ENERGETIKA. 2025
T.71. Nr. 1. P. 23-33

ISSN 0235-7208 eISSN 1822-8836
DOT: https://doi.org/10.6001/energetika.2025.71.1.2

Using asynchronous programming to improve
computer simulation performance in energy

systems

Oleg Zhulkovskyi',
Inna Zhulkovska?,
Petro Kurliak?,
Oleksandr Sadovoi®,

Yuliia Ulianovska3,

Hlib Vokhmianin®

! Department of Software Systems,
Dniprovsky State Technical University,
Kamianske, Ukraine

Email: olalzh@ukr.net

? Department of Cybersecurity

and Information Technologies,
University of Customs and Finance,
Dnipro, Ukraine

Email: inivzh@gmail.com

? Department of Electrical Power Engineering,
Ivano-Frankivsk National Technical University
of Oil and Gas,

Ivano-Frankivsk, Ukraine

Email: petro.kurliak@nung.edu.ua

* Department of Electrical Engineering
and Electromechanics,

Dniprovsky State Technical University,
Kamianske, Ukraine

Email: sadovoyav@ukr.net

> Department of Computer Science
and Software Engineering,
University of Customs and Finance,
Dnipro, Ukraine

Email: yuliyauyv@gmail.com

§ Department of Software Systems,
Dniprovsky State Technical University,
Kamianske, Ukraine

Email: vohmyanin.yleb@gmail.com

Due to the progressing complexity of modern energy sys-
tems, the need to forecast energy consumption and gener-
ation, optimise processes and develop new technologies in
the energy sector, analyse scenarios for the development of
energy systems and elaborate a strategy for their develop-
ment, modelling and simulation is of particular relevance
in this industry. The growing need to improve the produc-
tivity of computer simulation in the energy industry is ef-
fectively addressed by utilising modern computer architec-
tures and advanced software tools that provide acceleration
for computationally intensive tasks. Research presented
in this paper focuses on enhancing the performance of
computationally intensive algorithms using the Thomas
algorithm by employing modern asynchronous program-
ming techniques. The work implements classical and de-
velops and implements asynchronous computational algo-
rithms of the sweep method with subsequent assessment of
the time and efliciency of their execution for the order of
systems of linear equations (SLAEs) up to 5 x 10”. The pro-
gram code was developed using Microsoft Visual Studio
C++ and the standard template for asynchronous program-
ming. The numerical experiments showed the possibility of
increasing of the implementation speed of the asynchro-
nous algorithm by 1.87-2.91 times. Research results cor-
respond with the literature data and the results previously
obtained by the authors in similar studies using alternative
parallel programming software. In general, the results of
this study determine the potential for further improvement
and development of methods and technologies for parallel
implementation of computational tasks using the Tridiag-
onal Matrix Algorithm. These approaches can be extended
to developing various computer models of energy processes
and systems based on the solution of SLAEs with tridiag-
onal matrices on computers with multiprocessor or mul-
ti-core architectures.

Keywords: computer model, computational acceleration,
asynchronous programming, computational algorithm,
numerical solution of SLAE

https://doi.org/10.6001/energetika.2025.71.1.2
https://orcid.org/0000-0003-0910-1150
https://orcid.org/0000-0002-6462-4299
https://orcid.org/0000-0001-8113-5211
https://orcid.org/0000-0001-9739-3661
https://orcid.org/0000-0001-5945-5251
https://orcid.org/0000-0002-9582-5990
mailto:olalzh@ukr.net
mailto:inivzh@gmail.com
mailto:petro.kurliak@nung.edu.ua
mailto:sadovoyav@ukr.net
mailto:yuliyauyv@gmail.com
mailto:vohmyanin.yleb@gmail.com

24 ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

INTRODUCTION

Due to the progressive complexity of modern
energy systems, the need to forecast energy con-
sumption and generation, optimise processes and
develop new technologies in the energy sector,
analyse scenarios of energy systems development,
and elaborate a strategy for their development,
modelling and simulation are of particular rele-
vance in energy industry [EI,].

Computer modelling becomes especially rele-
vant given the rapid increase in computing pow-
er, which means storing and processing large
amounts of data in real time. Software is also be-
ing developed and improved to facilitate the ef-
fective use of the latest computer architectures
and the realisation of modern virtual models of
complex energy processes and systems.

