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In order to mitigate climate change, more attention every year is 
being given to wind energy. However, despite minimal impact 
of wind turbines on the  environment, there is a  negative side 
as well. Wind speed variations are a stochastic process, and it is 
difficult to predict wind power accurately. Therefore, unpredict-
able power can disbalance the power grid; besides, huge power 
reserves are necessary. Wind energy can be forecasted based on 
statistical, physical or hybrid methods and models. However, 
all methods and models generate power prediction errors dur-
ing different time horizons. The  paper presents an analysis of 
wind power prediction errors determining factors based on sta-
tistical, physical and hybrid approaches. Investigation revealed 
that combination of statistical methods – nonlinear regression, 
model output statistics, the most suitable power curve and wind 
speed correction methods – reduced wind power prediction er-
rors up to 1.5%. A  detailed evaluation of relief variations and 
surface roughness increased wind power accuracy by 2%. Con-
sidering the  local conditions of the  western part of Lithuania, 
the best suitable tool for a short-term wind power prediction is 
a hybrid model including a detailed description of topographical 
conditions and the most precise statistical methods.
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INTRODUCTION

Wind energy is one of the most rapidly growing 
energy sectors around the world. In the end of 
2016, the global installed capacity of wind pow-
er reached 487  GW and annual addition was 
55 GW [1]. To compare, during the last decade in 
Lithuania, the installed power of wind turbines 
increased from a few megawatts to 518 MW in 
2017. However, it is not the end, because of very 

ambitious targets of the  energy sector in Lith-
uania. In the  National Energy Independence 
Stra tegy of the  Republic of Lithuania it is de-
fined that renewable energy sources for electric-
ity (RESe) generation should make up to 45% 
by 2030, and 100% by 2050 [2]. The main RESe 
should be wind energy with increased power ca-
pacity of 2.5 times by 2030.

However, wind energy is not a  stable power 
generation source, and in order to ensure secure 
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and reliable power system function, it is impor-
tant to predict power as accurately as possible. 
There are many different methods to do that, but 
there are still relatively large power prediction 
errors in different time horizons. For a  short-
term (1–6  h) wind power forecasting, the  best 
suitable are statistical methods not including 
assessment of meteorological and topographical 
conditions [3–4]. On the contrary, for midterm 
and long-term wind power forecasting physical 
methods are more accurate. Unfortunately, there 
are no sufficiently accurate tools to predict wind 
energy for all-time horizons. Due to this reason, 
it is necessary to design new methods which 
include statistical and physical approaches and 
estimate the influence of as many factors as pos-
sible [5].

The paper continues the  authors’ earlier re-
search [6–7] and presents analysis of topograph-
ical variations and roughness length, reveals 
local wind conditions in the  western part of 
Lithuania, and includes statistical methods for 
a more accurate wind power prediction process.

METHODOLOGY

For the  evaluation of local topographical con-
ditions, 2 wind farms with different parameters 
were chosen. Wind farms were located in 
the  western part of Lithuania, near the  coast-
line of the  Baltic Sea. Annual wind speed was 
3.02  m/s (Klaipėda) at 10  m height in 2016 
(Klaipėda meteorological station’s data). The in-
stalled power capacity of analysed wind farms 
varied in the range of 14–16 MW with a number 
of turbines (6–7). The installed power capacity of 
wind turbines was 2–2.75 MW and hub heights 
reached 78 and 100 m (Table 1).

In order to evaluate surface variations, 
the  Wind Atlas Analysis and Application Pro-
gramme (WAsP 9) was used with the resolution 
of 5*5 km squares and to describe surface rough-

ness length and relief variation in four squares. 
Roughness length was estimated by the  follow-
ing equation [8]:

, (1)

where h is the height of obstacle (m), S is the area 
of obstacle (m2), and Ah is the total area of the site 
under assessment (m2) [8].

Wind speed and direction data from 
the HIRLAM model was taken at 100 m height. 
Selected data and measurements are in 1-hour 
intervals and cover the  period of 01.09.2015–
31.12.2015 (4 months). For the evaluation of wind 
speed variation on different height, the following 
equation is used [9]:

, (2)

where uHIRLAM is the predicted wind speed (m/s), 
zVE is the hub height of wind turbine (m), zHIRLAM 
is the height where wind speed is predicted (m), 
z0 is roughness length.

