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The representation of wind power plants electricity generation in 
economic models for energy planning is problematic, since gen-
eration in wind power plants is variable and it is not possible to 
predict accurately enough wind fluctuations for more than a  few 
days. Often, wind power plants generation patterns from a single 
historical year are repeated throughout the  modelled time peri-
od. Typically, this method is used when analysing power system 
operation in hourly time intervals for all days in a  year for each 
year. However, hourly time resolution is not feasible in large-scale 
models, which tend to require considerable amounts of computing 
power. Thus, some kind of time aggregation is needed. On the oth-
er hand, currently used methods for models with less than hourly 
temporal resolution are becoming inadequate because of increasing 
share of fluctuating electricity production from wind in total power 
generation. 

In this article, a  methodology for evaluation of wind power 
plants stochastic electricity generation in power system develop-
ment models is described. The methodology is based on evaluation 
of how much time single or multiple wind power plants generate 
a certain output range during a season or some time period within 
a year, modelling of output distribution for a typical day of the se-
lected time period, and preparation of electricity output curves. 
These electricity output curves when modelling wind power plants 
in models with aggregated time allow to assess fluctuations in 
generation, observable regularities and enhance the objectivity of 
balancing power demand assessment, also ensure that electricity 
generated during a typical day corresponds to electricity generat-
ed during the selected time period. This methodology will help to 
determine the rational perspective power generation mix more ac-
curately and make a better assessment of cost-effectiveness of wind 
power plants in economic models for energy planning, without sig-
nificantly increasing the size of already large-scale models.

Keywords: wind, stochastic, power system, development, econom-
ic model
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INTRODUCTION

Oil crisis in 1970s sparked the demand for en-
ergy supply and demand forecasts, energy plan-
ning and modelling, since every oil-importing 
country wanted to ensure the  security of ener-
gy supply. After the  end of oil crisis, when oil 
market reached an equilibrium, a  sustainable 
energy development and reduction of global 
warming were a  new focus for energy models 
[1]. On 4  November 2016 a  Paris Agreement 
entered into force, in which countries agreed 
to keep global temperature rise well below 2 
degrees Celsius above pre-industrial levels and 
submitted nationally determined contributions 
[2]. Economic models for long-term energy 
planning like TIMES [3], MESSAGE [4], BAL-
MOREL [5], PRIMES [6] are necessary for each 
country to project optimal technology pathways 
that meet national targets, with the lowest tech-
nical and financial risk [7].

In these models the  chosen temporal reso-
lution significantly impacts expected electricity 

generation from new Renewable Energy Sourc-
es (RES) and capacity which can be installed. 
When using lower temporal resolution wind 
fluctuations are smoothed and the model tends 
to overestimate how much new wind capacity 
should be installed [8, 9]. In order to adequate-
ly describe the  stochastic nature of wind, high 
temporal resolution is needed. However, when 
using high temporal resolution a model becomes 
much more complex and requires more comput-
ing power/time to solve. Stefan Pfenninger [10] 
compared CPU time required to solve a Calliope 
energy modelling framework model between 
different temporal resolutions (8760, 2920, 1460, 
730 and 365 time steps in a year resolution) and 
3 scenarios: in the first scenario 90% of demand 
is covered by generation from stochastic RES; 
the second is like the first scenario, but includes 
storage; in the  third scenario 50% of demand 
is covered by generation from RES. Results are 
shown in Fig. 1.

There is a  trade-off between the  level of de-
tail and ease of solving. For large models it is 

Fig. 1. Normalized CPU time and installed offshore wind capacity from 2014 runs with uniformly 
downsampled time resolution. On the machine used, the 1-hourly run (maximum run time) took 
about 7.2 h. All CPU times are normalized by dividing by that value [10]

1h timesteps
(n = 8760)

3h timesteps
(n = 2920)

6h timesteps
(n = 1460)

12h timesteps
(n = 730)

24h timesteps
(n = 365)

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 C
PU

 ti
m

e

G
W

200

150

100

50

0

CPU time
90% (2014)
90% with storage(2014)
50% (2014)

Wind (GW)
90% (2014)
90% with storage(2014)
50% (2014)



