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Intracranial pressure (ICP) monitoring procedure can be ap-
plied to aid in secondary brain damage prevention. A high inva-
siveness of commonly used ICP measuring methods poses a risk 
of complications, and therefore new non-invasive methods are 
currently being developed. A promising non-invasive ICP mea-
surement method is based on the existence of pressure balance 
state, which is driven by the unique morphological property of 
ophthalmic artery (OA). The value of ICP can be obtained by 
evaluating blood flow or artery characteristics in different OA 
segments, intracranial OA segment (IOA) and extracranial OA 
segment (EOA).

In order to increase measurement accuracy, the systematic 
errors must be evaluated, which requires an implementation of 
a numerical model encompassing various physical phenomena.

In this paper, a developed numerical model is presented, 
which was used to solve a transient fluid–structure interaction 
(FSI) problem of the pulsatile blood flow in a straight, physically 
meaningful anisotropic, hyperelastic OA, with ICP and external 
pressure (Pe) loads.

It was found that the  systematic error based on mean 
cross-sectional area difference between IOA and EOA segments 
was {–1.48, –1.37, –1.17} mmHg with ICP = {10, 20, 30} mmHg, 
respectively. The systematic error based on mean blood flow ve-
locity difference between IOA and EOA segments was {–1.84, 
–1.76, –1.625} mmHg with ICP = {10, 20, 30} mmHg, respec-
tively.

The presented numerical model examined the  worst-case 
scenario in terms of boundary conditions, which were immo-
vable, while lengths of OA segments were physiologically rele-
vant statistical means; however, the obtained systematic errors 
still met the clinical standards of ANSI/AAMI, where it is stated 
that the error should not exceed the ± 2 mmHg in the  range 
of 0–20 mmHg of ICP. Boundary conditions and compliance 
affects the systematic error in both ways (reduce or increase it); 
this may explain the low systematic errors obtained in experi-
mental studies by other authors.

Keywords: intracranial pressure, non-invasive, balance state, 
ophthalmic artery, fluid–structure interaction
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INTRODUCTION

Severe traumatic brain injuries (TBI) are one of 
the leading causes of disability and death worl-
dwide [1]. Clinically, only the  secondary brain 
damage can be prevented, as the only prevention 
of primary cause is higher self-awareness. Se-
condary brain damage occurs when autoregula-
tory mechanisms fails to drain the cerebrospinal 
fluid (CSF) and venous blood from the intracra-
nial compartment [2]. Consequently, as the skull 
is a  rigid structure, any additional increase in 
intracranial constituent (e.g. arterial blood vo-
lume) leads to exponential increase in intracra-
nial pressure (ICP) [2], which if not clinically 
addressed, leads to the secondary brain damage.

In case of TBI, monitoring of ICP can be used 
for secondary brain damage prevention [3]. Re-
cently, safe non-invasive ICP measurement me-
thods are being developed, as the invasive monito-
ring methods pose a risk of complications [4]. One 
of the  promising non-invasive ICP measurement 
method [5] postulates the existence of the pressure 
balance state at which ICP = Pe, where Pe is the ar-
tificially added external pressure.

The existence of the  pressure balance state 
is driven by the unique OA morphological pro-
perty [6]; assessed clinical research on human 
OA shows that in general OA crosses several 
different segments: intracranial ophthalmic ar-
tery segment (IOA), which is inside the  skull 
and is affected by the ICP, optic canal segment 
(OC) and extracranial segment (EOA), which 

is in the  eye socket [7] and can be affected by 
the additional external pressure Pe (Fig. 1). Du-
ring non-invasive ICP measurement, blood flow 
velocity or cross-sectional area can be monito-
red simultaneously at IOA and EOA segments, 
while external pressure Pe is increased by a smo-
oth step function. The accuracy of the ICP me-
asurement is the key parameter allowing a safer 
non-invasive method to be widely accepted and 
used in a clinical practice routinely.

Measurement accuracy can be decoupled into 
the systematic error and random error. Assessed 
clinical research [8] showed a  strong correlati-
on between the  lumbar puncture CSF pressure 
and noninvasively measured ICP with the mean 
systematic error of 0.12 mmHg and the random 
error of 2.19 mmHg. However, fundamental un-
derstanding about the  blood flow dynamics in 
elastic arteries during non-invasive ICP measu-
rement is needed in search of the optimal mea-
surement strategy allowing to increase the  ICP 
measurement accuracy.

Experiments in vivo are not always possible, 
and therefore numerical modeling can be used as 
a  substitutional method. The  numerical results 
of the  blood flow velocity and pressure wave-
forms in the one-dimensional, reconstructed, ri-
gid OA was validated against the clinical measu-
rements and it was shown that the model can aid 
in terms of a better clinical decision making [7]. 
The numerical simulation of a one-dimensional, 
straight, elastic OA [9] showed that the pressu-
re balance state is independent of the changing 

Fig. 1. Intracranial pressure measurement scheme. Red circle shows the area of focus of the current research
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vascular resistance, and the predicted systematic 
error was within the  limits {–3.0, +1.0} mmHg 
with ICP values between {10, 40}  mmHg. 
The  effects on systematic errors of ICP evalu-
ation were analyzed in [10] were it was found 
that non-symmetrical boundary conditions 
affect the  value of systematic errors. The  tran-
sient three-dimensional numerical model of 
a straight internal carotid artery (ICA) and OA 
system, incorporating the isotropic hyperelastic 
artery wall of a non-zero width and blood flow 
interaction, was used to evaluate the  pressure 
balance state based on the blood flow and artery 
characteristics [11]. The results of the numerical 
model [11] showed that the systematic error was 
composed of arterial pressure difference betwe-
en IOA and EOA segments, boundary condition 
asymmetries and an additional pressure balance 
term, which was postulated to exist due to tran-
sient blood flow rate differences between IOA 
and EOA segments, which can be referenced as 
a compliance of the artery in the region between 
measurement locations. However, due to limited 
computational resources the model was limited 
to only one ICP value of 10 mmHg.