The main approach to improving the effi-
ciency of computer modelling in the energy in-
dustry is improving the speed of calculations in
the software implementation of numerical me-
thods underlying the mathematical models of
the processes and phenomena under study. When
developing models related to actual problems of
power engineering, such as numerical modelling
of physical processes (heat transfer and defor-
mations in elements of power equipment, fluid
dynamics in turbines, compressors, pipelines,
electromagnetic fields in electric machines, trans-
formers, power lines), search for optimal modes
of operation of power plants, the modified Gauss
method (TDMA - Tridiagonal Matrix Algorithm)
or Thomas algorithm, also known as the sweep
method, is most frequently used. This method’s
computational complexity of solving systems of
linear equations (SLAEs) is linear concerning
the number of equations, making it more suitable
for large systems compared to general methods
for solving SLAEs [E, |. In addition, the wide-
spread use of unconditionally stable, more ac-
curate, reliable, and efficient implicit difference
schemes in the practice of computer modelling
instead of low-performance explicit schemes
makes this method preferable [E].

An important problem in the numerical solu-
tion of SLAEs is the performance of the TDMA,
which demands an increase in computational
resources as the system dimensionality grows.
Therefore, there is a need to optimise the algo-

rithm of this method and explore ways for a more
efficient use of modern hardware and software
computing resources.

One of the approaches to increasing the effi-
ciency of computational algorithms and improv-
ing the performance and scalability of model-
ling is asynchronous computing - a method of
parallel task execution in which operations can
start and run independently in different threads
without blocking one another. Moreover, mod-
ern multi-core computing architectures and pro-
gramming languages provide powerful tools for
implementing asynchronous programming.

The priority goal of this research is to use
modern asynchronous programming technol-
ogies for parallelising computations to improve
the efficiency of implementing computer simula-
tion tasks of energy processes and systems using
TDMA.

To achieve this goal, the following objectives
were set for this study:

o development and implementation of a pro-
gram of sequential and parallel algorithms for
the TDMA;

« comparative analysis of the performance of
serial and parallel algorithms for the TDMA using
asynchronous programming tools for large-order
SLAEs;

« elaboration of a strategy for developing ap-
proaches to enhance the performance of comput-
er modelling using parallel computing algorithms
of the sweep method, their scaling to the develop-
ment of computer models based on the solution
of SLAEs with tridiagonal matrix on computers
with multiprocessor architecture.

LITERATURE REVIEW

Modern computers with multiprocessor architec-
tures provide high performance through parallel
computing. However, the complexity of using
multiprocessor architectures, the necessity of
redesigning existing algorithms, and the insuf-
ficient study of appropriate software tools that
enable efficient parallel computations often lead
to the underutilisation of computing power in
computer modelling. In other words, numerical
methods and approaches to computer modelling
do not always keep pace with the new capabilities
of computing hardware and software [E].

25 ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

The practical application of parallel comput-
ing requires the use of specialised technologies
and tools, including the following key ones:

o parallelism at the level of instructions and
data [ﬁ, E]: SIMD (Single Instruction, Multiple
Data), MIMD (Multiple Instruction, Multiple
Data), ILP (Instruction-Level Parallelism), MLP
(Memory-Level Parallelism);

o platforms and libraries for parallel comput-
ing [E, @]: OpenMP (Open Multi-Processing),
MPI (Message Passing Interface), CUDA (Com-
pute Unified Device Architecture) and OpenCL
(Open Computing Language);

. arallehsm at the level of threads and tasks
[. |: asynchronous programming, the library
for parallel programming TBB (Intel Threading
Building Blocks), OpenMP.

Each of the aforementioned technologies and
tools used for parallel computing have advantages
and preferred practical application areas. To var-
ying degrees, all of them can effectively optimise
the computer modelling of complex processes
and systems, which is an area of scientific interest

i’@ for the authors of this paper.

Thus, [[15] optimised a background extrac-
tion method based on GMM (Gaussian Mixture
Model), which is widely used for detecting mov-
ing objects. Since GMM applies arithmetic oper-
ations to each image pixel, vectorisation and im-
plementation on modern SIMD architectures are
feasible. An eflicient vectorisation of GMM data
for two different Intel architectures using SSE2 in-
structions was proposed. Performance evaluation
showed that a speedup of 1.8 times was achieved
using even a single processor core.

In [], the use of multithreading and
SIMD-vectorisation techniques is discussed for
performing computationally intensive parallel
computations of power flows in power systems.
Two levels of parallelism are proposed: inter-mod-
el (parallel processing of different models) and
intra-model (parallel processing of computations
within a single model). The results of simulations
of a network with 70,000 nodes demonstrate
a tenfold acceleration of calculations.

Performance improvements of the Finite Dif-
ference Time Domain (FDTD) method using
OpenMP and MPI, as well as GPU and SIMD
vectorisation, are discussed in [@]. Here, FDTD
is applied to simulate computational electrody-

namics on a fine computational grid, which often
leads to significant computational slowdowns.
The approach considered allows for the accurate
computation of both the shortest electromagnetic
waves and the fine geometric details of the model.

