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The security of supply with a high level of operational safety 
and security has a prominent role in the domestic and interna-
tional electricity networks. Due to continuous growth of con-
sumer demand, the integration of renewable energy sources 
and other related changes in the market issues, a number of 
problems and challenges with the operation and utilization of 
the existing network have been identified. The need for a high-
er level of transmission capacity for the transmission network 
is one of the major challenges in the electricity network.

Dynamic Line Rating (DLR) is a new generation of transfer 
capacity methods that can provide a cost-effective solution for 
the security of supply problems without re-planning the exist-
ing infrastructure background. The currently used Static Line 
Rating allows operators to calculate transfer capacity deter-
mined by the worst-case of the weather conditions on the wires 
of a particular transmission line. Whereas practical applicabil-
ity shifts to security, the result of this calculation method is 
almost 95% of time less than the real permissible load of the 
overhead lines. This potential can be exploited with the DLR by 
always adjusting the maximum current that can be transmitted 
on wires. These maximum current values are calculated from 
the real-time environmental conditions, thus the DLR does not 
only provide better security of supply, but also a higher level of 
availability.

The main issue of the article is to investigate the DLR based 
on the application of non-analytic computational methods 
different from the current calculations of the international 
standards (CIGRE, IEEE). The aim of this research is to create 
a neural network capable of recognizing patterns based on the 
weather data of previous years and the actual current values 
of the wires. In this way, it is not only possible to fine-tune, 
but also accelerate the applied calculation of maximum load 
capacity.

Keywords: Dynamic Line Rating, transfer capacity, overhead 
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INTRODUCTION

Nowadays more and more high voltage over-
head lines (OHL) are heavily loaded due to the 
increased power flow caused by cross-border 
trading and far located renewable energy sourc-
es. Thus, the Transmission System Operators 
(TSO) in many countries require development 
of the existing network. However, the construc-
tion of new transmission lines could be com-
plicated due to strict legal regulation, not to 
mention the extremely high investment costs. 
According to these phenomena there is a gener-
al need to use the existing transmission system 
infrastructure more intensively. For this better 
exploitation of the grid, Dynamic Line Rating 
(DLR) could be a promising and cost-effective 
option [1–3].

It is widely known that the transmission sys-
tem’s capacity is calculated based on Static Line 
Rating (SLR), which means that the maximum 
ampacity of the overhead lines is determined 
from the worst case scenario of weather para-
meters. The main advantage of replacing SLR 
by DLR is that DLR uses real-time current from 
the SCADA (Supervisory control and data ac-
quisition system) and also real-time meteoro-
logical parameters to exploit the real permissi-
ble capacity of the wires. Moreover, it is possible 
to involve weather forecast’s data into calculat-
ing algorithms to assign the maximum load of 
the OHLs. By calculating transfer capacity with 
DLR, the maximum ampacity of the transmis-
sion lines is 10–30% higher in more than 95% of 
the time which is highly significant [1–3].

DYNAMIC LINE RATING

It is important to mention that Dynamic Line 
Rating is a promising option for existing infra-
structures but cannot substitute the grid de-
velopment. According to researches and existing 
applications, the exploitation of the grid can be 
better by taking the advantages of DLR.

Advantages of DLR
Two main advantage of DLR is increased ca-
pacity and improved safety of the system. As 
an additional benefit, DLR helps to increase the 
stability of the transmission network. At present, 
the N-k-1 principle is in force, where N means 
elements of the grid and k means the elements 
under maintenance. According to this principle, 
the stability of the system has to be maintained 
in case of another malfunction in the grid. How-
ever, with the application of DLR, it is possible 
to determine alternative energy transport paths. 
It is also important to mention that while the de-
sign and the construction of new transmission 
lines are quite expensive, the use of DLR is a 
cost-effective method for the TSOs [4].

Application of DLR has many other advan-
tages: real-time load calculation, transmission 
capacity forecasting, increased system reliability 
and reduced risk of extreme weather conditions. 
On the other hand, under certain conditions the 
application of DLR could give rise to surplus 
thermal loading over the stability limit or induce 
too high reactive power losses that cannot been 
compensated with available regular methods. 
All in all, DLR has several different advantages, 

Fig. 1. Maximum ampacity in case of DLR and SLR
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but some basic issues have to be carefully con-
sidered before its application can be applied to 
each OHL [3, 4].