Here we present a numerical model of a pul-
satile blood flow in a compliant OA and an in-
vestigation of a worst-case scenario in terms of 
boundary conditions, which were prescribed to 
be immovable, at the  internal carotid ophthal-
mic arteries bifurcation site and optic canal. We 
performed the  investigation with an extended 
set of ICP values {0, 10, 20, 30} mmHg and also 
used a  physically motivated phenomenological 
HGO constitutive arterial wall model, which 
to a  great extent can reproduce the  empirical 
results of a  passive artery wall behavior [12]. 
The main goal was to investigate the systematic 
errors based on blood flow velocity and cross-sec-
tional area differences between measurement 
locations.

NUMERICAL METHODS

We assume that the non-invasive ICP measuring 
apparatus (Fig. 1) can be made perfectly accurate, 
in a sense that fundamental blood flow dynami-
cs and human physiology are the driving causes 
of the technical characteristics of the apparatus, 
and here we only focus on the ophthalmic arte-

ry and external stimuli (Fig. 1). We assume that 
the external pressure Pe applied by the apparatus 
is homogenous throughout the eye socket. Addi-
tionally, we assume that intracranial pressure ICP 
is also homogenous inside the skull and that any 
external stimuli imitated by the boundary condi-
tions are also homogenous. Based on our inves-
tigation focus and made assumptions, the main 
model domains are the  artery wall, blood 
and boundary conditions imitating the external 
stimulus.

A problem of pulsating blood flow in a com-
pliant artery falls under the category of more ge-
neral fluid–structure interaction (FSI) problems. 
These problems include continuous bodies, for 
which the  fundamental classical conservation 
laws defining their temporal behavior are descri-
bed by the continuum mechanics [13]. In con-
tinuum mechanics, conservation laws are defi-
ned by partial differential equations, which can 
be solved using numerical procedures, of which 
the finite element method was used.

FSI problems are solved using the  so-called 
arbitrary Lagrangian-Eulerian (ALE) formulati-
on, which is usually used for the fluid domain. 
ALE takes advantage of both the Eulerian (spa-
tial) formulation, enabling to solve large defor-
mations and Lagrangian (material) formulation, 
enabling to track the moving interphase boun-
dary, by introducing the  third arbitrary (mesh) 
formulation.

ALE formulation for the blood domain
Naturally, fluid is formulated in Eulerian descrip-
tion. It could be thought as if the observer is wat-
ching the flow from a fixed point. The Lagran-
gian formulation is usually used when dealing 
with a  solid material. This can be though as if 
the  observer is moving together with the  ma-
terial point. The  main complexity arises when 
solid and fluid domains are interacting through 
the common boundary. Notably, ALE formulati-
on is reliable and is applied as a  framework to 
solve various FSI problems [14, 15]. In the ALE 
formulation several configurations are defined, 
as shown in Fig. 2.

The position vector of spatial, material and 
mesh configurations is denoted by x, X and χ, 
respectively. All three configurations coincide at 
time t = 0.



124 Edgaras Misiulis, Gediminas Skarbalius, Algis Džiugys

The mapping from the  mesh domain to 
the material domain is made by X = κm(χ, t) map, 
and the  mesh motion is mapped to the  spatial 
domain by x  =  κt(χ,  t) map. The  mapping from 
the material domain to the spatial domain is per-
formed via x = κc(χ, t) map.

Displacement and deformation measures
The displacement field can be represented by 
the  vector field in the  material configuration as 
follows [13]:

U(X, t) = x (X, t) – X. (1)

The displacement field in the spatial configu-
ration is as follows [13]:

u(x, t) = x – X (x, t). (2)

Both displacement field configurations are re-
lated by the inverse map as follows [13]:

U(X, t) = U (κc
–1 (x, t), t) = u(x, t).  (3)

Based on eq.  (3), the  displacement field in 
the material configuration and in the spatial con-
figuration is equal and therefore can be substitu-
ted in equations in case the need arises.

The deformation gradient tensor F relates 
the position vector X in the material configura-
tion to the point x in the spatial configuration as 
follows [13, 16]:

, (4)

where I is the  identity matrix. The  right Cau-
chy-Green tensor is C = FTF, in case of isochoric 
and volumetric split the  isochoric deformation 
gradient with omitted variables in brackets is –F = (J–1/3I) F, where J = det(F) is the Jacobian de-
terminant. Isochoric right Cauchy-Green tensor 
is –C = –FT –F.

Governing equations for the artery wall in 
material configuration
The mass conservation equation is usually not sol-
ved for the solid domain [17] (in this case the arte-
ry wall domain), because elastic deformations have 
a relatively little effect on the change in the mate-
rial volume, while plastic deformations even pre-
serve the material volume and therefore the chan-
ge in density is also relatively small or negligible, 
meaning that the mass is conserved in either case.