The application of OpenMP for parallel
modelling of geoengineering tasks using the Fi-
nite-Discrete Element Method (FDEM) is con-
sidered in [@]. The research investigates compu-
tational performance on multi-core processors,
specifically the AMD Ryzen Threadripper PRO
5995WX (64/128 cores/threads) and AMD EPYC
7T83 (128/256 cores/threads). The computational
domain was divided into 33-3304 k elements. An
increase in computational performance of up to
43 times is demonstrated depending on the num-
ber of elements in the model due to modern mul-
ti-core architectures and advanced parallel pro-
gramming technologies.

The study [@] presents parallel implementa-
tions of a dynamic explicit CDM (Central Dif-
ference Method) algorithm for efficient model-
ling of the coin minting process with complex
relief patterns using three approaches: OpenMP,
MPI and hybrid MPI/OpenMP. The challenge
of accurately capturing small relief patterns ap-
proximately 50 microns in size is addressed by
partitioning the computational domain into
at least seven million tetrahedral elements.
Such computational volumes make the use of
traditional sequential programs impractical.
The model implementation using MPI showed
a maximum speedup of 9.5 on a single compute
node (12 cores), while the hybrid MPI/OpenMP
implementation showed a speedup factor of 136
in a cluster (6 compute nodes and 12 cores per
compute node).

Of particular interest to the authors is [@],
which considers the application of parallel com-
putational algorithms based on the Finite Differ-
ence Method (FDM) to solve steady-state heat
conduction equations in a three-dimensional set-
ting. The advantages of the developed approach
are demonstrated in comparison with traditional
tools for sequential computing and the results of
CFD modelling (Computational Fluid Dynam-
ics). The paper describes program code develop-
ment for parallel calculating three-dimension-
al temperature fields using MPI, OpenMP and
CUDA technologies.

26 ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

In [@], TBB is described for parallel process-
ing of video streams in the TIS (Tactical Integra-
tion System) for maritime patrol aircraft. C++
software using TBB for multicore computers was
developed, which allowed for a speedup of video
stream processing by more than 1.3 times in par-
allel mode compared to serial mode at different
quality factors. This enhancement enables the TIS
system to operate more efficiently under real con-
ditions.

A new approach to the parallel implementa-
tion of the Doolittle Algorithm using TBB, in-
creasing the efficiency of multiprocessor systems
is presented in [@]. The C++ implementation
of the Parallel Doolittle Algorithm (PDA) using
TBB showed a significant speedup compared to
the sequential version for matrices of different
orders. The results indicated that PDA utilises all
processor cores and provides faster processing of
systems of linear equations.

The trend of increasing computational per-
formance by utilising modern computer archi-
tectures and improving parallel computing algo-
rithms is discussed in [@E]). It considers the parallel
improvement of the Mean Shift algorithm using
TBB on multiprocessor systems and proposes
parallel improvement based on TBB clustering of
Mean Shift, the main image segmentation stage,
enabling significant acceleration of the process.

The literature analysis shows that asynchro-
nous programming and the study of parallelism
at the level of threads and tasks are insufficiently
used to optimise computer modelling of com-
plex processes and systems. This observation was
the impetus for the present research, the results of
which are described below.

RESEARCH METHODOLOGY

As stated earlier, when developing simulations of
many physical processes, the TDMA is most of-
ten used as the most optimal method for solving
SLAEs with a tridiagonal matrix [E]

To solve SLAEs with a tridiagonal matrix by
the TDMA, a system of n equations is written in
the following canonical form

ax,, cx,+bx, +f=0,

a,b#0,a =0,b=0,i=1n (1)

The tridiagonal form of the matrix allows or-
ganising the computations by the Gauss method
to avoid operations with zero elements, thus sig-
nificantly reducing the volume of computations.

The algorithm for the numerical implemen-
tation of the above method in the case of a right
sweep includes the following steps:

forward pass of the sweep method:

b b, .
o, =—",0,, =—"—i=2,n-1,
(& ¢, —aq, (2)
A aP,+f .
Bzzi’Ble — l>l=2’n_1;
C ¢ —a,;

backward pass of the sweep method:

_aB.t /.

x 2
()

X = ai+1xi+l + ﬁi+]’ I=n _191

i

For computational stability of the TDMA, it is
necessary to fulfil the condition of diagonal dom-
inance

‘cl‘z‘bl ,i=2,n-1

c,.‘>‘ai‘+‘bi

> Cn‘ Z‘GH >

The formulas for the left sweep are written out
in the same way:
forward pass of the sweep method:

én :ﬂaéi :Lni:n_laza
¢, ¢=b&,, (4)
bn. + f.
nn_ieni: Inl—‘rf; 7i:n_152;
Sy ci_bi§i+1

backward pass of the sweep method:

Y = b, + /i
1 cl_bléz, (5)

X

i1 = G X My 1= lsn—_l

By combining left and right sweeps, we obtain
a counter-sweep method that allows parallel im-
plementation in two different threads, including
the use of asynchronous programming tools.