34 Eimantas Neniškis, Arvydas Galinis

desirable to reduce time steps without signifi-
cantly reducing accuracy. This can be done by 
representing each year by typical demand days 
for each month or season based on average pa-
rameter values. One season/month can be repre-
sented by several typical days, which corresponds 
to some characteristic periods, like peak-de-
mand and off-peak-demand days (e.g. weekdays 
and weekends) [11]. However, it is problematic 
to represent stochasticity of electricity genera-
tion in wind power plants when averaging data 
to produce a  typical day, because it smooths 
wind fluctuations. It is possible to calculate how 
many hours wind power plants should produce 
certain power during a typical day, but it is un-
known what power output should be at a specific 
hour in a typical day. The aim of this article is to 
describe a methodology on how to create wind 
curves for each of these typical days.

METHODOLOGY

This methodology is based on the  creation of 
randomized electricity generation from wind 
curves for each season and day type. In order to 
do this, data on how many hours wind power 
plants generate a certain power range is needed 
for each season. This data can be calculated in 
several ways:

It can be calcu lated from hourly or high-
er temporal resolution data of actual electricity 
generation from wind. This data usually is pub-
licly provided by Transmission System Oper-
ators (TSOs). In this method, actual electricity 
generation from wind data is split according to 

seasons or other time periods. Time of a certain 
generated power range p for each season is cal-
culated using this formula:

 
       (1)

Here hp,  t1–t2 is the  number of x(j), j  =  1,  J wind 
power data points (measurements) in time peri-
od t1–t2 that satisfy PR1p ≤ x(j) < PR2p inequality; 
x(j) is wind power in particular measurement j 
within time period t1–t2 in MW; T is time interval 
between wind power measurements (it has to be 
no longer than length of the  smallest time slice 
in the  economic model; measurements in this 
case are also assumed to be made in equal time 
intervals); p-1, P is the index of wind power ran-
ge; PR1p is the lowest power range p value in MW; 
PR2p is the highest power range p value in MW; t1 
is hour in a year of season beginning, t2 is hour in 
a year of season ending.

Time values according formula (1) have to be 
calculated for all power ranges p ∈ P.

Another way is to calculate it from hourly or 
higher temporal resolution data of wind speeds. 
By using the wind turbine power curve it is pos-
sible to convert wind speed to power output; 
however, it is needed to recalculate wind speeds 
to a hub height first. Wind profile power law de-
scribes relationship between wind speeds on two 
different heights.

. (2)

Fig. 2. Electricity generated from wind in Lithuania 2017 [12]
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Here v1 [m/s] and v2 [m/s] are wind speeds at 
height z1 [m] and z2 [m], correspondingly, α is 
the  wind shear coefficient. The  value of α de-
pends on terrain type: for lakes or smooth ground 
α = 0.1, for tall crops and shrubs α = 0.2, for small 
town α = 0.3, for city α = 0.4 [13].

After wind speed conversion into power 
output of wind turbine, data should be split ac-
cording to the time of a certain generated power 
range for each season calculated using formula 
(1) as in the first way.

When it is known how much time wind power 
plants generate at each power range in all seasons, 
then electricity production for each particular sea-
son is calculated as a sum of all power output data 
points within the  season multiplied by duration 
of time between measurements x(j) in hours T. In 
the case time slices j are taken from the set Jk ∈ J, 
representing time slices of all days belonging to 
a  typical day category k ∈ K in the  season t1–t2, 
electricity generated during these days (Ek

ti–t2) 
can be calculated as it is shown in formula (3).

. (3)

Ek
typ, t1–t2 – electricity generated from wind during 

a single day of typical day category k in the se-
ason t1–t2 is calculated by dividing electricity 
generated during these typical days in the  sea-
son by the number of days of category k in that 
season.

. (4)

The time when wind power plants generate 
a certain power range p in a typical season day 
of category k (h↓(typ,  p,  t1–t2)↑k) is equal to 
the time when wind power plants generate a cer-
tain power range in typical days k in a  season 
divided by the number of category k days in that 
season. Results of such calculations will be used 
for creation of curves for electricity generation 
from wind for typical days of each season.

. (5)

Results have to be adjusted in a  way that 
a sum of hk

typ, p, t1–t2,adj, which represents the time of 

wind power plants operation at all possible pow-
er ranges p in a typical day k, would be equal to 
Lk – the number of time slices into which typical 
day k is divided in the model. This adjustment can 
be made by multiplying hk

typ, p, t1–t2 by  where τ is 
the length of the smallest time slice in an econom-
ic model. Then each value is rounded to integer.

