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Modelling heat and mass transfer processes is essential in design-
ing and optimising technological processes in power engineering,
mechanical engineering, metallurgy, chemical industry, and other
engineering fields. For the mathematical description of such pro-
cesses, differential equations of heat conduction and diffusion are
used, the solution of which requires the application of efficient nu-
merical methods, especially in the case of complex geometries and
diverse boundary conditions. This study presents a unified meth-
odology for the numerical solution of boundary value problems
of heat conduction with internal heat sources, based on locally
one-dimensional implicit finite difference schemes derived using
the integral-interpolation method (balance method) in Cartesian
and cylindrical coordinate systems. Special attention is given to dis-
cretising boundary conditions of the first, second, and third kinds,
focusing on Robin conditions, the most commonly encountered
in engineering practice. A quasi-linear approximation scheme and
spatial splitting schemes are recommended to increase the efficien-
cy of numerical solutions. This approach enables the application of
the unconditionally stable Tridiagonal Matrix Algorithm (TDMA).
The introduction of indicator coeflicients provides flexibility in im-
plementation, allowing the balance equation to be used variably by
manipulating the terms responsible for heat fluxes and the location
of computational nodes. This ensures ease of implementation and
improves code readability, facilitating software development for
computational modelling. The results of the numerical simulation
obtained using the proposed method are compared with known
analytical and numerical solutions and demonstrate high accuracy.
The proposed methodology opens broader opportunities for mod-
elling thermal regimes in complex engineering systems.

Keywords: heat transfer, balance method, locally one-dimensional
scheme, numerical solution, computational modelling, engineering
applications

INTRODUCTION

heat and mass transfer processes, which underlie
a wide range of modern engineering technolo-

Differential equations of heat conduction [Iﬂ] and  gies. These equations describe the distribution
diffusion (] play a fundamental role in modelling  of temperature and substance concentration over
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time and space, considering the physical proper-
ties of the medium under study.

The application of these equations covers
a broad spectrum of tasks - from designing heat
exchangers and thermal protection coatings to
optimising processes such as mixing, drying, cat-
alytic treatment, and purification of gases and liq-
uids. In power engineering, mechanical engineer-
ing, metallurgy, chemical and food industries, as
well as in construction and bioengineering, they
serve as the theoretical basis for improving tech-
nological efficiency, optimisation, and ensuring
environmental safety.

Like many other differential equations, these
equations can be solved either analytically or
numerically, depending on the complexity of
the problem and the properties of the medium.

Although analytical methods provide exact
solutions, their applicability is limited to simple
problems with regular geometries. These me-
thods become impractical or altogether inappli-
cable for cases involving complex geometries and
boundary conditions | ,H].

In real-world engineering applications, nu-
merical methods such as the Finite Difference
Method (FDM), Finite Element Method (FEM),
and the Finite Volume Method (also known as
the balance or integral-interpolation method)
become more favourable. These methods offer
flexibility and scalability when solving many
practical problems [E]. Despite the inherent
approximation errors and high computational
costs of numerical methods, these limitations
are mitigated mainly by modern hardware and
advanced software implementations for compu-
tationally intensive tasks.

The first step in the discretisation process is to
select an appropriate numerical method for solv-
ing a differential equation describing the mod-
elled system. This method ultimately transforms
the original differential equations into a system
of algebraic equations using finite difference ap-
proximations.

These approximations are generally classi-
fied into explicit and implicit schemes. Explic-
it schemes are conditionally unstable, and thus
suitable for short-duration processes with small
time steps. Conversely, unconditionally stable
implicit schemes are more optimal for simulating
complex and long-term heat conduction and dif-

fusion processes involving larger time steps, due
to their lower numerical error [E, ﬁ].

Notwithstanding the selected discretisation
method - the determining factor in the accuracy
and stability of the solution - the ultimate stage
involves obtaining the numerical values of the tar-
get quantities (e.g., temperature or concentration
fields) employing direct or iterative linear algebra
methods. These methods ultimately determine
the efficiency of implementing the computational
model. At the same time, modern computational
optimisations, including the development of par-
allel algorithms, can significantly reduce computa-
tional costs [E].