To do this, we divide the system between two
threads, each of which will operate on only its half
of the system equations numbered i = 1,p and
i = p,n, respectively, where p = n/2.

The parallel execution involves:

27 ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

finding the TDMA coefficients by (2) for
i= ﬁin the main thread;

finding the TDMA coefficients by (4) for
i= ﬁ in the parallel thread, which, for example,
is involved in an asynchronous call;

conjugation of solutions in the form (3) and
(5) for i = p with finding x, from the system

‘xp = U’p+1xp+1 + Bp+l

xp+1 = §p+1xp +r|p+1

finding all x, for i =m by (8) and all x, for
i=p+1,n by (5).

The program code developed for numerical
experiments implements asynchronous pro-
gramming using the std:async template and
std::launch::async function from the standard
<future> library in Microsoft Visual Studio C++
IDE. Thanks to the launch policy, two asynchro-
nous tasks are explicitly created for parallel ex-
ecution of calculations, allowing the work to be
divided between the main thread and two addi-
tional threads. Thus, running in a separate thread,
the first asynchronous task performed the right
sweep, calculating the TDMA coefficients accord-
ing to (2). In parallel with the first asynchronous
task, the main thread executed the left sweep,
calculating the TDMA coefficients according to
(4). After the completion of both passes, the main
thread, which is blocked, waited for the first
asynchronous task to finish. Asynchronously,
in the new thread, the second task was started,
which performed the reverse right sweep, calcu-
lating the roots of the equation according to (3).
In parallel with the second asynchronous task,
the main thread performed the reverse left sweep,
also calculating the roots of the equation accord-
ing to ().

Timing of the computational experiment was
performed using the steady_clock class from
the special standard library <chrono>, which pro-
vides access to a stable clock and is optimised for
measuring time intervals.

The size of the SLAE was varied in the range
of 1 x 10°-5 x 107, and the values of the equation
coefficients were generated randomly (subject to
the diagonal dominance condition of the matrix)
into variables of the standard hardware-support-
ed double type.

The developed code effectively used parallel-
ism to speed up computations related to solving
SLAEs. In a multithreaded environment, espe-
cially on multicore processors, asynchronous ex-
ecution reduced the total execution time due to
the simultaneous processing of different parts of
the task, according to Amdahl’s law.

RESULTS AND DISCUSSION

A laptop with the following characteristics was
used for the research (Table 1).

Table 1.Test environment

CPU Intel Core i5-8400
(6 cores, 2.8 GHz), cache 9 MB
RAM Goodram DDR4
(4 GB, 2666 MHz, 21300 MB/s) x 4
(O Microsoft Windows 10
IDE Microsoft Visual Studio C++
Programming . .
technology std::async template, <future> library

Tables 2 and 3 present the results of compu-
tational experiments showing the comparative
temporal characteristics of the computational
efficiency of classical algorithms and the parallel
variant of the counter sweep.

Figures , @, and H present the most significant
results, emphasising the practical significance of
the research.

The experimental data obtained show (Figs E],
) that the use of the counter sweep method
without asynchronous programming increases
the performance of the computational algorithm
compared to the traditional right sweep by 1.47-
1.84 times in the considered range of SLAE or-
der variation. Compared to the traditional right
sweep, the increase in computation speed due to
asynchronous calculation for the counter sweep
method was 1.03-2.91 times.

The regression equations describing the linear
approximation of the numerical results obtained
(Tables 11, 2; Figs. E], @) are presented next:

t1=0.125x 107+ 1.88 x 10® n;
£2=0.102 x 107 + 1.22 x 10® n;

t3=0.445x 10" +6.97 x 107° n

28 ISSN 0235-7208 eISSN 1822-8836 O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

Table 2. Results of the computational experiment for sequential algorithms

Sequential algorithms

SLAE order -
right sweep (t1, s) counter sweep (2, 5) s1=t1/t2
1x10° 0.001969 0.001070 1.84019
2x10° 0.003778 0.002325 1.62495
3x10° 0.005328 0.003411 1.56201
4x10° 0.007292 0.004712 1.54754
5x10° 0.009424 0.005836 1.61480
6x10° 0.010809 0.007042 1.53493
7x10° 0.012564 0.008276 1.51812
8x10° 0.014579 0.009442 1.54406
9% 10° 0.016272 0.011038 147418
1x10° 0.018275 0.011839 1.54363
2.5x%10° 0.047037 0.030118 1.56176
5x10° 0.092932 0.058827 1.57975
1x 10’ 0.184777 0.119720 1.54341
1.5%x 107 0.301776 0.198740 1.51845
2% 10 0.370866 0.238921 1.55225
3.5x%x 107 0.654413 0.418034 1.56545
5% 10’ 0.942063 0.610584 1.54289