The equation of motion for the artery wall [13] 
with omitted volumetric forces (e.g. gravity) is as 
follows:

, (5)

where ρs is the artery wall density, t is the  time, 
Div is the  divergence operator in the  material 
configuration, us is the displacement of the artery 

Fig. 2. Different configurations used in the ALE framework
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wall, which was used instead of Us due to the equ-
ality shown in eq. (3), P is the first Piola-Kirchhoff 
stress tensor.

The artery wall was assumed to act as a hyper-
elastic material, and for a  hyperelastic material 
P = ∂Ψ/∂F, where Ψ is the strain energy function, 
defined by the material constitutive equation.

The Cauchy stress tensor σs for the artery wall 
is calculated based on the Nanson’s formula [13] 
as follows:

σs = J–1PFT. (6)

The boundary conditions for the artery wall in 
the general form are as follows [18]:

us = us
D, (7)

PN = Gs, (8)

where us
D is the displacement prescribed at the Di-

richlet boundary, N is the unit normal vector in 
the material configuration pointing outward from 
the artery wall, Gs is the first Piola-Kirchoff stress 
tensor prescribed at the Neumann boundary.

Governing equations for the blood flow based 
on ALE formulation
It was assumed that blood is incompressible fluid, 
which is justified by a  relatively low blood flow 
velocity in the  ophthalmic artery compared with 
the speed of sound in blood. Also, the blood was 
assumed to be homogenous and the  density was 
assumed to be constant through the  ophthalmic 
artery. Based on these assumptions the mass con-
servation equation for the fluid (blood) then beco-
mes as follows [13]:

divvf = 0, (9)

where  is the divergence operator in spatial confi-
guration, vf is the blood velocity.

The momentum conservation equation for 
the  fluid (blood) with omitted volumetric forces 
(e.g. gravity) based on the ALE formulation is as 
follows [18]:

, (10)

where ρf  is the blood density, c is the convective ve-
locity defined as the difference between the mate-
rial and mesh velocities, and σf  is the Cauchy stress 
tensor for blood. The Cauchy stress tensor for an 
incompressible fluid (blood) is as follows [18]:

σf = –pfI + μf(∇vf + (∇vf)
T), (11)

where pf  is the arterial blood pressure, I is the iden-
tity matrix, μf is the  blood dynamic viscosity. It 
was assumed that blood is a Newtonian fluid and 
therefore the effective blood dynamic viscosity μf 
is constant. The  assumption of Newtonian fluid 
is justified by the  fact that the  Newtonian shear 
rate model can accurately capture the blood flow 
behavior in arteries, of which lumen diameter is 
larger or close to 1 mm [19], such as OA, in which 
the shear rate of blood is always higher than 100 s–1.

The boundary conditions for the  blood in 
the general form are as follows [18]:

vf = vf
D, (12)

–σnf = gf, (13)

where vf
D is prescribed blood velocity at the Di-

richlet boundary, σ is the Cauchy stress tensor, nf 
is the unit normal vector pointing outward from 
the  blood domain, gf is the  prescribed Cauchy 
stress tensor at the Neumann boundary.

Constitutive fiber-reinforced material model 
for artery wall
A healthy artery wall is composed of several layers: 
tunica intima, tunica media and tunica adventitia 
[20]. Tunica intima is the innermost layer, which is 
in direct contact with the blood. Usually, in a heal-
thy artery it has a negligible effect on the artery me-
chanical behavior [21]. Tunica media is the middle 
layer, which is mainly composed of smooth muscle 
cells, collagen and elastin fibers. Tunica adventitia 
is the outermost layer, of which the main compo-
nent is the collagen fibers. Due to collagen fibers 
in the layers of tunica media and tunica adventitia 
the  artery is anisotropic (transversely isotropic) 
and a  strong stiffening effect is common when 
the  inner pressure is relatively high. In any ar-
tery layer, two families of fibers exist, that are in 
symmetrical configuration with circumferential 
direction. Based on experimental evidence it was 
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widely accepted that the artery wall is incompressi-
ble [22]; however, newer findings challenge this as-
sumption [23, 24]. Most of the constitutive models 
of the artery wall were developed in regards with 
the  incompressible assumption, and only the ne-
west constitutive models and numerical schemes 
tried to incorporate compressibility and inextensi-
bility [25]. Here we use the constitutive model ba-
sed on the previously widely accepted incompres-
sibility assumption.

Numerical difficulties, called locking pheno-
mena [26], arise when the material is prescribed as 
nearly incompressible. To resolve these difficulties, 
a mixed finite element formulation is introduced, 
in which it is common to implement the  decou-
pled form of the strain energy function [18]. For 
a homogenous material with two families of fibers, 
a decoupled strain energy function developed by 
[21] is given in the following form:

Ψ = –Ψg(
–I1) + –Ψf(

–I4, 
–I6) + Ψvol(J), (14)

where –Ψg(
–I1) captures the  isochoric part of iso-

tropic ground structure and –Ψf(
–I4, 

–I6) captures 
the  isochoric part of anisotropic fiber structure, 
while Ψvol(J) defines the volumetric strain energy 
density and resolves nearly incompressibility, –I1 
represents the  isochoric, isotropic stretch (inde-
pendent of direction), –I4 and –I6 represent the iso-
choric square of the  stretch in the  direction of 
the first and second family of fibers, respectively. 
the invariants –I1, 

–I4, 
–I6 are as follows [21]:

–I1 = tr –C, –I4 = Mj1 · 
–CMj1, 

–I6 = Mj2 · 
–CMj2,      (15)

where j = {media, adventitia}, Mj1 is a tensor cha-
racterizing the  first family fibers of the  j-th arte-
ry wall layer, Mj2 is a tensor characterizing the se-
cond family fibers of the  j-th artery wall layer. 
Mj1 = mj1 ⊗ mj1 and Mj2 = mj2 ⊗ mj2, where mj1 is 
the j-th artery wall first fiber family direction vec-
tor, mj2 is the  j-th artery wall second fiber family 
direction vector. Fiber direction defining vectors 
are in material configuration.