LITERATURE REVIEW

In physics and mathematics, the heat conduc-
tion equation is considered a particular case of
the diffusion equation and represents a partial
differential equation [ﬂ]. The choice of a numeri-
cal method for implementing the heat conduction
equation is fundamentally essential in modelling
heat and mass transfer processes, which accom-
pany most technological operations. The optimal
method selection determines the accuracy, stabil-
ity, and computational efficiency of the solution,
especially in the case of complex geometries and
boundary conditions.

Selecting a numerical method and a discretisa-
tion approach for the original differential equation,
it is typically necessary to choose between explicit
and implicit finite difference schemes [E, ﬁ]. Re-
searchers often perform comparative analyses of
solutions obtained by different methods to make
informed recommendations for numerical mod-
elling. For example, [E, ] present comparative
results for solving the heat conduction problem in
a rod using explicit, implicit, and Crank-Nicolson
methods (CNM). The results were compared, and
the error between exact and approximate solutions
was evaluated for a specific computational prob-
lem. A similar study was presented in [EI], where
the heat conduction equation with Neumann
boundary conditions included a heat generation
term. The problem was solved using the FDM in
cylindrical coordinates to simulate the temperature
field of a battery with time-varying heat generation.
The results were compared with computations per-
formed using built-in MATLAB functions.
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Classical explicit schemes - such as the For-
ward Time and Centred Space and the Du-
fort-Frankel methods - are simple to implement
and require less computational effort per time
step. Nevertheless, their use is constrained by in-
stability at larger time and spatial steps, which is
governed by the Courant-Friedrichs-Lewy (CFL)
condition. For instance, in the case of parabolic
diffusion equations, the use of explicit schemes is
generally impractical [@, B].

Nevertheless, recent research has focused on
strategies to relax — or even eliminate — these
limitations, to preserve the simplicity of explicit
schemes while expanding their CFL stability re-
gion [[13]. Furthermore, several recent publica-
tions [P, —] are devoted to developing nov-
el unconditionally stable explicit algorithms for
solving diffusion and heat conduction equations.
These approaches use approximations involving
constant or linearly interpolated neighbouring
values instead of standard finite difference ap-
proximations. As a result of this transformation
and subsequent analytical treatment of the re-
sulting ordinary differential equations, the time
step enters the formulation in exponential rather
than polynomial form (with negative exponents),
which fundamentally ensures the absolute stabili-
ty of the algorithm.

As noted in [E, @], achieving ideal parallelism
with implicit schemes is challenging, although
some progress has been made in this area, as
shown in [@] for solving parabolic equations.
This has renewed interest in parallelisable explicit
algorithms with improved stability limits [@f)@],
especially in light of the growing use of distrib-
uted and parallel computing architectures in nu-
merical modelling [@l])

Alongside the growing interest in new stable
explicit schemes and the advancement of parallel
algorithms for their implementation, significant
attention has also been given to mathematical
models involving fractional derivatives, which
have gained considerable popularity in recent
years [@—@]. These derivatives are increasingly
applied in modelling heat transfer processes in
composite and nanoscale materials and in sim-
ulating the diffusion of contaminants and mois-
ture transport in soil or other porous media. They
have proven to be an effective tool in mathemati-
cal modelling based on FDM, Laplace transform

techniques, spectral decompositions, or the FEM.
Particularly relevant to the current work are nu-
merical methods for solving the fractional-order
heat conduction equation [@, @].

Compared to other numerical methods such
as FDM, the FEM is used less frequently in solv-
ing heat conduction and diffusion problems. This
is due to its higher mathematical complexity, im-
plementation difficulties, and significant com-
putational demands, especially for multidimen-
sional problems requiring many elements. While
FEM is a powerful tool for problems involving
complex geometries and heterogeneous materi-
als [é, @g], it is generally less suitable for simpler
or homogeneous heat conduction and diffusion
problems [pg].

The Laasonen, CNM, and Alternating-Direc-
tion Implicit (ADI) methods are notable examples
of implicit difference schemes. Due to their inher-
ent stability and accuracy, these are extensively
utilised for efficiently solving practical problems,
including multidimensional heat conduction and
diffusion [ﬁ, @, @]. Although all implicit me-
thods are unconditionally stable, they may differ
in the accuracy of the obtained results. The CNM,
combining explicit and implicit approaches, pro-
vides second-order accuracy in time and is there-
fore more precise than the first-order Laasonen
method. The ADI method, a locally one-dimen-
sional scheme, is employed for two- and three-di-
mensional problems by decomposing the prob-
lem into a series of independent one-dimensional
subproblems, significantly reducing computa-
tional complexity and enhancing understanding
of multidimensional heat transfer processes [@].