Table 3. Results of the computational experiment for the parallel algorithm

S Sequential algorithms
order
counter sweep (13, s) s2=t1/t3 s3=1t2/t3
1x10° 0.001911 1.030351 0.559916
2x10° 0.002502 1.509992 0.929257
3%x10° 0.003361 1.585242 1.014877
4x10° 0.003660 1.992350 1.287432
5%x10° 0.004265 2.209613 1.368347
6x10° 0.005109 2.115678 1.378352
7%x10° 0.005508 2.281046 1.502542
8x10° 0.006095 2.391961 1.549139
9x10° 0.007178 2.266927 1.537754
1x 108 0.007337 2.490800 1.613602
2.5x 106 0.016169 2.909085 1.862700
5x 108 0.032315 2.875816 1.820424
1x107 0.064159 2.879986 1.865989
1.5%x 107 0.115512 2.612508 1.720514
2x107 0.130305 2.846138 1.833552
3.5x 107 0.236075 2.772055 1.770768

5x 107 0.355541 2.649661 1.717338

29 ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

t1
12

0.8 3

0.6

0.4

Computation time (s)

0.2

0

0.0E+00 1.0E+07

2.0E+07
SLAE order

3.0E+07 4.0E+07 5.0E+07

Fig. 1. Time of realisation of the sweep method: 1 — right, t2 — counter (sequential calculation);
t3 — counter (parallel calculation) for SLAE order 1 x 10°-5 x 107

t1
12

£0.009 3

1ime

0.007

nt

0.005

Computatio

0.003

0.001

1.0E+05 2.0E+05

3.0E+05
SLAE order

4.0E+05 5.0E+05

Fig. 2. Time of realisation of the sweep method: 1 — right, t2 — counter (sequential calculation);
t3 — counter (parallel calculation) for the SLAE order 1 x 10°-5 x 10°

None of the considered TDMA implemen-
tations under the conditions of the used infra-
structure of computational experiments and
the investigated range of SLAE order showed
a computation time of more than 1 s (Fig.).

As expected and also confirmed by similar
experiments of the authors using alternative
software tools for parallel implementation of
TDMA, the time of asynchronous implemen-
tation of the algorithm for relatively small (up
to 3 x 10°) order of SLAE was less than for its
synchronous implementations. Under such ex-

perimental conditions, £3 > 2 (Fig.) ands3 <1
(Fig. H). For higher SLAE order, the computa-
tional process started to accelerate (s3 > 1), and
in the range of SLAE order 2.5 x 10°-1.0 x 107,
the acceleration reached its maximum value at
~1.9.

The slowdown of computations for SLAEs of
order less than 3 x 10° was caused by the irra-
tional use of machine time for creating compu-
tational threads and subsequent synchronisation
of computations, i.e., the resulting time costs ex-
ceeded the time of direct computations. Thus,

30 ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

4.0
s2
s3

3.0

2.0

Acceleration

1.0

0.0
0.0E+00

1.0E+07 2.0E+07 3.0E+07 4.0E+07 5.0E+07
SLAE order

Fig. 3. Acceleration of the parallel implementation of the sweep method with respect
to the sequential implementation of the right (s2) and counter (s3) sweep methods

observing the inexpediency of using asynchro-
nous computing techniques up to a certain order
of SLAE becomes relevant. In this case, the im-
practical order of SLAE for using asynchronous
programming tools was less than 3 x 10°.

Asynchronous computing for parallel imple-
mentation of TDMA increased the algorithm per-
formance by 1.3-1.9 times in the range of SLAE
order of 4 x 10°-5 x 10". In the range of SLAE or-
der 2.5 x 10°-1.0 x 107, the increase in the speed
of asynchronous calculations compared to the im-
plementation of the classical right sweep method
amounted to 291%.

Thus, the effectiveness of using asynchronous
programming tools to improve the performance
of the TDMA computational algorithms across
a wide range of SLAE orders was demonstrated.
The results align with the data from available
sources of information and with results previous-
ly obtained by the authors in similar studies using
alternative software tools.

CONCLUSIONS

As a result, computational algorithms of sequen-
tial and parallel (using asynchronous program-
ming tools) sweep methods were developed
and implemented, followed by the evaluation
and comparative performance characterisation
of their implementation for significant (up to

5 x 107) SLAE orders. In this case, the threshold
of the SLAE order at which the use of asynchro-
nous programming tools seems to be an effective
solution for modelling energy processes and sys-
tems is 3 x 10°. Approximations of the calculated
data with their linear approximations and corre-
sponding regression functions are obtained.