Statistical method’s ARIMA function is pre-
sented as follows [10]:

yt = α + ϕ1  yt–1 + ... + ϕp  yt–p + … + θ1εt–1 + … + θqεt–q + εt,  (3)

where α is constant term, ϕi is i-th autoregres-
sive parameter, θj is j-th moving average pa-
rameter, εt is error term at the  time t, yt is hte 
value of wind power (m/s, kW) at time t(h). 
The  adoption period of ARIMA function was 
48 hours.

In order to minimize wind power prediction 
errors, including seasonality factor, an additio-
nal SARIMA equation was used [11]:

SARIMA = ARIMA (p, d, q) ∙ (P, D, Q) s,     (4)

Ta b l e  1 .  Parameters of the analysed wind farms

Title of wind farm
Installed 

power of wind 
farm (MW)

Number 
of wind 
turbines

Model of wind 
turbine

Installed 
power of wind 
turbine (MW)

Hub height of 
wind turbine (m) Wind farm location

Laukžemė WF 16 6 Vestas V100 2.75 100 Western Lithuania

Sūdėnai WF 14 7 Enercon E82 2 78 Western Lithuania
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where p,  d,  q are estimated autoregressive and 
moving average parameters (seasonality is not 
included), P,  D,  Q are estimated autoregressive 
and moving average parameters (seasonality is 
included), s is the number of time steps for a sin-
gle seasonal period.

The model output statistics (MOS) method for 
the correction of predicted power is described ac-
cording to the following equation [12]:

PMOS = aP + b, (5)

where P is predicted power (kW), a and b are sta-
tistical parameters. 

In order to evaluate wind power prediction 
error, the normalized mean absolute percentage 
error (nMAPE) by the  following formula was 
used [13]:

, (6)

where pi(P) is actual wind power (kW), p̂i(P) is 
predicted power (kW), pi(NP) is maximum actual 
wind turbine power (kW).

RESULTS

Assessment of topographical conditions
Investigation of roughness length coefficients 
acceptance in Sūdėnai and Laukžemė wind 

farms was made. A comparison of wind power 
prediction errors considering combined rough-
ness length (all wind directions) and roughness 
length estimated by different wind directions is 
presented in Fig.  1. It was noticed that in case 
of usage of different by wind directions rough-
ness length indicators, nMAPE was insignifi-
cantly lower. Only in North and West directions 
in the Laukžemė wind farm, power forecasting 
results were better when a  combined surface 
roughness indicator was used. However, aver-
age evaluation allowed us to identify that better 
power prediction results were achieved when 
a  different roughness length for each direction 
sector was chosen. Differences of power predic-
tion errors were just up to 0.1%.

In the  sites of the  investigated wind farms, 
poorer trees and forests were identified. Due 
to this reason, to evaluate the  impact of that 
on power prediction accuracy, different forests 
roughness length coefficients were chosen: typi-
cal – 0.4, lower than typical – 0.2, and higher than 
typical – 0.5. Analysis of power prediction, with 
different forest roughness length coefficients of 
the Sūdėnai wind farm is presented in Fig. 2.

The lowest power prediction errors were de-
termined in East and South directions, when 
0.2 coefficient was used. To compare, the  best 
results were in North direction with the surface 
roughness length coefficients 0.2 and 0.4. West 
direction results were significantly better with 

Fig. 1. Comparison of wind power prediction errors using combined and selected by direction roughness coefficients [6]
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coefficient 0.4. A comparison of the average wind 
power prediction errors presents that the  best 
suitable forest roughness coefficient is 0.4. How-
ever, differences are not significant. The  same 
investigation in the  Laukžemė wind farm was 
carried out and is presented in Fig. 3.

More accurate results were identified in 
North, East and South directions with coefficient 
0.2. Average power prediction errors (nMAPE) 

of all directions were 10.44% and 10.45% with 
roughness coefficients 0.2 and 0.4, respectively.

Investigation of the influence of terrain varia-
tions on wind changes and wind power prediction 
accuracy was made by WAsP  9 software, where 
wind speed changes due to relief variation (height 
lines) were estimated. The results of the influence 
of relief variations and summarised influence of 
topographical conditions are presented in Table 2.

Fig. 2. Comparison of wind power prediction errors modelling surface roughness based on different trees coefficients in Sūdėnai wind farm

Fig. 3. Comparison of wind power prediction errors modelling surface roughness based on different tree roughness coefficients in Laukžemė 
wind farm
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To conclude the  section, it is very impor-
tant to comment on the  table above. It can be 
seen that direct wind speed (numerical weather 
prediction data) conversion to power generated 
11.01–12.25% [3] prediction errors. To compare, 
estimation of surface roughness length decreased 
wind power prediction error by 1.7–1.8%, and 
evaluation of terrain variations and percentage 
of wind speed changes due to surface roughness 
length decreased wind power prediction errors 
by 0.06–0.12% and 0.03–0.19%, respectively. In 
total, a  detailed roughness and terrain model-
ling, decreased forecasting errors up to 2.05%.