Of particular note are [@, éj] that address
the solution of multidimensional unsteady heat
conduction equations in cylindrical and spherical
coordinate systems. The five-point central differ-
ence method for solving the three-dimensional heat
equation in cylindrical coordinates [@] demon-
strates improved accuracy. It can be extended to
develop higher-order finite difference schemes or
more accurate and stable implicit schemes in cy-
lindrical coordinates. In [@], original explicit dif-
ference schemes for heat transfer modelling in cy-
lindrical and spherical coordinates are considered
under complex boundary conditions (including
convection and thermal radiation). These formula-
tions enable heat transfer simulation in real physical
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systems, whose geometries approximate those of
cylinders or spheres. Understanding the character-
istics of temperature distribution in different coor-
dinate systems enables more accurate modelling of
heat exchange in complex geometries and optimi-
sation of engineering system designs concerning
their operational features.

As the analytical review of the current state of
the problem demonstrates, various approaches to
solving heat conduction and diffusion equations
have been developed over the years to account for
the diversity of conditions and features inherent
in specific systems. These studies span various
methods and dimensionalities - from one- and
two-dimensional problems to more complex
multidimensional scenarios in different spatial
configurations and scales [@].

Since modern modelling tasks involving heat
and mass transfer processes in power engineering,
mechanical engineering, metallurgy, and other sec-
tors of the economy require the use of comprehen-
sive approaches, where physical correctness and
numerical stability are of paramount importance,
implicit schemes are the most suitable to meet these
requirements [@]. For the problems under consid-
eration, implicit schemes often lead to systems of
linear equations with tridiagonal matrices. In such
cases, the application of the TDMA [E, @] becomes
particularly effective, offering high computational
performance and efficient memory usage.

The present study aims to unify the algo-
rithm of a locally one-dimensional TDMA-based
scheme for efficiently solving boundary value
problems in heat conduction (or diffusion) with
variable boundary conditions, in the most com-
monly used coordinate systems.

RESEARCH METHODOLOGY

The nonlinear heat conduction equation of this
study is the fundamental model for describing
typical heat transfer processes in various media.
However, it is essential to note that the methods
and solutions developed for the heat conduction
equation can be readily adapted to the diffusion
equation, since both equations share a similar
mathematical form and describe the propa-
gation of a physical quantity within a medium
(temperature and concentration of a substance,
respectively) [ﬁ].

The generalised unsteady-state heat con-
duction differential equation, which describes
the spatiotemporal propagation of heat in an iso-
tropic and homogeneous material, can be written
as follows [@]:

p(T)c(T)aa—: =V-(MT)VT)+gq,, ()

where T - temperature, K; VT - temperature gra-
dient; T - time, s; p — density, kg/m’; ¢ - specific
heat capacity, J/(kg-K); A — thermal conductivity,
W/(m-K); q,, - volumetric heat generation rate,
W/m? V- - divergence operator.

The expanded form of this unsteady three-di-
mensional heat conduction equation (1) in
the most commonly used coordinate systems is
as follows:

in Cartesian coordinates

p(1)e(T) 5= 2 n(r) oL | .
0

in cylindrical coordinates

p(1)e(r) =22 ()2 |+

1 0 oT
FaG) .

0 oT
—| MT)— .
+6Z( ( )dszqu

To solve applied problems of unsteady heat
conduction, (2) or (3) (depending on the chosen
coordinate system) must be supplemented with
an initial condition, which defines the tempera-
ture distribution at the initial time in the compu-
tational domain, and with boundary conditions
that describe the behaviour of temperature or
heat flux at the domain boundaries. The bound-
ary conditions are defined as follows:

First kind (Dirichlet conditions)

T=T.
g

Second kind (Neumann conditions)
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oT
-A—=q.
on 1

Third kind (Robin conditions)

oT
A—=0a(T-T
on a( w)’

where T, - prescribed temperature on the bound-
ary, K; T_ - ambient temperature at the boundary,
K; g - heat flux density on the boundary, W/m?
(with g = 0 corresponding to an adiabatic surface);
a — heat transfer coefficient, W/(m?-K) (which is
defined as the sum of several component coeffi-
cients that depend on the type of heat transfer in-
volved - for example, combined convection and ra-
diation [@] ); n — outward normal to the boundary.