Existing applications
The aim of DLR is safety utilization of the ex-
isting transmission system’s capacity based on 
real conditions in which the power line oper-
ates. There are several forms of DLR applied 
by the TSOs in the transmission system. One 
of these applications is the so-called seasonal 
DLR, when the maximum ampacity of the wires 
is calculated for both summer and winter peri-
od to exploit the extra capacity of the existing 
grid for the half of the year. In our article, DLR 
refers to the method of dynamic transmission 
line loadability, in which the chargeability of the 
wire is continuously calculated in real time. This 
method requires a lot of measured data and it is 
important to note that these required data need 
to be real-time ones. Calculation of the capacity 
of the wire is performed by a complex algorithm 
whose input parameters are the physical charac-
teristics of the wire, the temperature of the wire, 
the ambient temperature, the wind speed, the 
wind direction, etc. The purpose of this paper 
is to present the currently accepted calculation 
algorithm of DLR and its replacement by a new 
black box model containing neural network, 
analyzing its errors and benefits [2].

Standard models
There are two worldwide known models in use 
to determine the ampacity via DLR: IEEE model 

and CIGRE model. These DLR models have been 
constantly evolving over the years thanks to new 
experiences and research. Literature containing 
the basics of the Dynamic Power Line (IEEE 738 
and CIGRE 601 WG B2.43) has been revised sev-
eral times and the next edition of the current edi-
tion is being edited.

It is important to mention that calculation of 
DLR is a demanding method, due to it two differ-
ent problems have to be separated: determination 
of the weakest span and calculation of the DLR 
value. The weakest span represents the critical 
part of the transmission line so that it determines 
the thermal current limit for all spans has been 
performed.

Both IEEE and CIGRE models are based on a 
heat equation. On one side, the heat gain, while 
on the other side, the heat losses are listed [1]:

PJ + PS = PC + Pr,  (1)

where
PJ  is Joule heating [J],
PS is solar heating [J],
PC is convective cooling [J], and
Pr is radiative cooling [J].
The main disadvantage of such an empirical 

model is that it takes a long time to finalize it. The 
results provided by this algorithm make it possi-
ble to use the model, but there are many ways to 
improve the calculation methods to achieve even 
more accurate results. In the present case, the ac-
curacy of these models was researched, but many 
results show their deficiencies. 

Fig. 2. Factors influencing DLR [1]
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One weakness of current models is that at 
different wind speed values the DLR results are 
quite different. Moreover, model (1) is a sim-
plified model that contains many neglects (e.g. 
electromagnetic phenomena, crown effect loss-
es, etc.), and these models are not able to take 
into account the cooling effect of the precipita-
tion [5].

The aim of this research is to apply a neutral 
network capable of recognizing patterns based 
on weather data of previous years and actual 
current values of the wires. In this way, it is not 
only possible to fine-tune, but also accelerate 
the applied calculation of maximum load ca-
pacity and deal with the neglections of IEEE and 
CIGRE models. By using the so-trained neural 
network it could be possible to replace the cur-
rently used empirical models.

APPLICABILITY OF SOFT COMPUTING 
METHODS

For problems where the solving algorithm is 
unavailable or very complex, intelligent mod-
elling and calculation procedures are required. 
In these situations, the experience, intelligence, 
individual perception and problem solving skills 
of engineers, namely soft computing, are put to 
the fore. In contrast to hard computing methods, 
the soft calculation methods are less stringent, 
the inputs and algorithms are much more subtle, 
thus better able to handle uncertainty, inaccura-
cy and approximations [6, 7].

Based on the above considerations, in some 
problem-solving cases the use of artificial intelli-
gence-based methods can lead to results. Such ar-
tificial intelligence-based systems include expert 
systems, neural networks, fuzzy systems, genetic 
algorithms, probability arguments and other intel-
ligent agents. These systems can be much easier to 
solve than conventional analytic, numerical algo-

rithms by using conclusions, heuristic approaches, 
and adaptation of human problem solving [6, 7].

In order to determine which soft computing 
varieties should be in use, it is necessary to look 
at how each of these options handles existing 
knowledge, data, the implication mechanism 
and whether they have the ability to implement 
learning and optimization tasks.

Neural networks
Due to properties of each method, only the neural 
networks and genetic algorithms can be applied 
for this new black box model since the goal is 
to create a trained system based on previous ex-
amples. Neural networks are computing systems 
based on human brain. This kind of networks are 
able to detect objects and patterns, and solving 
problems associated with them on a large number 
of data sets [8].