The conducted research proved the feasibil-
ity of using progressive multiprocessor archi-
tectures and specialised software to improve
the efficiency of computer modelling in general.
The use of asynchronous programming technol-
ogies for implementing popular SLAE solution
methods resulted in an increase in calculation
speed by 1.87-2.91 times in the range of SLAE
orders 2.5 x 10°-1.0 x 107 due to the creation of
asynchronous tasks for parallel execution of cal-
culations.

The results of calculations correspond with
similar data from available literature sources and
with data previously obtained by the authors in
similar studies using alternative software tools.

The research results, in general, demonstrate
the potential for further improvement and de-
velopment of methods and technologies for par-
allel realisation of computational tasks based on
TDMA. These approaches can be extended to
developing various computer models of energy
processes and systems based on the solution of
SLAEs with tridiagonal matrices on computers

31

ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

with multiprocessor or multi-core architectures.
When implementing the developed simulations
on multiprocessor computers, parallel com-
puting allows for dividing the computational
load among several processors or cores, lead-
ing to faster execution of considered modelling
tasks [@].

Received 28 December 2024
Accepted 30 December 2024

References

1.

Subramanian A. S. R., Gundersen T., Adams T. A.
II. Modeling and simulation of energy systems:
a review. Processes. 2018. Vol. 6(12). P. 238.
foi.org/10.3390/pr6120234

Bendigiri P,, Rao P. Energy system models: a re-
view of concepts and recent advances using bib-
liometrics. International Journal of Sustainable
Energy. 2023. Vol. 42(1). P. 975-1007. Fttps://doi]
brg/10.1080/14786451.2023.2246082

Ford W. Algorithms. In: Nuwmerical Linear Algebra
with Applications. Amsterdam. 2015. P. 163-179.
https://doi.org/10.1016/B978-0-12-394435]

1.00009—{]

Rapp B. E. Numerical methods for linear sys-
tems of equations. In: Microfluidics: Modelling,
Mechanics and Mathematics. Amsterdam. 2017.
P. 497-535. https://doi.org/10.1016/b978-1-45574

E141-1.50025-j

Zhulkovskyi O., Savchenko I., Zhulkovska I.,
Petrenko 1., Davitaia O., Titiov A. Features of
mathematical simulation of the processes of
combined heat transfer in waveguides. Proceed-
ings 2022 IEEE 4th International Conference on
Modern Electrical and Energy System (MEES
2022). 2022. P. 452-456. https://doi.org/10.1109/
IMEES58014.2022.10005676

Bouras M., Idrissi A. A survey of parallel com-
puting: challenges, methods and directions. In:
Modern Artificial Intelligence and Data Science.
Cham. 2023. Vol. 1102. P. 67-81. Ettps://doil
brg/10.1007/978-3-031-33309-5_§

Mustafa D., Alkhasawneh R., Obeidat E, Shat-
nawi A. S. MIMD programs execution support
on SIMD machines: a holistic survey. IEEE Ac-
cess. 2024. Vol. 12. P. 34354-34377. Ettps://doil
prg/10.1109/ACCESS.2024.337299()

8.

10.

11.

12.

13.

14.

15.

16.

Kiriansky V., Xu H., Rinard M., Amarasinghe S.
Cimple: instruction and memory level parallelism.
Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques
(PACT ‘18), November 1-4, 2018, New York, USA.
P. 1-16. https://doi.org/10.1145/3243176.3243184

Mohamed K. S. Parallel computing: OpenMP,
MPI, and CUDA. In: Neuromorphic Comput-
ing and Beyond. Cham: Springer, 2020. P. 63-93.
https://doi.org/10.1007/978-3-030-37224-8_3

Khairy M., Wassal A. G., Zahran M. A survey of
architectural approaches for improving GPGPU
performance, programmability and heterogenei-
ty. Journal of Parallel and Distributed Computing.
2019. Vol. 127. P. 65-88. https://doi.org/10.1016/j]

iEdc.2018. 1 1.013

Belson B., Holdsworth J., Xiang W., Philippa B.
A survey of asynchronous programming using
coroutines in the Internet of Things and embed-
ded systems. ACM Transactions on Embedded
Computing Systems (TECS). 2019. Vol. 18. No. 3.
P. 1-21. https://doi.org/10.1145/331961§

Balaji P. Intel Threading Building Blocks. In: Pro-
gramming models for parallel computing. Cam-
bridge: MIT Press, 2015. P. 353-372. https://iee
explore.ieee.org/document/7352784