In addressing issues concerning multidi-
mensional heat conduction, employing a locally
one-dimensional scheme (i.e., a splitting scheme
along spatial variables) is recommended, which
combines the advantages of both explicit and
implicit approaches [ﬁ' In this case, a multidi-
mensional heat transfer process is explicitly split
into two (for planar problems) or three (for spa-
tial problems) one-dimensional processes, which
are solved sequentially using an unconditionally
stable implicit scheme.

When constructing the implicit finite differ-
ence scheme for each spatial direction of the split
problem, it is written in the canonical form:

AT -CT+BT, =-F,i=1..N, (4)

which yields a system of N linear algebraic equa-
tions with a tridiagonal matrix, where the coeffi-
cients satisfy the conditions: A, = 0; B, = 0; A, # 0;
B.#0.

Such boundary value problems are optimally
solved numerically using the TDMA [@], for ex-
ample, via the proper sweep method, which in-
cludes:

* Forward sweep (—):

(=) B.
o =———o)
C —-Aaq,
=) AB. + F,
CoABE Ly Ny,
C —4o

» Backward substitution («):

TN — FN + ANBN ,
CN - AN(X’N
(«)
I =a,T,+B,,i=N-L.1
where a and B - the sweep coefficients.

Of course, the researcher is not limited to
using only the right sweep; left or counter-spread
methods may also be employed [E, @]. Moreover,
counter-spread algorithms can benefit from par-
allel computing techniques [@].

In nonlinear heat conduction problems,
the coefficients (p, ¢, \) of (1) are temperature-de-
pendent. Similarly, the heat generation terms (in-
ternal or surface) and the heat transfer coefficients
in boundary conditions can also be functions of
temperature. Nonlinear formulations most fre-
quently arise in simulations of processes in pow-
er engineering, metallurgy, and coke-chemical
industries, where temperature variations can be
significant.

The author of this work advocates for the use
of a quasi-linear discretisation scheme, in which
temperature-dependent coeflicients are evaluated
based on the temperature values from the previ-
ous time layer [@‘]7

RESULTS AND DISCUSSION

Let us consider a locally one-dimensional implic-
it finite difference splitting scheme for the spatial
problem (2), constructed using the heat balance
method on a uniform coordinate grid (Fig. ):

T‘E+A‘L’ _ Tr
piciAn—————=
T
A
i-1/2 T+AT T+AT
= ZE2 (e ) _
AI’Z ( i-1 i )

A

i+1/2 T+AT T+AT .

D (s e\ f Apg =20 N,
f}’l ( i i+l ) qV

where At - time discretization step, s; An - grid
step in the respective spatial direction x, J, 0r z, m.
At the boundaries of the computational do-
main, the following conditions may be applied:
Dirichlet conditions (temperature values pre-
scribed T, on the left and T, right boundaries):
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Fig. 1. Computational grid in Cartesian coordinates

T"lﬁ—A‘r — TL.
T =T,

Neumann conditions (heat flux prescribed g,
on the left and g, the right boundaries):

T‘E+A‘E _T'c
p,c,An— 2 At —=q, -
_ >\‘1+1/2 (T‘HAI _ TT+A‘E ) +£q
An V! ? 2
T‘HA‘E _Tr
T
A

N-1/2 T+AT T+AT An
= T, " —T, —q,+—q,.
An ( N-1 N ) qr ) qy

Robin conditions (heat exchange with the en-
vironment a, on the left and a, right boundaries):

T’[+AT _T‘[
pc,An— AT —=a, (TooL _TIHAT)_
7‘1 12 An
_; TT+A1:_Tt+At + = ,
An ( 1 2 ) 5 qy
T‘t+Ar _TT
Py AT
)\l - T+AT T+AT
b e)-
T+AT An
—0, (TN A —TOOR)‘F?QV.

When splitting the unsteady heat conduction
problem with respect to spatial variables, analo-
gous finite difference equations can be written for
any direction (x, y, or z).