. (6)

. (7)

The sum of multiplications of each power 
range average value and corresponding number 
of hours should be as close as possible to calculat-
ed electricity production from wind during a typ-
ical day in the season t1–t2. It can be achieved by 
increasing or decreasing htyp, p, t1–t2,adj values:

.  (8)

When it is known how much time wind pow-
er plants generate a certain power range during 
a typical day of each season, wind power output 
distribution arrays Xk(Lk) for each typical day k 
is created. A number of elements (values) in each 
of these arrays depends on temporal resolution 
Lk. If, for example, hourly temporal resolution is 
selected, then each array has 24 elements, one 
element per hour. Further calculation procedure 
will be shown only for one typical day, index k 
will be omitted in notification of elements in ar-
ray for simplicity. Therefore, wind power output 
distribution array for one typical day will be not-
ed as X(L).

The number of time steps (hours – for hour-
ly temporal resolution in an economic model) 
wind power plants generate a  certain pow-
er range p ∈ P in X(L) array is represented by 
the  number of elements x(l) that are equal to 
that power range average value:

. (9)

Here IC is the  installed capacity of wind power 
plant in MW.
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Ta b l e  1 .  Variables used in code

Variable Type Description

X(L) Array, integer or real
Wind power plant’s output distribution points, which will be used to create 

the output curve

A(M) Array, integer or real Different output points

B(N) Array, integer
Repetition of each different output in X(L) array. Example: If a(m) = 3 and 

there are four “3” values in X(L) array then b(n) = 4, where n = m

C(O) Array, integer Array for generated different random numbers

D(Q) Array, integer or real Output curve array

q Integer = 0 Variable used to track loops in FOR EACH cycle

gen_nr Integer = 0 Variable used to track how many times random integer was generated

gen_max Integer
This value sets how many times a random number can be generated be-

fore exiting FOR EACH loop

iter Integer = 1 Variable used to track iterations of this program

iter_max Integer A maximum number of iterations before the program is terminated

y Integer Random integer between 1 and number of elements in X(L)

o Integer Variable used to track first empty position in array C(O)

set_tol Integer or real
This value sets what is the biggest difference of nearby values allowed in 

D(Q)

tol Integer or real Biggest difference of nearby values allowed in D(Q) that is in force

min_B Integer This value sets minimum b(b) value that is required for tol = set_tol

add_tol Integer or real tol = set_tol + add_tol if b(n) < min_B

m Integer Variable used to track loops in FOR EACH cycle

n Integer This variable tracks at which n a(m = n) = x(y),

n_minus1 Integer This variable tracks at which n_minus1 a(m = n_minus1) = D(nr-1),

result Boolean
If result = 0, it means the program has failed to generate the output curve; 

if result = 1, the program succeeded

A computer code is used to generate wind cur-
ves for these typical days by randomly rearranging 
X(L) elements. A block diagram for wind curves 
generation code is shown in Fig. 3 also descrip-
tion of variables used in the  code are given in 
Table 1. This rearrangement is done by looping 
a number of times (l = 1, L) equal to the num-
ber of elements x(l) in X(L) array. In each loop 
(l = 1, L) one of X(L) values x(y) is entered into 
array D(Q), (where d(q) = x(y) and Q = L) re-
presenting the  wind power plant output curve. 
Which value x(y) is entered into D(Q) as d(q) is 
determined by variable y = rand_int – randomly 
generated integer between 1 and the  number 
of elements in X(L). In order to ensure that all 
generated random integers are unique, an array 