First of all, it can be concluded that neural net-
works work with relatively unstructured knowl-
edge, mostly with data series and data sets. This 
existing knowledge is treated numerically. Due to 
this numerical knowledge, there is no possibility 
for logical operations or relationships to be real-
ized, but there are also concluding mechanisms in 
this case. By the use of neural networks an analo-
gous, associative-based conclusion is given to the 
desired result [9].

Considering learning and optimization, neu-
ral networks are in a favourable position com-
pared to other soft computing types. Based on 
sample recognition and associative-based conclu-
sions, the network can learn, recognize patterns 
in data and, in some cases, optimize them.

Overall, it can be concluded that the use of 
neural networks can be used to induce DLR an-
alytic, numerical calculations. Using a new black 
box model with the neural network it is possible 
to determine the maximum allowable current on 
the transmission line from weather parameters [9].

Fig. 3. Intelligent agents and DLR
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Data available for the new black box model
DLR calculations require a huge amount of data. 
Available data can be split into two large groups. 
On the one hand, there is a need for weather 
forecasting, as it is possible to estimate the en-
vironmental parameters on which to determine 
the maximum flow and the maximum sag. On 
the other hand, real-time measurements are also 
needed to determine the parameters of the trans-
mission line load in real time.

For weather forecasts, the forecasted data of 
existing weather stations are in use. Via the fore-
cast, an estimated value, such as temperature, 
solar radiation, wind direction, speed, etc. gets 
available. However, it is important to mention 
that types and accuracy of weather forecasts are 
quite diversified. This neural network model does 
not include forecasted data, yet.

Sensors installed on the transmission line are 
used to correctly record the data measured in real 
time. The installed sensors measuring ambient 
parameters at specific intervals are able to deter-
mine, by analytic, numerical methods, the maxi-
mum value of the current that can be transferred 
through the wire. Most sensors measure the tem-
perature of electric line, but there are devices that 
are able to monitor the angle of the lines horizon-
tally, which makes it easier to determine the sag. 
In this case 3 weather parameters (solar radiation, 
wind, ambient temperature), the SCADA current 
and the temperature of the line formed the group 
of real-time data [10, 11]. For the simulations 
mentioned below, an OTLM sensor was applied 
on the OHL. Temperature measurement was per-

formed by direct measurement in the point on 
phase conductor. The deviation of the sensor is 
±2°C.

SIMULATIONS

In order to expose the applicability of the inves-
tigated black box model, simulations were car-
ried out with different types of neural networks 
in MATLAB. Via simulation, the structure of the 
network was also amended to find out the opti-
mal result.

Identification of a new black box DLR model
The main goal of simulation is to substitute the 
existing DLR calculating methods with the use of 
a new black box model. There are two main steps 
in simulation, calculation of the line temperature 
with neural networks and after it determination 
of the maximum ampacity of the line in the weak-
est span.

The background of the black box model is 
the following: a sensor is installed on the line 
that monitors the temperature of the wire in real 
time. There is also real-time information about 
the solar radiation, the wind and the ambient 
temperature from weather stations. According 
to real-time line measurement, measured tem-
perature of the line contains all environmental 
effects even those that are neglected in IEEE and 
CIGRE models. Knowing real-time and the max-
imum temperature of the line, the extra allowa-
ble Joule heating could be calculated from a sim-
ple heat equation. However, not all OHLs have 

Fig. 4. The structure of a general neural 
network
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a temperature measurement sensor on them-
selves, so calculation of the real-time line temper-
ature can be executed via use of neural networks 
after a training method.

In order to carry out simulations, nominal 
and load data of a high-voltage transmission 
system running in a Central European country 
have been carried out. The two-phase, nominal 
voltage level of the transmission line system is 
110 kV, its location is continental, that is, sea-
sonal periodicity of environmental parameters 
can be distinguished and icing on the transmis-
sion line cannot occur during summer time. 
The tested wire type is Al/ACS 240/40 mm2, one 
insulator is used per phase on the transmission 
line, while the maximum permissible tempera-
ture of the wire cannot rise over 40°C due to the 
limitation of the sag.