Based on [21], the  isotropic response is go-
verned by the  neo-Hookean model, and aniso-
tropic response of fiber structure is governed by 
the Fung-type exponential model. Then the strain 
energy function for the fiber-reinforced material 
is as follows:

, (16)

where k1, k2 are empirical positive material cons-
tants, κ is initial bulk modulus, μ is the shear mo-
dulus, and i = {4, 6}.

Definition of fiber directions
In order to consider the  anisotropy of the  artery 
wall material, fiber directions must be defined at 
every point of the artery wall. To simplify the de-
finition of fiber directions, the  wall of the  artery 
can be described with a reference to a cylindrical 
coordinate system consisting of three unit vectors 
R, θ, z, prescribing radial, circumferential and axial 
directions, respectively. In the material configura-
tion, fiber directions of two families in two diffe-
rent layers j = 1, 2 are defined by unit vectors mj1 
and mj2 that are in constant angles ±β with circum-
ferential direction, and they lie in a  plane that is 
normal to the surface of an artery. In this case unit 
vectors mj1 and mj2, with respect to the cylindrical 
coordinate system R, θ, z, are as follows [21]:

, (17)

. (18)

The interaction between blood and artery wall 
happens at the coupling interface boundary. ALE 
formulation is used to describe the  deformati-
ons of the blood domain [27]. Total surface force 
ff = nfσf exerted by the blood on the boundary of 
the  artery wall is equal to the  negative reaction 
force fs  =  –nsσs, which is exerted on the  blood. 
The  coupling on the  interface boundary is then 
calculated as follows [18]:

nsσs + nfσf = 0, (19)

where ns is the  unit normal pointing outwards 
from the  artery wall boundary. Blood domain 
is affected by a  moving artery wall through 
the structural velocities calculated as follows [18]:
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, (20)

where vs is the wall velocity.

FSI model parameters
Parameters presented in Tables  1–3 are used to 
define the basic material properties of the blood, 
artery wall, and of the simulation process.

Ta b l e  1 .  Basic material parameters

Blood parameter Notation Value Units

Dynamic viscosity 
[28]

μf 0.003675 kg·m–1·s–1

Density [29] ρf 1060 kg·m–3

Artery wall parameter Notation Value Units

Density [30] Ρs 1100 kg·m–3

Ta b l e  2 .  Geometry parameters

Geometry parameters Notation Value Units

Initial lumen diameter dinit 1.3 mm

Length of OA [31] L 25.783 mm

Length of Γ1 (IOA) [31] LΓ1 4.116 mm

Length of Γ5 (OC) [32] LΓ5 12 mm

Length of Γ2 (EOA) [31] LΓ2 9.667 mm

Wall thickness [33] h 0.177 mm

Solver properties

The COMSOL Multiphysics® software, which is 
based on implementation of the  finite element 
method, was used to perform numerical mo-
deling. PARDISO (Parallel sparse direct linear 
system solver), in conjunction with a nonlinear 
fully coupled damped-Newton method together 
with the  time stepping generalized-α, was used 
as a solver. The damping factor for a nonlinear 
Newton method was set to a  constant value of 
1 and the  Jacobian update was set to minimal 
(reuse the Jacobian for several nonlinear systems 
whenever deemed possible). Absolute tolerance 
for all variables: pressure, auxiliary pressure, dis-
placement field, velocity field, spatial coordina-
tes was set to 5∙10–4, while the  maximum time 
step size was set to 0.004 s. At times when gra-
dients were relatively high, to resolve study on 
such tolerances, the time step size automatically 
decreased down to a  value of 10–6  s to resolve 
high gradients.

RESULTS AND DISCUSSION

Model setup and boundary conditions
OA geometry was composed of a  blood do-
main Ωblood and two OA wall domains: Ωmedia and 
Ωadventitia shown in Fig.  3. Parameters defining 

Ta b l e  3 .  Simulation parameters

Simulation parameters Notation Value Units

Duration of one time period [34] T 1 s

Duration of initialization tinit 1 s

Duration of Pe = const tc 2 s

Duration of Pe loop tP 3 s

Peak value of velocity profile max. of one time period umaxpeak 56.48 cm/s

Surface averaged value of velocity profile max. of time period umaxmean 28.24 cm/s

Peak value of velocity profile min. of time period uminpeak 12.28 cm/s

Surface averaged value of velocity profile min. of time period uminmean 6.14 cm/s

Max. pressure of time period [35] Psys 80 mmHg

Min. pressure of time period [35] Pdias 40 mmHg

Magnitude of increase in ICP1, i SICP 10 mmHg

Amplitude of ICPi (function of i) AICP = sICP (i–1) mmHg

Amplitude of Pe APe 38 mmHg

Magnitude of increase in Pe SPe 2 mmHg

Distance from OA starting location at which data was collected at IOA segment Lc,IOA 2.058 mm

Distance from OA starting location at which data was collected at EOA segment Lc,EOA 20.834 mm
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the  basic material properties of the  blood, and 
of the OA wall are given in Table 1. As the data 
of additional parameters required by the consti-
tutive material model for the OA wall, are scarce 
in the scientific literature, ICA parameters were 
used instead (provided in Table 4).