C(O), O  =  Q is used to track these integers. If 
randomly generated integer value y already is in 
C(O) array, then a new random integer is gene-
rated and checked if it has a matching value in 
C(O). If not, random integer value y is entered 
into C(O) array element c(o), where o = q, then 
if it is a first entry into D(Q) array x(y) value is 
entered into d(1) and then the program goes to 
the beginning of the loop; if it is not a first entry, 
then the  program checks if difference between 
x(y) and d(q-1) is less or equal to the  set tole-
rance. If so, the computer code enters x(y) into 
array D(Q) (d(q) = x(y)). The set tolerance en-
sures that the created wind output curve, repre-
sented by array D(Q), would not exceed the de-
sired variability, i.e. output would not change 
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Fig. 3. Block diagram for wind curves generation code

iter = iter + 1

q = q + 1

o = q

gen_nr = gen_nr + 1

IF gen_nr ≤ gen_max ELSE IF iter < iter_max

y = random integer between
1 and number of elements
in X(L) generation

IF y in C(O)

c(o) = y

IF nr = 1

tol = set_tol

d(q) = x(y) m = 1

m = m + 1

FOR EACH ement in A(M)

d(q) = x(y)

result = 1

result = 0

IF ABS(x(y) – d(q–1)) ≤ tol

IF b(n) < min_B OR b(n_minus 1) < min_B
THEN tol = tol + add_tol

IF a(m) = x(y) THEN n = m

IF A(m) = D(nr_1) THEN
 n_minus1 = m

FOR EACH ement in X(L)
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unrealistically fast. However, there are instan-
ces when there is just a single element in array 
X(L) with a certain value and because of it this 
element fits only in certain D(Q) positions (see 
Tolerance example). In order to solve this issue 
program checks how many elements in X(L) 
array have x(y) value and how many elements 
in the same X(L) have the value of the last ele-
ment entered into array D(Q). If any of these 
two numbers is lower than set minimum value 
min_B, then tolerance is increased by additio-
nal value add_tol. If difference between x(y) and 
last entry in D(Q) array is greater than toleran-
ce, then the process goes back to generation of 
new random integer variable y, otherwise x(y) is 
entered into the  first empty D(Q) array’s posi-
tion and the program returns to the beginning 
of the loop. The program ends when a loop has 
been made for each element in X(L). However, 
since positions in D(Q) for each X(L) element 
are assigned randomly, often after several x(y) 
values have been entered into D(Q) array it be-
comes impossible to find next unused value from 
X(L) array, which meets tolerance constrains, 
because of bad positioning. To avoid unending 
searching a variable gen_nr is used to track how 
many times a random integer has been genera-
ted and if this number exceeds a set maximum 
limit (gen_max) then the  program goes back 
to the beginning and starts over. To avoid pro-
gram running indefinitely, when it is impossible 

to reposition all X(L) elements in a way which 
meets the restrictions, a variable iter tracks ite-
rations of this program and after a set maximum 
number of iterations (iter_max) the  program 
is terminated.

Tolerance example
In this example, the  hourly temporal resoluti-
on was used. X(L) = (1 0.875 0.75 0.75 0.75 0.75 
0.625 0.625 0.625 0.625 0.625 0.625 0.5 0.5 0.5 
0.5 0.5 0.5 0.375 0.375 0.375 0.375 0.25 0.25), 
tolerance is set to 0.125, then by averaging 200 
generated output curves we see that curves tend 
to have higher values in the beginning of the day 
and at the end of it. This is because the set tole-
rance requires that nearby elements in D(Q) have 
to have values within 0.125 difference and since 
there is a single 0.75 value, the highest 0.875 va-
lue can be either in the first D(Q) position or in 
the  last, and 0.75 can be only in the  second or 
penultimate position. See Fig. 4.

This unevenness in the  averaged curve can 
be decreased by increasing tolerance by add_tol 
value when the number of X(L) elements, which 
are equal to X(y) or last D(Q) entry, is less than 
min_B. See Fig 5. In this example add_tol = 0.125 
and min_B = 2.

The code for this methodology was deve-
loped by using Visual Basic for Applications 
(VBA) programming language within Microsoft 
Office Excel [14].

Fig. 4. Averaged output curve without additional tolerance
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RESULTS