Parameters of the neural network
There are several types of neural networks de-
pending on each parameter. Basically, two large 
groups can be distinguished: forward and back-
ward neural networks. Neural networks are usu-
ally structured as follows: there is a certain num-
ber of inputs and a number of hidden layers, 
one output layer, and usually one output. Based 
on the analogy with the human body, the net-
work contains any number of neurons, which in 
some cases are also called perceptron. These are 
the smallest structural units of the system that 
process information in conjunction with each 
other, and their internal states can be described 

in numerical form with the so-called activation 
value. During the teaching process, information 
activation functions extend from neuron to neu-
ron, thereby modifying the weights and thresh-
olds in the system, i.e. free parameters. This way, 
internal context of the system can be modified to 
reach more accurate output values [9].
The conductor temperature problem to be solved 
can be defined with an error minimization equa-
tion [6]:

, (2)

where
Remp(

–w)   is empirical risk functional,
–xi, 

–w         are free parameters of the system, and
di         is the desired response to an –xi vector.
According to attributes of the neural net-

works, the defined problem can be solved with 
feedforward neural networks with n-dimension 
variables, where n means the number of in-
puts. Using earlier results, a cascade type neu-
ral network belonging to the group of feedfor-
ward networks was applied in the model. The 
process of learning was chosen to be the Leven-
berg-Marquardt mechanism since this method, 
unlike other mechanisms, is able to locate the 
minimum error gradient even if it is far from 
the initial minimum value. In the system itself, 4 
layers were added, 3 of them are hidden and 1 is 
the output layer. Four neurons in the first layer, 
32–32 neurons in the second and third layers, 

Fig. 5. The structure of the chosen neural network
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and only 1 neuron in the last output layer should 
be located.

In previous modelling, it was experienced 
that the limit is around at four layers, where the 
increased duration of teaching is more domi-
nant than a slight change in the accuracy of the 
output result. For the simulation, more than 60 
neurons were set up for increasing free para-
meters of the system.

During the simulation, one part of the input 
parameters was the environmental parameters 
and the other part was the current transferred 
through the wire. However, not all of the avail-
able environmental parameters were used for 
simulation. During the model, the air humidity, 
pressure and wind direction were not taken into 
account. For the first two parameters, previous 
simulation experiences have shown that their 
use do not significantly increase accuracy in the 
model, while due to a large number of emerg-
ing issues in the wind direction, it was better 
to ignore this parameter from the initial mod-
el. Thus, a total of 3 environmental parameters 
– wind speed, air temperature, and solar radi-
ation – served as the input of the network. For 
later runs, it would be worth considering the 
wind direction and the amount of precipitation 
as possible input due to their prominent cooler 
effect. 

In addition to the 4 input parameters, in all 
cases the output parameter was the wire temper-
ature measured by an installed sensor. From the 
point of view of DLR, this is a favourable case 

because both the temperature of the wire and the 
actual current value indicated by the SCADA are 
directly measured values, meaning it is possible 
to see how the environmental parameters collec-
tively modify the temperature generated by the 
real-time current of the wire. 

Learning method, validation and testing
During simulation, environmental parameters 
in every 30 minutes of each day of March to Oc-
tober were used, so thousands of learning points 
were available for the system to realize the ap-
propriate learning process. The reason for this 
was to eliminate weather conditions typical of 
each season. For the learning method, about 
80% of the information was set to teach, while 10 
and 10% for validation and testing. The teach-
ing mechanism was carried out by modifying 
free parameters, i.e. changing the weights and 
thresholds in the system. The end of the teach-
ing method was achieved by reaching a pre-set 
gradient minimum.

In Fig. 6 the black dots represent teaching, 
validation and testing data. The coloured lines 
(the blue, green and red ones) on the graphs 
display the desired result for the network. These 
lines serve as the most appropriate linear regres-
sion lines between the outputs and the targets. 
The R value indicates the strength of the relation 
between the targets and outputs. If R = 1, it in-
dicates that outputs and targets are nearly linear. 
According to Fig. 6 training of the networks was 
successful.

Fig. 6. The training, validation and test of the neural network
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RESULTS

Based on the simulations carried out, the neural 
network is able to calculate the temperature of the 
wire with an error of under 7%, based on the actual 
current and environmental parameters. This 7% of 
the error can be accepted because this rate means 
about 1–2°C difference in the temperature, which 
roughly coincides with the accuracy of sensors.

In Fig. 7 the test of the network is presented. 
During teaching, intentionally, the last days of 6 
months did not appear among the elements. The 
data of these last days were applied during this 
testing, meaning this test was under real circum-
stances. In Fig. 7, therefore, the line temperatures 
of the last days of the 6 months were compared 
to the results provided by the neural network. As 
it is shown, the curve deriving from the neural 
network follows the expected sensor values.