Ta b l e  4 .  OA wall parameters used for fiber-reinforced double 
layer model based on ICA wall parameters according to [12]

Arterial wall parameters Adventitia Media

Isotropic, c10, kPa 28.3 17.6

Anisotropic, k1, kPa 112.1 21.3

Anisotropic, k2 100.6 17.3

Fiber angle, β, deg 31.8 9.8

Structural information consisting of the wall 
thickness of OA, the  internal vessel diameter, 
the length of the vessel and the lengths of IOA, 
OC, and EOA segments are provided in Table 2.

ICP was prescribed as a Neumann boundary 
condition based on eqs. (8) and (6) as a function 

dependent on time ICPi(t) acting on the outside 
surface of IOA wall segment Γ1 as follows:

. (21)

For a  healthy adult in the  supine position, 
the  normal ICP range is between 7  mmHg and 
15  mmHg [36], for children between 3  mmHg 
and 7 mmHg, for term infants from 2 mmHg and 
6  mmHg, and for pathological patients, ICP can 
exceed 25 mmHg [37]. Aforementioned ICP values 
motivated us to set ICP lower limit to 0 mmHg and 
upper limit to 30 mmHg, and the set of ICP ampli-
tude values was AICP(i) = {0, 10, 20, 30} mmHg for 
i = 1, 2, 3, 4.

Pe was prescribed as a  Neumann boundary 
condition based on eqs.  (8) and (6) as a  functi-
on dependent on time Pe(t) acting on the outside 
surface of EOA wall segment Γ2 as follows:

, (22)

Fig. 3. The OA model geometry with depicted IOA, OC, EOA segments, blood and OA media and adventitia layer domains, boundaries of acting 
pressures Pe and ICP together with a cross-sectional scheme of OA and lines representing A and B cross-sections where the data was collected 
at the distances Lc,IOA and Lc,EOA, respectively

Cross- 
section

Cross- 
section
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where Peb was prescribed as follows:

 

(23)

Boundaries Γ3, Γ4, Γ5 were prescribed to be 
immovable based on the Dirichlet boundary con-
dition (eq. (7)) and artery wall was prescribed to 
only allow the expansion and contraction and no 
twisting or bending was permitted.

The laminar inflow boundary condition based 
on the Neumann boundary condition (eq.  (13)) 
was prescribed as a pressure function Pin(t) acting 
on the surface of OA blood domain inlet. It was 
used to start the blood flow as fully developed at 
the inlet and was prescribed as follows:

, (24)

where Pv waveform was similar to vin waveform 
provided in Fig. 4 with a difference in amplitude 
where Psys was pressure value at the systole and Pdias 
was pressure at the diastole.

The laminar outflow boundary condition 
based on the  Neumann boundary condition 
(eq.  (13)) was prescribed as a  pressure function 
Pout(t) acting on the surface of OA blood domain 

outlet. It was used to define the constant pressure 
Pout at distance Lexit as follows:

. (25)

A  combination of variable inlet pressure Pin 
and constant outlet pressure Pdist = 70.15 mmHg 
(eq.  (27)) at the  analytically calculated distan-
ce Lexit  =  25.63  cm (eq.  (26)), based on the  Ha-
gen-Poiseuille equation generated a  uniform 
waveform of blood pressure and blood velocity 
and generated vin according to Fig. 4.

, (26)

. (27)

Based on [11], the  geometry was discretized 
into 71644 finite elements, with 49734 elements for 
blood domain, 13506 elements for tunica media 
domain, and 8404 elements for tunica adventitia 
domain.

Analysis of simulation results
In total, N  ·  60 time periods were modeled, 
where N  =  4 is the  number of simulations and 
i = —1:N— is study index/number. First time period 
was used to initialize the  simulation by gradu-
ally increasing inlet pressure Pin from 0 mmHg 
to 40 mmHg, outlet pressure Pout from 0 mmHg 
to Pdist and ICPi from 0  mmHg to {0, 10, 20, 
30}  mmHg depending on the  study number. 
After initialization, ICPi was held constant, Pe 
changed according to eq. (22).

Fig. 4. Typical maximum blood flow velocity waveform in OA 
that was implemented in the numerical model
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Starting from t  =  0  s, the  data was collect-
ed at every time step ts  =  0.004 for all N  ·  60 
heartbeat pulse periods. During simulation, 
blood density and blood dynamic viscosi-
ty was constant, while blood velocity and lu-
men diameter were dynamic parameters. 
The  maximum Remax  =  ρf|vf(tsys)|d(tsys)/μ  =  129, 
where tsys is the  time of systole, and minimum 
Remin  =  ρf|vf(tdias)|d(tdias)/μ  =  24.7, where tdias is 
the time of diastole, Reynolds numbers were cal-
culated from all data points to justify the assump-
tion of laminar blood flow.

From all the data available, only the cross-sec-
tional area Si(t), cross-sectional average blood 
flow velocity <vi(t)>, cross-sectional average ar-
terial blood pressure <pi(t)> were chosen as cha-
racteristic parameters at the A and B cross-secti-
ons (here we denote i = {A, B}) shown in Fig. 3. 
Here we also denote t’ = mod(t, T), which allows 
us to compare all heartbeat pulse periods on one 

time scale and to evaluate the  influence of ICP 
and Pe. With t’ introduced, the  functional de-
pendence of characteristic parameters becomes 
as follows: Si(t’,  ICP,  Pe), <vi(t’,  ICP,  Pe)> and 
<pi(t’,  ICP,  Pe)>. Next we omit the  variables in 
brackets and use only Si, <vi> and <pi>.