Assessment of wind power prediction based on 
statistical methods
The wind power forecasting process based on 
statistical methods is very sensitive regarding 
wind power volatility and wind periods. Power 
prediction errors based on SARIMA method, 

considering estimated autoregressive and mo-
ving average parameters during different wind 
conditions are presented in Table 3.

It was noticed that during all kinds of wind 
periods, the increment of wind power prediction 
errors was directly related to time horizon, when 
during the period of 3–48 h ahead the nMAPE 
increased. The  evaluation of short-term time 
horizon (up to 6 hours ahead) showed that 
the lowest errors were recognised during the low 
wind speed period with 3.68%, and the  high-
est during the  high wind speed period with 
14.70% [6].

In order to improve power prediction accu-
racy, statistical coefficients were estimated and 
integrated for the  forecasting process. The  co-
efficients were chosen every 5% of predictable 
power increment and decrease during different 
periods. The most suitable calculated coefficients 
were estimated and are presented in Table 4.

Ta b l e  2 .  Wind power prediction errors including and not including the influence of topography

Title of wind farm

Wind power prediction error, %
Total error 
reduction, 

%
Direct wind speed 
conversion (wind 
speed from NWP)

Corrected wind 
speed by surface 

roughness length

Corrected wind speed by 
percentage wind speed changes 
due to surface roughness length

Corrected wind 
speed by ter-
rain changes

Laukžemė WF 12.25 10.45 10.26 10.2 2.05

Sūdėnai WF 11.01 9.31 9.28 9.16 1.85

Ta b l e  3 .  Wind power prediction error distribution during different wind conditions periods (L – low wind speed period, H – high wind 
speed period) [6]

Wind power prediction period, h
Wind speed period (Low – L, High – H)

L-L L-H H-L H-H

Average of nMAPE 4.53 20.12 14.95 22.75

Ta b l e  4 .  Wind power forecasting including and not including correction coefficients

Period 
(24 hours)

No power 
correction

Correction coef. when 
P < 10,000 kW – 0.85 
and when P > 10,000 

kW – 1.05

Correction coef. when 
P < 10,000 kW – 0.75 
and when P > 10,000 

kW – 1.15

Correction coef. when 
P < 10,000 kW – 0.65 
and when P > 10,000 

kW – 1.35

Total decreased 
prediction error

1 7.04 6.30 8.12 8.73 0.74

2 8.72 8.65 9.33 9.96 0.07

3 3.52 3.54 5.46 5.50 –0.01

4 2.26 2.33 4.42 4.71 –0.06

5 7.96 7.84 9.87 9.64 0.12

Average 5.90 5.73 7.44 7.71 0.17
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Investigation of acceptance of different coeffi-
cients indicates that upon inclusion of correction 
coefficients 0.75 when P < 10,000 kW and 1.15 
when P  >  10,000  kW, as well as 0.65 when 
P  <  10,000  kW and 1.35 when P  >  10,000  kW, 
power prediction errors were 7.44% and 7.71%, 
respectively. Meanwhile, the  prediction er-
ror without inclusion of coefficients was 5.9%, 
and it means that the  above-mentioned coef-
ficients did not improve accuracy. However, 
inclusion of correction coefficients 0.85 when 
P  <  10,000  kW and 1.05 when P  >  10,000  kW 
resulted in the  lowest prediction error (5.73%). 
According to these results it can be claimed 
that the  forecasting power could be corrected 
taking into consideration the correction coeffi-
cients 0.85 when P < 10,000 kW and 1.05 when 
P > 10,000 kW.

Another statistical method for power pre-
diction improvement is called the model output 
statistics. The method is based on linear relation 
between predicted and factual power during 
the  period. An example of a  36-day period to 
determine the relation is presented in Fig. 4.

However, in order to maximise the forecast-
ing accuracy, it is necessary to determine what 
is the best suitable duration for identification of 
statistical method parameters. The results of this 

investigation revealed that the best suitable du-
ration is 6–12 days, compared to 24–36 days. Be-
sides, method adoption time was estimated for 
periods of 1–3 days and more than 36 days, but 
the determination coefficient was less than 40%. 
It means that the relation between predicted and 
factual power was weak. To compare, in the pe-
riod of 6–36 days the determination coefficient 
was in the limits of 0.65–0.75.