The methodology was tested by running a sim-
ple MESSAGE model of isolated electricity and 
district heat sector of Lithuania. In this model 
electricity generation from solar power plants 
was not evaluated, in order to ensure that time 
aggregation impact on solar power plants gene-
ration would not affect electricity production of 
wind power plants. When modelling, the hourly 
time resolution was used. In total, 6 scenarios 
were run. The first one was a reference scenario, 
each day in a year was modelled (8760 time steps). 
It is assumed that it had the  greatest accuracy, 
since no time aggregation was applied. In the se-
cond scenario a year was represented by 4 seasons 
(spring, summer, autumn and winter) and each 
season by typical work days and weekends (192 
time slices). In the  third one a  year was repre-

sented by 12 months and each month by typical 
work days and weekends (576 time slices). Other 
3 scenarios are like “reference”, “4 seasons” and 
“12 months” scenarios, just with removed pum-
ped storage hydro power plant (PSHPP) techno-
logy. These 3 additional scenarios were modelled 
in order to determine the relationship just betwe-
en time aggregation and electricity production in 
wind power plants. Since PSHPP operation is also 
highly dependent on time aggregation, the effects 
of PSHPP on wind power plants had to be elimi-
nated. Other technologies in this model are not 
dependent on time aggregation. Results for all 
scenarios were calculated for years 2016, 2020, 
2030 and 2040. Calculations were made on how 
much electricity production from wind power 
plants in aggregated time scenarios differed from 
production in corresponding reference scenarios. 
See Table 2.

Fig. 5. Averaged output curve with additional tolerance

Ta b l e  2 .  Difference of electricity generated from wind power plants between aggregated time and corresponding reference scenarios

Year
Scenarios

4 seasons 12 months 4 seasons without PSHPP 12 months without PSHPP

2016 –0.25% 0.01% –0.25% 0.01%

2020 13.82% 5.95% 10.54% 5.35%

2030 16.43% 8.56% 7.76% 1.81%

2040 6.21% 1.32% 7.05% 4.42%
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As expected, the  “12 months” scenario had 
a greater accuracy than “4 seasons” when com-
pared to the  “reference” scenario. “4  seasons” 
scenario results differed from 6.21% to 16.43% 
and “12 months” scenario results differed from 
1.32% to 8.56%. In year 2016, no new wind po-
wer plants were built, so results are practically 
the same as in the reference scenario. From Ta-
ble 2 we also see that energy storage technolo-
gies have a  significant impact on the  accuracy 
of the  aggregated time model. By eliminating 
pumped storage hydro power plant technology 
difference was reduced to 7.05%  –  10.54% in 
the “4 seasons” scenario and to 1.81% – 5.35% in 
the “12 months” scenario. When selecting time 
aggregation for the model, an impact of energy 
storage technologies on model accuracy should 
be considered.

When using aggregated time in the  model, 
accuracy is reduced depending on the  level of 
aggregation, however optimization time is gre-
atly improved. In Table  3, optimization time, 
number of equations and variables are given for 
all scenarios. The  model with the  “reference” 
scenario, which had 8760 time slices, was op-
timized in 4934.7  s. The  “12 months” scenario 
had 15.2 times less time slices (576), but opti-
mization time was 370.2 times (13.33 s.) faster. 
The  “4 seasons” scenario had 3 times less time 
slices (192) than “12 months”, but optimizati-
on was done in 2.12 s., 6.29 times less. There is 
non-linear relationship between time slices and 
optimization time.

CONCLUSIONS

In this paper a  methodology is described on 
how to represent fluctuations electricity genera-
tion from wind power plants in economic mo-
dels for energy planning, which have aggregated 
time. The methodology is based on calculations 
of how much time wind power plants produce 
certain output within a  typical day of a  season 
or some time period and computer algorithm, 
which generates wind power plants generation 
curves for these typical days.

The main advantages of this methodology are 
that generated wind power plants electricity pro-
duction curves represent not only variability of 
wind, but also how much time wind power plants 
generate a certain output range during some time 
period for which the curve is generated. This out-
put distribution is calculated from wind power 
plants actual electricity generation or from wind 
speeds data. Also, it is ensured that energy gene-
rated during a typical day corresponds to energy 
generated during the  selected time period. Fur-
thermore, this methodology is applicable for di-
fferent levels of time aggregation. Since computer 
algorithm is used to generate these curves, it is 
not difficult to generate a  large number of these 
curves.

The described methodology was tested with 
the MESSAGE model of an isolated Lithuanian 
electricity and district heat sector by compa-
ring high time aggregation level scenarios “4 
seasons” and “12 months” with the  “reference” 

Ta b l e  3 .  Optimization time and number of equations and variables of different scenario matrixes 

Year

Scenarios

Reference 4 seasons 12 months Reference 
without PSHPP

4 seasons 
without PSHPP

12 months 
without PSHPP

No. of  
equations

773147 18015 53727 729227 17055 50847

No. of 
variables

773104 17784 53112 737960 17008 50800

Optimization 
time, s.