The ICP is determined by comparing the cha-
racteristic parameters between A and B cross-sec-
tions as follows: ∆S = SA – SB, <∆v > = <vA> – <vB> 
and <∆p > = <pA> – <pB>.

We selected to perform averaging of charac-
teristic values over one heartbeat pulse period, in 
this way the dependence on t’ is eliminated and 
because in this model the arterial pressure wave-
form is periodic the  dependence on the  arterial 
pressure waveform is also eliminated.

The cross-sectional area difference ∆S betwe-
en A and B cross-sections and heartbeat pulse pe-
riod averaged ∆S, denoted as ∆Ŝ, dependence on 
t’, ICP and Pe is shown in Fig. 5.

Fig. 5. Cross-sectional area difference between A and B cross-sections, denoted as ∆S, and heartbeat pulse averaged ∆S, denoted as ∆Ŝ, 
dependence on t’, ICP and Pe
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The oscillation of ∆S about its mean value 
∆Ŝ increased with the  increase in pressure di-
fference Pe  –  ICP (Fig.  5). When Pe  –  ICP  →  0, 
then ∆S  →  ∆Ŝ. When the  value of Pe  –  ICP be-
comes close to some specific value, here denoted 
as inv (in this case inv is close to 0), changing 
the Pe – ICP value in the same direction leads to 
the inversion of ∆S around the t’ axis. This means 
that the oscillation dynamics of SA and SB changes 
with the change in Pe – ICP value. These proces-
ses are due to the nonlinear artery wall constitu-
tive model.

A heartbeat pulse averaged difference <∆p>, 
denoted as <∆ṕ>, dependence on the parameters 
ICP and Pe is depicted in Fig.  6. It can be seen 
that <∆ṕ> changes nonlinearly with respect to 
ICP and to Pe. This nonlinear change is due to 
nonlinear change in ∆S. When ICP = Pe = {0, 10, 
20, 30} mmHg, then <∆ṕ> = {1.112, 1.124, 1.141, 
1.164} mmHg.

Fig. 6. A heartbeat pulse averaged <∆p>, denoted as <∆ṕ>, de-
pendence on the ICP and Pe

The cross-sectional average blood flow velocity 
difference <∆v> between A and B cross-secti-
ons and a heartbeat pulse period averaged <∆v>, 
denoted as <∆ṽ>, dependence on t’,  ICP and 
Pe is shown in Fig.  7. It can be seen that when 
Pe – ICP → 0, then <∆v> does not tend towards 
<∆ṽ>, contrary to ∆S. With the increase in  and in 
ICP, <∆v> oscillation about <∆ṽ> increases, this 
is due to nonlinear change in ∆S.

∆Ŝ and <∆ṽ> dependence on ICP and Pe is 
shown in Fig. 8a and b, respectively. When ∆Ŝ = 0, 
then based on the balance principle it should be 

that ICP  =  Pe; however, from Fig.  8a it can be 
seen that when ∆Ŝ = 0, then ICP = Pe ± ε, where ε 
is the systematic error. From Fig. 8b we can see that 
the same is true for the blood velocity, only the sys-
tematic error values based on <∆ṽ> differ from 
the systematic error obtained based on ∆Ŝ; there-
fore, the systematic error based on ∆Ŝ is denoted as 
εS and the systematic error based on <∆ṽ> is denoted 
as εv. εS and εv are determined by evaluating the in-
tersection point of curves, denoted as (ICP  =  0, 
ICP  =  10, ICP  =  20, ICP  =  30) with the  ∆Ŝ  =  0 
axis. In this way obtained εS  =  {–1.48,  –1.37, 
–1.17} mmHg, εv = {–1.84, –1.76, –1.625} mmHg, 
when ICP  =  {10,  20,  30}  mmHg. The  differen-
ce between εS and εv is due to artery compliance 
in the region between A and B cross-sections. As 
the artery expands, due to the  increase in arteri-
al pressure, it creates additional volume betwe-
en A and B cross-sections, which is occupied by 
incoming blood flow, and as the artery contracts 
this volume is reduced. However, when integra-
ted over one heartbeat pulse period it turns out 
that the blood flow rate difference between A and 
B cross-sections is non-zero, leading to the  afo-
rementioned difference in systematic errors. We 
denote systematic error due to compliance as 
εc  =  {–0.36,  –0.39,  –0.455}  mmHg. The  syste-
matic error due to compliance is dependent on 
the constitutive artery wall model, on the exter-
nal material effect and on the initial lumen vo-
lume between A and B cross-sections. Initial 
lumen volume can be decomposed into the di-
fference in length between A and B cross-secti-
ons and initial cross-sectional areas at A and B 
cross-sections.

The symmetry between A and B cross-sec-
tions can only be attained if the conditions are 
the same between them and therefore the syste-
matic error would be 0 [10]. Based on our as-
sumptions and boundary conditions we can di-
fferentiate what causes the systematic errors. In 
this case the symmetry between A and B is vio-
lated by arterial pressure difference, by differen-
ce in boundary conditions on Γ3 and Γ4 leading 
to differences in internal artery wall stresses and 
deformations and artery compliance.