Fig. 8. DLR value of the last days of the 6 months as a function of time

Fig. 7. The temperature of the wire as a function of time
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CONCLUSIONS

It can be stated that in the designation of DLR, 
an analytical numerical method that calculates 
the maximum allowable current value from the 
environmental parameters in the transmission 
system can be replaced by using soft computing 
methods. Based on the structure and numeric 
values of available data, the use of neural net-
works seems to be useful for obtaining results. 
This is reinforced by the fact that the system thus 
designed should be able to analyse the relation-
ships between previous data series, the input and 
output values, and to deduct the correct conclu-
sions from these. This means, in essence, that the 
system must be able to learn, which is possible 
in soft computing methods mainly through the 
use of neural networks. In this article, a new 
black box model and parameters of the chosen 
neural network have been detailed. Then, with 
real-time weather parameters, test runs were 
carried out on wires of the Central European 
transmission line system. In calculation of the 
line temperature the average error of the net-
work was below 7%, which can be accepted ac-
cording to the accuracy of temperature sensors. 
It is also possible to calculate the DLR values 
from a heat equation with the use of the initial 
black box model. However, the network could be 
clarified and fine-tuned by using more learning 
data and giving more weight to the cooling effect 
of the wind. The calculation of ampacity can also 
be more precise with the accurate measurement 
of the wire‘s time constant and completion of the 
model with wind direction as input factor. All in 
all, the performed simulations seem to be a good 
basis for further researches.
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DINAMINIS ELEKTROS LINIJOS 
PRALAIDUMO VERTINIMAS NEURONINIŲ 
TINKLŲ PAGRINDU

Santrauka
Tiekimo saugumas, užtikrinantis aukštą režimų pati-
kimumo ir saugumo lygį, yra svarbi dedamoji vidaus 
ir tarpsisteminiuose elektros tinkluose. Atsižvelgiant į 
nuolatinį vartotojų paklausos didėjimą, atsinaujinan-
čių energijos išteklių integravimą ir kitus su tuo susi-
jusius rinkos pokyčius, nustatytos kelios problemos ir 
iššūkiai, sietini su esamo tinklo veikimu ir naudojimu. 
Didesnių perdavimo tinklo pralaidumų poreikis yra 
vienas didžiausių elektros tinklo iššūkių.

Dinaminis linijos įvertinimas yra naujos kartos 
perdavimo pajėgumų nustatymo metodas, kuris gali 
būti ekonomiškai efektyvus tiekimo saugumo proble-
mų sprendimas, nekeičiant esamos tinklų infrastruk-
tūros. Šiuo metu naudojamas statinis linijos pralai-
dumo įvertinimas leidžia operatoriams apskaičiuoti 
perdavimo pajėgumus, nustatytus konkrečios perdavi-
mo linijos laidų oro sąlygų blogiausiu atveju. Kadangi 
praktinis pritaikymas remiasi saugumu, šio skaičiavi-
mo metodo rezultatas beveik 95 % laiko yra mažesnis 
už faktinę leistiną oro linijų apkrovą. Šis potencialas 
gali būti panaudotas atliekant dinaminį linijos įvertini-
mą, visada koreguojant maksimalią srovę, kurią galima 
perduoti laidais. Šios didžiausios srovės vertės apskai-
čiuojamos pagal realaus laiko aplinkos sąlygas, todėl 
dinaminis linijos įvertinimas ne tik užtikrina geresnį 
tiekimo saugumą, bet ir aukštesnį leistinumo lygį.

Pagrindinis straipsnio tikslas yra pateikti dinaminį 
linijos įvertinimą, pagrįstą neanalitiniais skaičiavimo 
metodais, kitokiais nei dabartiniai skaičiavimai pagal 
tarptautinius standartus (CIGRE, IEEE). Šio tyrimo 
tikslas – sukurti neuroninį tinklą, galintį atpažinti ap-
krovų grafikus, remiantis ankstesnių metų orų duome-
nimis ir faktinėmis elektros srovės laiduose vertėmis. 
Tokiu būdu galima ne tik tiksliai suderinti, bet ir pa-
greitinti taikomą didžiausios apkrovos skaičiavimą.

Raktažodžiai: dinaminis elektros linijos įverti-
nimas, pralaidumas, oro elektros perdavimo linijos, 
kompiuterinis modeliavimas, neuroniniai tinklai


