically introduced by 
sputter-coated conductive layers, thereby ensur-
ing that the acquired images faithfully represent 
the native leaf surface. Imaging was performed 
at a low accelerating voltage of 3 keV, which en-
hances surface-sensitive resolution while mini-
mising electron beam–induced charging and 
structural damage in non-conductive biological 
samples. The  resulting micrographs provided 
high-fidelity visualisation of the  epidermal ar-
chitecture, including stomatal distribution and 
cuticular features, which were further correlat-
ed with the  modelled Zn2+ transport phenom-
ena described in this study.

RESULTS AND DISCUSSION

The transport of Zn2+ ions in a Swiss chard (Beta 
vulgaris subsp. cicla) leaf was simulated using 
a  PINN under steady-state conditions. To enable 
tractable computation, the  leaf was approximated 
as a  symmetric laminar domain with a  continu-
ous permittivity and diffusivity  –  reasonable as-
sumptions when vascular architecture is diffuse 
or secondary at the scale of interest [26], as shown 
in Fig.  1. These simplifications permit the  appli-
cation of Poisson and Nernst–Planck equations 
to describe the  coupling of electrostatic potential 
and ion migration within the leaf mesophyll, when 
treating the mesophyll as a porous electrolyte do-
main with ion-selective dynamics [27].

As shown in Fig. 2, the PINN predicts a smooth 
electric potential field within the  leaf, highest in 
the  interior region and lowest at the  boundaries. 
Quantitatively, the  potential ϕ is on the  order of 
10–3 in the centre and approaches zero at the outer 
leaf edges. This results in a roughly shaped poten-
tial profile, with the  leaf centre at a  slightly posi-
tive potential relative to the edges. Physically, this 
behaviour makes sense: the accumulation of posi-
tive charge (Zn2+ and any other ions) in the tissue 
interior leads to a  build-up of electric potential 
that contains the charge. Poisson’s equation reflects 
the local charge density, so regions with more Zn2+ 
(the centre of the  leaf, initially) have a  higher ϕ. 
The potential decreases smoothly toward the edges, 
where the charge density drops off, and we observe 

Fig. 1. SEM images of the Swiss chard leaf surface: (a) higher magnification view (scale bar: 10 μm) revealing the wrinkled surface 
topography and fibrous structures; (b) lower magnification view (scale bar: 50 μm) showing a broader surface morphology including 
stomata
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no unphysical oscillations – the profile of ϕ(x, y) is 
smooth and symmetric, as expected given the uni-
form material properties and symmetric geometry 
assumed. 

The Zn2+ concentration field predicted by 
the  PINN exhibits a  complementary pattern to 
the electric potential. As shown in Fig. 2b, the Zn2+ 
concentration c(x, y) is lower in the centre of the leaf 
and higher near the edges under steady-state con-
ditions. In our normalised units, the  model pre-
dicts about 20–25% higher Zn2+ concentration at 
the leaf periphery compared to the centre (for ex-
ample, if the  centre reaches a  normalised 0.75  c, 
the  edges are around 1  c). The  model explains 
this nonuniform distribution as a  consequence 
of the coupled diffusion and migration processes: 
initially, Zn2+ ions diffuse throughout the  tissue, 
but as they do, the  positively charged ions set up 
the electric potential gradient (higher in the centre) 
which pushes Zn2+ outward (since Zn2+ is positively 
charged and will move toward the  lower poten-
tial). At the steady state, an equilibrium is reached 
where the outward electrostatic drift of Zn2+ (from 
the centre toward the edges) is balanced by inward 
diffusion (from the higher-concentration edges to-
ward the lower-concentration centre). This balance 
results in a stable concentration gradient with Zn2+ 
accumulating near the  edges of the  leaf. Notably, 
the PINN was never told that more Zn2+ should be 

at the edges – this outcome emerged naturally from 
the model as it satisfied the physics of the Poisson 
and Nernst–Planck equations.

In addition to simulating ion distributions, 
we leveraged the PINN results to inform the sen-
sor design for Zn2+ detection. Using the predicted 
Zn2+ concentration map ϕ(x, y), we evaluated how 
well different microelectrode array geometries 
would sample the high-concentration regions. Fig-
ure 3 compares two candidate designs: a uniform 
10 × 10 grid of microelectrodes (a) versus a hex-
agonal close-packed array with a similar number of 
electrodes (b). In the uniform grid design (Fig. 3a), 
electrodes are spaced evenly in a Cartesian lattice. 
This simple layout ensures the coverage of the en-
tire area, with each electrode roughly the  same 
distance from its neighbours. However, one limita-
tion of the grid is that near the edges and corners of 
the leaf, the spacing to the nearest electrode can be 
larger (since the grid extends only to the boundary 
and not beyond). Suppose that most Zn2+ accumu-
lates at the extreme edges, as the model predicts. In 
that case, those regions might be undersampled by 
the grid (for example, the very corner of the leaf is 
only adjacent to one electrode in a grid, at the cor-
ner point itself).