Therefore, the  systematic errors are due to 
<∆ṕ>, difference in boundary conditions, which 
we will denote as padd, and artery compliance. 
The difference caused by the boundary condition 
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Fig. 8. A heartbeat pulse averaged cross-sectional area difference between A and B cross-sections ∆Ŝ dependence on ICP and Pe (a) and 
heartbeat pulse and surface averaged blood flow velocity difference between A and B cross-sections <∆ṽ> dependence on ICP and Pe (b)

Fig. 7. Surface averaged blood flow velocity difference between A and B cross-sections, denoted as <∆v>, and a heartbeat pulse averaged 
<∆ν>, denoted as <∆ṽ>, dependence on t’, ICP and Pe

differences are different based on ∆Ŝ, we denote it 
as padd,S, and on <∆ṽ>, we denote it as padd,v. From 
Fig. 8a, when ICP = Pe = {10, 20, 30} mmHg, then 

padd,S = {–0.356, –0.229, –0.006} mmHg, and from 
Fig. 8b padd,v = {–0.716, –0.619, –0.461} mmHg. 
Here padd,v – padd,S = εc .
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In [11], only one value of ICP was consi-
dered of 10  mmHg and the  bifurcation site 
of OA from internal carotid artery effect was 
incorporated and modeled, while in this stu-
dy imaginary bifurcation site at boundary 
Γ3 was prescribed to be immovable. In [11] 
it was obtained that εS  =  –0.5  mmHg, padd,S  = 
0.26 mmHg, εv = 1.1 mmHg, padd,v = 1.86 mmHg 
and εс  =  1.6  mmHg. While in this study, 
with ICP  =  10  mmHg these values were εS  = 
–1.48  mmHg, padd,S  =  –0.356  mmHg, εv  = 
1.84 mmHg, padd,v  =  –0.716  mmHg and 
εс = –0.36 mmHg. The values of padd,S are mostly 
affected by the boundary conditions and therefo-
re the difference in this value and in the value of 
[11] suggests that bifurcation site reduces the sys-
tematic error by 34%, while immovable boundary 
increases it by {31.67%, 20.07%, 0.5%} (with re-
ference to <∆ṕ> and ICP = {10, 20, 30} mmHg). 
However, the  effect on systematic error in 
the  model [11] may change with the  change in 
ICP as suggested by current investigation where 
padd,S decreased with ICP value reducing effect 
on systematic error. Artery compliance betwe-
en selected A and B cross-sections increased 
the systematic error by 210% in the study of [11], 
while in this study it increased the systematic er-
ror by {32%, 34%, 39%} (with reference to <∆ṕ> 
and ICP = {10, 20, 30} mmHg). The effect of com-
pliance cannot be directly compared with the re-
sults of [11] as the initial volume between A and 
B cross-sections, constitutive artery wall model 
and external material effect was different.

All effects influencing the  systematic error, 
except the arterial pressure difference, can affect 
the  systematic error in both ways (reduce it or 
increase it) and this may explain the low syste-
matic errors obtained in experimental studies by 
other authors.

Future model improvements
Obtained results are limited to the  particular 
worst-case scenario in terms of boundary con-
ditions, which were prescribed to be immova-
ble, while lengths of OA segments were phy-
siologically relevant statistical means; however, 
the model could be further improved to incor-
porate the  cases of difference in initial geome-
trical configuration, for example including pa-
tient-specific curvature. In reality, OA is curved, 

which can have an impact on the blood flow and 
on the  artery mechanics. The  incorporation of 
curvature is a non-trivial task comprising seve-
ral steps, which can be defined in a very simple 
way as follows: the  medical imaging data must 
be obtained through e.g. CT scan, MRI, etc., 
which must be further segmented resulting in 
a  geometry that can be used for numerical si-
mulations. Definition of the fiber orientations in 
a curved artery is another challenge.

CONCLUSIONS

The developed numerical model was used to 
solve the fluid–structure interaction problem of 
the blood flow in a straight, anisotropic, hypere-
lastic OA and the obtained results allowed us to 
perform an investigation of the systematic errors 
based on several characterizing parameters: blo-
od flow velocity and cross-sectional area.

Based on the  cross-sectional area differen-
ce between IOA and EOA segments ∆S, when 
Pe – ICP tended towards zero, ∆S tended towards 
its heartbeat pulse averaged value of ∆Ŝ. No such 
effect was found for the difference of blood flow 
velocity <∆ν> between selected cross-sections in 
IOA and EOA segments.

The systematic error was composed of pres-
sure difference between selected cross-secti-
ons in IOA and EOA segments <∆ṕ> = {1.112, 
1.124, 1.141, 1.164} mmHg with ICP = {0, 10, 20, 
30} mmHg, respectively, and additional pressure 
term padd,i, where i corresponded to characteris-
tic parameter (e.g. ∆S, <∆v>).

The systematic error based on ∆Ŝ was 
εS = {–1.48, –1.37, –1.17} mmHg with ICP = {10, 
20, 30}  mmHg, respectively. The  systematic 
error based on <∆ṽ> was εν  =  {–1.84, –1.76, 
–1.625} mmHg with ICP = {10, 20, 30} mmHg, 
respectively. The  systematic error based on 
compliance between selected cross-sections in 
IOA and EOA segments was εc = {–0.36, –0.39, 
–0.455} – with ICP = {10, 20, 30} mmHg, respec-
tively.