Zhulkovskii O. A., Panteikov S. P, Zhulk-
ovskaya L. I. Information-modeling forecasting
system for thermal mode of top converter lance.
Steel Translation. 2022. Vol. 52. No. 5. P. 495-502.
https://doi.org/10.3103/S0967091222050134

Zhulkovskyi O., Panteikov S., Zhulkovska I,
Kashcheev M., Leshchenko E. Heat Transfer Cal-
culation for Numerical Simulation of Thermal
Mode of Slag-Splashing Lance in the Forecasting
System. In: Mathematical Modeling and Simula-
tion of Systems. Lecture Notes in Networks and Sys-
tems Vol. 1091. Cham: Springer, 2024. P. 70-81.
https://doi.org/10.1007/978-3-031-67348-1_§

Mabrouk L., Houzet D., Huet S., Belkouch S,
Hamzaoui A., Zennayi Y. Single core SIMD par-
allelization of GMM background subtraction
algorithm for vehicles detection. 2018 IEEE 5th
International Congress on Information Science
and Technology (CiSt), October 21-27, 2018,

Marrakech, Morocco. P. 308-312. https://doi

brg/10.1109/CIST.2018.8596385

Cui H, Li E, Fang X. Effective parallelism for
equation and Jacobian evaluation in large-scale

https://doi.org/10.3390/pr6120238
https://doi.org/10.3390/pr6120238
https://doi.org/10.1080/14786451.2023.2246082
https://doi.org/10.1080/14786451.2023.2246082
https://doi.org/10.1016/B978-0-12-394435-1.00009-0
https://doi.org/10.1016/B978-0-12-394435-1.00009-0
https://doi.org/10.1016/b978-1-4557-3141-1.50025-3
https://doi.org/10.1016/b978-1-4557-3141-1.50025-3
https://doi.org/10.1109/MEES58014.2022.10005676
https://doi.org/10.1109/MEES58014.2022.10005676
https://doi.org/10.1007/978-3-031-33309-5_6
https://doi.org/10.1007/978-3-031-33309-5_6
https://doi.org/10.1109/ACCESS.2024.3372990
https://doi.org/10.1109/ACCESS.2024.3372990
https://doi.org/10.1145/3243176.3243185
https://doi.org/10.1007/978-3-030-37224-8_3
https://doi.org/10.1016/j.jpdc.2018.11.012
https://doi.org/10.1016/j.jpdc.2018.11.012
https://doi.org/10.1145/3319618
https://ieeexplore.ieee.org/document/7352784
https://ieeexplore.ieee.org/document/7352784
https://doi.org/10.3103/S0967091222050138
https://doi.org/10.1007/978-3-031-67348-1_6
https://doi.org/10.1109/CIST.2018.8596385
https://doi.org/10.1109/CIST.2018.8596385

32

ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

17.

18.

19.

20.

power flow calculation. IEEE Transactions on
Power Systems. 2021. Vol. 36. No. 5. P. 4872-4875.
https://doi.org/10.1109/TPWRS.2021.3073591|

Liu Y., Wang J. Simulation of finite difference time
domain (FDTD) with GPU and SIMD. 2023 In-
ternational Applied Computational Electromag-
netics Society Symposium (ACES), March 26-30,
2023, Monterey/Seaside, CA, USA. P. 1-2. Ettos:/;l
hoi.org/10.23919/ACESS7841.2023.101 1477

Wang Z., Li E, Mei G. OpenMP parallel finite-dis-
crete element method for modeling excavation
support with rockbolt and grouting. Rock Me-
chanics and Rock Engineering. 2024. Vol. 57.
P. 3635-3657. https://doi.org/10.1007/s00603

p23-03746-w

LiY, Xu]J, Liu Y.,, Zhong W., Wang E. MPI/Open-
MP-based parallel solver for imprint forming
simulation. Computer Modeling in Engineering &
Sciences. 2024. Vol. 140. No. 1. P. 461-483 Ettps:/;l
{oi.org/10.32604/cmes.2024.046467

Sivanandan V., Kumar V., Meher S. Designing
a parallel algorithm for heat conduction using
MPI, OpenMP and CUDA. 2015 National Con-
ference on Parallel Computing Technologies (PAR-

21.

22.

23.

24.