4934.7 2.12 13.33 2597.17 1.26 10.11
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scenario, which had all 365 days in a  year re-
presented. The “4 seasons” scenario results diffe-
red by 6.21% – 16.43% and “12 months” scena-
rio results differed by 1.32%  –  8.56%. However, 
the  “4 seasons” scenario was optimized in only 
2.12 s., “12 months” in 13.33 s., while “reference” 
in 4934.7 s. If a higher model accuracy is requi-
red, then a lower time aggregation level should be 
used. For example, a year can be represented by 
12 months and each month by all typical week-
days (typical Monday, typical Tuesday, …). A mo-
del with such time aggregation would have 2016 
time slices in a year, more than 4 times less than 
in the model with no time aggregation.

Time aggregation in the model could be used 
to reduce the number of equations and variables, 
which results in significantly faster optimization. 
However, there is a trade-off between time aggre-
gation and accuracy of the  model. Since relati-
onship between time slices in a year and optimi-
zation time is non-linear, it is possible to choose 
aggregation level, at which the model would have 
sufficient accuracy.
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ELEKTROS ENERGIJOS GENERAVIMO IŠ VĖJO 
ATVAIZDAVIMAS ENERGETIKOS ILGALAIKIO 
PLANAVIMO EKONOMINIUOSE MODELIUOSE

Santrauka
Ekonominiuose energetikos planavimo modeliuose 
nėra sudėtinga atvaizduoti elektros energijos gene-
ravimą vėjo elektrinėse, nes jis nuolatos kinta, todėl 
galimybės pakankamai tiksliai prognozuoti vėjo grei-
čio pokyčius daugiau nei kelioms dienoms į priekį. 
Dažnai modeliuojant elektros energijos generavimą 
yra tiesiog atkartojamas vienų metų elektros gamy-
bos vėjo elektrinėse grafikas. Paprastai šis metodas 
taikomas analizuojant energetikos sistemos veiklą, 
kada visos 365 kiekvienų modeliuojamų metų die-
nos yra atvaizduojamos valandiniais laiko intervalais. 
Vis dėlto valandinė laiko rezoliucija nėra galima di-
deliuose modeliuose, kurių optimizavimui paprastai 
reikalingi dideli kompiuteriniai pajėgumai. Tokiu 
atveju yra reikalingas koks nors laiko agregavimas. 
Kita vertus, šiuo metu naudojamos metodikos, kurio-
se taikoma mažesnė nei valandinė laiko rezoliucija, 
tampa nebetinkamos dėl didėjančio kintančio elek-
tros generavimo iš vėjo bendroje elektros gamyboje.

Šiame straipsnyje pateikiama metodika, kaip 
įvertinti vėjo elektrinių elektros energijos gamybos 
nepastovumą energetikos sektoriaus perspektyvinės 
raidos modeliuose. Metodika grindžiama vertinimu, 
kiek valandų per sezoną ar tam tikrame laiko periode 
per metus viena ar daugiau vėjo elektrinių generuo-
ja tam tikrą galios diapazoną, taip pat generuojamų 
galių pasiskirstymo pasirinkto laikotarpio tipinėje 
dienoje modeliavimu ir elektros generavimo kreivių 
sudarymu. Modeliuojant vėjo elektrines modeliuose 
su agreguotu laiku pagal pateiktą metodiką sudary-
tos elektros gamybos kreivės leidžia geriau įvertinti 
gamybos netolygumus ir pastebimus dėsningumus, 
taip pat objektyviau nustatyti rezervinių galių porei-
kį. Negana to, užtikrinama, kad per tipinę dieną pa-
gamintas elektros energijos kiekis atitiktų pagamintą 
per pasirinktą laiko periodą. Siūloma metodika pa-
dės geriau nustatyti racionalų elektrą generuojančių 
technologijų derinį, tiksliau įvertinti vėjo elektrinių 
ekonomiškumą ekonominiuose energetikos planavi-
mo modeliuose per daug nedidinant ir taip didelių 
modelių dydžių.

Raktažodžiai: vėjas, nepastovumas, energetikos 
sistema, raida, ekonominis modelis