Asymmetrical boundary conditions betwe-
en IOA and EOA segments resulted in the  in-
crease of systematic error by approximately 
{31.67%, 20.07%, 0.5%} (with reference to <∆ṕ> 
and ICP = {10, 20, 30} mmHg). The systematic 
error based on compliance between selected 
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cross-sections in IOA and EOA segments resul-
ted in the systematic error increase by approxi-
mately {32%, 34%, 39%} (with reference to <∆ṕ> 
and ICP = {10, 20, 30} mmHg), while in the nu-
merical model of [11] with ICP  =  10  mmHg 
the bifurcation site reduced the systematic error 
by 34% and the compliance increased the syste-
matic error by 210%.

We can conclude that the  numerical model 
presented here examined the worst-case scenario 
in terms of boundary conditions, while lengths of 
OA segments were physiologically relevant statis-
tical means; however, the obtained systematic er-
rors still meet clinical standards of ANSI/AAMI 
where it is stated that the error should not exceed 
±2 mmHg in the range of 0–20 mmHg of ICP. Bo-
undary conditions and compliance affects the sys-
tematic error in both ways (reduce or increase it); 
this may explain the  low systematic errors obtai-
ned in experimental studies by other authors.
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NEINVAZIŠKAI NUSTATANT GALVOSPŪDĮ 
ATSIRANDANČIŲ SISTEMINIŲ PAKLAIDŲ 
ĮVERTINIMAS TAIKANT SKAITINĮ METODĄ

Santrau k a
Šiuo metu galvos smegenų traumos yra viena iš pir-
maujančių neįgalumo ir mirties priežasčių pasaulyje. 
Vienintelė prevencinė priemonė nuo pirminės galvos 
smegenų traumos yra didesnis atsargumas, o ištikus 
šiai traumai kliniškai galima taikyti įvarius metodus, 
mažinančius komplikacinių antrinių galvos smegenų 
traumų riziką. Vienas iš tokių metodų yra galvospū-
džio stebėsena, leidžianti kiekybiškai įvertinti situaci-
ją ir priimti kokybiškesnius klinikinius sprendimus. 
Šiuo metu yra tobulinamas neinvazinis galvospūdžio 
matavimo metodas, kuris remiasi unikalia akies ar-
terijos savybe. Akies arterijos dalis, atsišakojusi nuo 
vidinės miego arterijos, yra kaukolės viduje, ir ji vei-
kiama galvospūdžio, kita dalis yra optiniame kanale, 
trečioji dalis – akiduobėje, kuri gali būti paveikiama 
papildomu išoriniu slėgiu. Vertinant kraujotakos 
dėsningumus akies arterijoje galima nustatyti galvos-
pūdžio vertę, tačiau atsiranda sisteminės paklaidos, 
kurias įvertinti eksperimentiškai yra sunku, o kartais 
netgi visai neįmanoma, tačiau panašius tyrimus gali-
ma atlikti pasitelkus skaitinius metodus.

Šiame straipsnyje pristatomas sisteminių galvos-
pūdžio nustatymo paklaidų, atsirandančių taikant 
neinvazinį galvospūdžio matavimo metodą, tyrimas. 
Sudarytas skaitinis modelis leidžia tirti pulsuojančio 

kraujo tekėjimą tamprioje akies arterijoje veikiant 
kaukolėje esančią jos dalį nuolatiniu galvospūdžiu, 
o akiduobėje esančią dalį – išoriniu pridėtiniu slė-
giu. Modelyje kraujo savybės tokios kaip Niutoninio 
skysčio, o kraštinėse kraujo tekėjimo sąlygose užduo-
damas periodiškai besikartojantis pasipriešinimas 
kraujo tėkmei. Šios kraštinės sąlygos generuoja krau-
jo tėkmės dinamiką atitinkančius eksperimentinius 
duomenis. Akies arterijos sienelės savybės aprašo-
mos hiperelastiniu pluoštų struktūros modeliu, ku-
ris remiasi histologine arterijos struktūra – kolagenų 
pluoštais, o prie fiziologinių slėgių atkuria arterijos 
sienelės mechaninį sustangrėjimą.

Gauti skaitinių tyrimų rezultatai buvo analizuoja-
mi optimaliose matavimo plokštumose, t. y. kaukolėje 
esančios akies arterijos ir dalių viduryje akiduobėje 
pagal ilgį su normale, nukreipta kraujo tekėjimo kryp-
timi. Gauta, kad skerspjūvio ploto skirtumo dinamika 
tampa labai artima jos periodo vidurkiui, kai galvos-
pūdis labai artimas pridėtam išoriniam slėgiui. Kraujo 
greičio dinamika šiuo efektu nepasižymėjo. Esant asi-
metriškai užduotoms įtvirtinančios kraštinės sąlygoms 
gaunamos sisteminės paklaidos tenkina klinikinius 
ANSI/AAMI reikalavimus, kad paklaida neviršytų 
±2 mmHg galvospūdžio intervale nuo 0 iki 20 mmHg. 
Kraštinių sąlygų ir medžiagos tamprumo poveikis 
gaunamoms sisteminėms paklaidoms yra įvairus, gali 
padidinti arba sumažinti sisteminę paklaidą, kas galė-
tų paaiškinti, kodėl eksperimentų metu gaunama sąly-
ginai maža sisteminė paklaida.

Raktažodžiai: galvospūdis, neinvazinis metodas, 
balanso būsena, akies arterija, fluido struktūros sąveika