The hexagonal array (Fig.  3b) offers a  more 
densely packed coverage. In a  hexagonal (honey-
comb) pattern, each row of electrodes is offset by 

Fig. 2. PINN-predicted steady-state electric potential ϕ and Zn2+ concentration distributions in the beetroot leaf (both in normalised 
units): (a) panel shows ϕ(x, y), where a higher potential is seen in the interior (centre) of the leaf and the lower one at the edges; 
(b) panel shows the corresponding Zn2+ concentration, which is higher near the edges of the leaf and lower at the centre
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half the  spacing of the  previous row, creating an 
equilateral triangular tiling. In our hexagonal de-
sign, the electrodes on one row fall in the gaps of 
the  previous row, resulting in smaller maximum 
gaps between electrodes. Importantly, the  pro-
posed rows allow electrodes to be placed closer to 
the edges of the domain.

To determine which design is better for captur-
ing the Zn2+ distribution, we considered the mod-
el’s concentration field. Since the Zn2+ ‘hotspots’ are 
toward the leaf edges, it is crucial to have electrodes 
near the  perimeter to detect those higher con-
centrations. The  uniform grid does include edge 
electrodes (at the  outermost rows/columns), but 
the spacing means that the very corner of the leaf 
is somewhat farther from the  nearest electrode. 
In contrast, the  hexagonal pattern places elec-
trodes effectively closer to every edge point (due to 
the stagger), minimising any region in the leaf that 
is far from an electrode. From the PINN-predict-
ed concentration map, this suggests that the  hex-
agonal array will sample the high-Zn edge regions 
more densely and uniformly than the grid. In prac-
tice, this means that a hexagonal electrode layout 
would be more likely to detect the peak Zn signals 
at the  margins, improving sensitivity and reduc-
ing the risk of missing localised Zn accumulations. 

The uniform grid might under-sample the extreme 
edges where c is highest, potentially leading to 
a slight underestimation of the signal.

Overall, the  PINN-informed analysis indicates 
that a  hexagonal microelectrode array is the  pre-
ferred design for this application. By arranging 
microelectrodes in a close-packed honeycomb pat-
tern, one ensures that the Zn2+ concentration field, 
which the model predicts to be edge-enhanced, is 
monitored with minimal gaps in coverage. This 
example illustrates how a physics-based AI model 
can directly guide engineering design: the knowl-
edge gained from the PINN about where ions ac-
cumulate was used to optimise the sensor layout for 
a more effective detection of the target analyte.

CONCLUSIONS

In the  case study, the  PINN embedding Poisson’s 
law and the  Nernst–Planck equation recovered 
physically consistent potential and Zn2+ concen-
tration fields in beetroot leaves from limited data 
and reproduced the  observed edge accumulation 
of Zn, providing a mechanistic explanation. By en-
forcing physics, the approach reduced data require-
ments while improving interpretability, allowing to 
separate diffusion and migration contributions. 

Fig. 3. Comparison of two microelectrode array designs for Zn2+ sensing in the leaf (top view of the sensor placement): (a) uniform 
grid of 10 × 10 electrodes (red points) evenly spaced across the leaf area; (b) hexagonal array of ~100 electrodes (blue points) with 
each row staggered (offset by half-spacing) to achieve a close-packed, honeycomb pattern. Both array layouts cover the same total 
area (normalised 0–1 in x and y)
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Crucially, the  learned fields translated into design 
guidance: a hexagonal microelectrode layout is pre-
dicted to outperform a uniform grid for detecting 
Zn2+ hotspots. Overall, the  results illustrate how 
PINNs can convert sparse measurements into ac-
tionable engineering decisions in electrochemical 
systems.

More broadly, the  success of this PINN model 
in an electrochemical context shows the  promise 
of intersecting AI techniques with physical laws. 
Electrochemical systems are governed by well-es-
tablished principles (charge conservation, diffusion 
and reaction kinetics), yet they are often too com-
plex for closed-form analytical solutions.

PINNs and related physics-informed approach-
es represent a  promising new paradigm for ac-
celerating innovation in electrochemistry. They 
empower researchers to build ‘digital twins’ of elec-
trochemical systems that obey known physics, al-
lowing a rapid virtual experimentation and optimi-
sation. The case study on Zn2+ sensing in leaves is 
just one illustration – the same methodology can be 
extended to many other applications. By embrac-
ing these AI techniques that fuse data with theory, 
we can greatly reduce reliance on trial-and-error 
and empiricism, achieving more accurate models 
of complex phenomena and ultimately designing 
better electrochemical technologies. The  fusion 
of AI with physics opens a new era in which elec-
trochemical innovation is driven by data and the-
ory in tandem, each informing and strengthening 
the other. The work presented here provides a con-
crete example of this intersection and its benefits. 
Moving forward, continued collaboration between 
electrochemists and AI experts will be crucial to 
fully realise the  potential of physics-informed AI 
in advancing both the  fundamental science and 
the  practical applications in the  electrochemical 
domain.

In conclusion, while the developed PINN suc-
cessfully predicts the  Zn2+ distribution patterns, 
several limitations should be acknowledged. First, 
the  model assumes steady-state conditions, uni-
form tissue properties, and simplified leaf geome-
try, which may overlook microscale heterogeneities 
such as vascular structures or anisotropic diffusion. 
Second, the reaction term and boundary conditions 
were idealised, potentially limiting applicability to 
dynamic or heterogeneous environments. Third, 
the absence of experimental validation with soluble 

Zn2+ compounds – due to the inability of leaves to 
digest ZnO nanoparticles – means that the model’s 
predictions remain unverified in real biological up-
take scenarios.
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