COMPTECH), February 19-20, 2015, Bengaluru,
India. P. 1-7. https://doi.org/10.1109/PARCO|
IMPTECH.2015.7084514

Fathoni M. E, Sridadi B. Multicore computation
of tactical integration system in the Maritime Pa-
trol Aircraft using Intel Threading Building Block.
2014 International Conference on Advanced Com-
puter Science and Information System (ICACSIS),
October 18-19, 2014, Jakarta, Indonesia. P. 1-6.
https://doi.org/10.1109/ICACSIS.2014.7065821]

Sah S. K., Naik D. Parallelizing doolittle algorithm
using TBB. 2014 International Conference on Par-
allel, Distributed and Grid Computing (PDGC),
December 11-13, 2014, Solan, India. P. 13-15.
https://doi.org/10.1109/PDGC.2014.7030707

Ding L., Li H. Parallel processing for accelerated
Mean Shift algorithm based on TBB. 2016 IEEE
International Geoscience and Remote Sensing
Symposium (IGARSS), July 10-15, 2016, Beijing,
China. P. 6348-6351. https://doi.org/10.1109/1G{
IARSS.2016.7730659

Alsuwaiyel M. H. Parallel algorithms. New Jer-

sey: World Scientific, 2022. 400 p. https://doi

prg/10.1142/12744

https://doi.org/10.1109/TPWRS.2021.3073591
https://doi.org/10.23919/ACES57841.2023.10114776
https://doi.org/10.23919/ACES57841.2023.10114776
https://doi.org/10.1007/s00603-023-03746-w
https://doi.org/10.1007/s00603-023-03746-w
https://doi.org/10.32604/cmes.2024.046467
https://doi.org/10.32604/cmes.2024.046467
https://doi.org/10.1109/PARCOMPTECH.2015.7084516
https://doi.org/10.1109/PARCOMPTECH.2015.7084516
https://doi.org/10.1109/ICACSIS.2014.7065821
https://doi.org/10.1109/PDGC.2014.7030707
https://doi.org/10.1109/IGARSS.2016.7730659
https://doi.org/10.1109/IGARSS.2016.7730659
https://doi.org/10.1142/12744
https://doi.org/10.1142/12744

33 ISSN 0235-7208 eISSN 1822-8836

O. Zhulkovskyi, I. Zhulkovska, P. Kurliak, and et al.

Oleg Zhulkovskyi, Inna Zhulkovska, Petro Kurliak,
Oleksandr Sadovoi, Yuliia Ulianovska, Hlib

Vokhmianin

ASINCHRONINIO PROGRAMAVIMO
NAUDOJIMAS SIEKIANT PAGERINTI
ENERGETIKOS SISTEMOSE NAUDOJAMO
KOMPIUTERINIO MODELIAVIMO
EFEKTYVUMA

Santrauka

Dél vis sudétingéjanciy $iuolaikiniy energetikos sis-
temy, auga poreikis prognozuoti energijos suvartoji-
ma ir gamyba, optimizuoti procesus ir kurti naujas
technologijas energetikos sektoriuje, analizuoti ener-
getikos sistemy plétros scenarijus ir kurti jy plétros
strategija. Poreikis didinti kompiuterinio modelia-
vimo efektyvumg energetikos sektoriuje veiksmin-
gai sprendziamas naudojant $juolaikines kompiute-
riy architektaras ir pazangias programinés jrangos
priemones, kurios pagreitina skai¢iavimams imliy
uzduociy vykdymg. Siame straipsnyje daugiausia
démesio skiriama skai¢iavimams imliy algoritmy na-
$umui didinti naudojant Thomaso algoritmga, taikant

$iuolaikinius asinchroninio programavimo metodus.

Straipsnyje pateikiami klasikiniai ir vystomi asin-
chroniniai i$§slavimo metodo algoritmai, jvertinant
tiesiniy lygciy sistemy sprendimo laika ir i§lavimo
metodo iki 5 x 107 eilés efektyvumg. Programos ko-
das sukurtas naudojant Microsoft Visual Studio C++
ir standartinj asinchroninio programavimo $ablong.
Skaitiniai eksperimentai parodé, kad asinchroni-
nio algoritmo jgyvendinimo greitj galima padidinti
1,87-2,91 karto. Darbo rezultatai atitinka mokslinés
literatiiros duomenis ir autoriy anksciau gautus re-
zultatus pana$iuose tyrimuose naudojant alternaty-
vig lygiagreciojo programavimo programine jranga.
Apibendrinant galima teigti, kad darbo rezultatai
lemia tolesnio skai¢iavimo uzdaviniy lygiagretaus
realizavimo metody ir technologijy vystymo galimy-
bes naudojant trijstrizainés matricos algoritma. Sie
metodai gali bati taikomi kuriant jvairius energetiniy
procesy ir sistemy kompiuterinius modelius, pagris-
tus tiesiniy lygciy sistemy su trijstrizainémis matri-
comis sprendimu kompiuteriuose, kuriy architektara
yra daugiaprocesoriné arba daugiabranduoliné.

Raktazodziai: kompiuterinis modelis, skai¢iavimo
pagreitis, asinchroninis programavimas, skai¢iavimo

algoritmas, tiesiniy lyg¢iy sistemy sprendimas

	_Hlk185876664
	_Hlk185876702
	_Ref467511674