As a result of inclusion and not inclusion of 
the  MOS method (6-day adoption period) in 
Laukžemė and Sūdėnai wind farms, power pre-
diction errors were, respectively, 10.15% and 
9.24% without inclusion of MOS and 9.30% and 
9.22% with MOS included.

Summary of factors determining wind power 
prediction accuracy
A detailed investigation of topographical con-
ditions (Table  2) and wind characteristics was 
made and statistical models for power curve 
approximation and wind power forecasting 
were identified in earlier works [6]. The results 
of power prediction accuracy improvements 
are presented in Table  5, which indicate up to 
3.45% reduction of wind power prediction er-
rors compared to direct wind speed conversion 
to power.

Fig. 4. Relation between predicted and factual power for 36-day period
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It was evaluated that the  main method 
for power prediction errors in Sūdėnai and 
Laukžemė wind farms was evaluation of topo-
graphical conditions, where power prediction er-
ror could be decreased by up to 1.95%. In terms 
of statistical methods, SARIMA method can im-
prove power prediction accuracy by up to 0.86%, 
and statistical predictable power correction me-
thods by up to 0.64%.

CONCLUSIONS

Analysis of the influence of topographic condi-
tions on wind power prediction process accura-
cy has revealed that the use of different by wind 
direction surface roughness length indicators, 
included to power prediction process leads to 
the decrease of power forecasting errors. More-
over, the  typical forests roughness length indi-
cator (0.4) is the most suitable for surface mod-
elling and determining the  best wind power 
prediction accuracy. Estimation of wind speed 
changes depending on terrain variations lead 
to power prediction accuracy increase by 0.06–
0.12%. A  detailed assessment of topographic 
conditions can increase wind power prediction 
accuracy up to 2%. The  investigation of time 
series models has revealed that the  best statis-
tical function for power prediction is SARIMA, 
which is acceptable for 3-hour forecasting with 
8.3% error. The model output statistics method 
increases power prediction accuracy by up to 
0.5%. The  developed hybrid method predicts 
wind turbine power more accurately (by up to 
3.5%) compared to direct wind speed conver-
sion to power from NWP data.
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VĖJO ELEKTRINIŲ GALIOS PROGNOZĖS 
TIKSLUMĄ LEMIANČIŲ VEIKSNIŲ TYRIMAS: 
VAKARŲ LIETUVOS ATVEJIS

Santrauka
Siekiant mažinti klimato kaitą pastaraisiais metais vis 
daugiau dėmesio skiriama atsinaujinančiai, ypač vėjo, 
energetikai. Nepaisant visų vėjo elektrinių privalu-

mų ir minimalios įtakos aplinkai, yra ir minusų. Vėjo 
greičio pokytis yra stochastinis procesas, todėl sudė-
tinga tiksliai prognozuoti vėjo elektrinių generuojamą 
galią. Netiksliai prognozuojama vėjo elektrinių galia 
gali sukeli elektros energetinės sistemos trikdžius, be 
to, reikalingi dideli ir ekonomiškai nenaudingi galios 
rezervai. Vėjo elektrinių generuojama galia gali būti 
prognozuojama statistiniu, fizikiniu ar hibridiniu meto-
dais ir modeliais. Vis dėlto prognozuojant galią skirtin-
gais metodais ir modeliais susidaro paklaidos įvairiais 
laiko periodais. Straipsnyje pateikiama vėjo elektrinių 
generuojamos galios paklaidų analizė, generuojamą 
galią prognozuojant statistiniais, fizikiniais ir hibridi-
niais metodais. Tyrimas atskleidė, kad skirtingų statis-
tinių metodų – netiesinės regresijos, MOS (angl. Model 
Output Statistics), tinkamiausios galios kreivės nustaty-
mo funkcijų ir vėjo greičio korekcijos – taikymas leidžia 
galios prognozavimo paklaidas sumažinti iki 1,5  %. 
Išsamus reljefo pokyčio ir paviršiaus šiurkštumo verti-
nimas vėjo elektrinių galios prognozės tikslumą leidžia 
padidinti iki 2 %. Atsižvelgiant į Vakarų Lietuvos sąlygas 
buvo nustatyta, kad trumpalaikei vėjo elektrinių galios 
prognozei tinkamiausias yra hibridinis modelis, kuriuo 
detaliai įvertinamos topografinės sąlygos, nes jame inte-
gruoti tiksliausi statistiniai metodai.

Raktažodžiai: vėjo elektrinių generuojamos ga-
lios prognozė, hibridinis modelis, fizikiniai metodai, 
statistiniai metodai