Let us examine the most practically relevant
case with third-kind boundary conditions (Rob-
in conditions) imposed on all computational do-

main boundaries (in Cartesian coordinates, di-
mensionality is not essential).

Expressions for the locally one-dimensional
scheme are formulated for calculating the coef-
ficients required for solving the heat conduction
boundary value problem (4) using TDMA:

At the nominal left boundary (i = 1):

_ﬁx

4,=0, B, _An2 141/22

2
C=1+B+-2q,,
An

F =T +20, (%TOOL +q—Vj.
n

2
At internal grid nodes (i=2...N - 1):
Gi Gi
4, = AR }‘H/zaBi = AR’ }”m/z >

C=1+A+B,F=T +o0gq,
At the nominal right boundary (i = N):

20
Ay = A_n];}\’N—I/Z’ B\ =0,

2
C,=1+4, +—GN Oy,
An

. o q
F, =T +20, [A—;TM +7V)

where G, zﬁ,i =1...N.
P.C;

By introducing indicator coefficients, a and b,
which take values 0 or 1 depending on the posi-
tion of the node on the computational grid, we
can write a generalised heat balance equation for
an arbitrary grid node, independent of the split-
ting direction and under third-kind boundary
conditions on both sides:
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T+AT _ T‘r

b A
(a+ )pc n ZAT

=(1—a)-0LL(TOOL —T;*AT)+

o .M(T:m e

An
A (5)
—b . l+l/2 T1;+A'[ _T‘|:+A‘|:
A}’l ( i+1 )
(1) (17T, )+
A
+(a+b)-7nq,,,i:1...N,
where the indicator coefficients are defined as:
i=1: a=0,b=1,
i=2.N-l:a=1b=1, (6)
i=N: a=1,b=0.

To solve (5) using TDMA, the general formu-
las are written for any node on the computational

grid i = 1...N for computing the coefficients of
(4):
A =a-c\_ 1/Z/Anz, (7.1)
B,=b '0,->‘i+1/2/A”2s (7.2)
C =1+4+B+
o, (7.3)
+A—n|:(1—a)~0tL +(1—b)'(XR:|,
F =T:+c{(l a) LT,
An "
(7.4)
o (a—i—b)
+(1-b)-—L2T + ,
-t L0y |
2At
where 0, =———.
(a+b)-p;

As previously noted, equations (7.1)-(7.4) for
Cartesian coordinates are applicable for any di-
rection in the spatial splitting of the problem. It is
sufficient to replace the grid step with Ax, Ay, or
Az respectively instead of An.

It should be noted that the internal heat
source term (if present) can be allocated to any
of the spatial directions during splitting or dis-

tributed among them using specific weighting
coefficients. For example, for a spatial problem,
the one-dimensional equation can include a term
of the form ¢, /3.

Now, let us construct a locally one-dimension-
al implicit finite difference splitting scheme for
the spatial problem (3), based on the heat balance
method in cylindrical coordinates (r, ¢, z) on a uni-
form grid. As before, we consider the practically
relevant case with third-kind boundary conditions
on all boundaries of the computational domain.

For the radial (Or) direction of heat transfer,
the implicit finite difference scheme with third-
kind boundary conditions on the inner and out-
er surfaces of a hollow cylinder (Fig. I) takes
the form:

TT+A‘E_T‘E
TN e A
p,C;lAr AT
_ 11/2 T+AT THAT )
~(=2)g T ®)

A,
i) )
+iArg,,i=K+1..N -1,

T+AT T
T -1 _

K+1/4)A
pKCK( +/)r Az

= Ka, (Twl‘ — T ) -

7"1+1/2 AT T+AT (9)
(K +1/2)= (17 =T +
+(K+1/4)%qV
TT+A1: Tr
pycy (N —1/4)Ar TTNZ
_1/2) 2N T1—+A-c AT _
=(N-y ) Ar ( N ) (10)

~Nao, (Ty™ =T, )+

A
+(N_1/4)7r%/'

For K = 0, i.e., when the computational node
lies on the cylinder axis (r = 0), symmetry con-
ditions are imposed in symmetric problems
(Neumann conditions) - the radial temperature
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Fig. 2. Computational grid in cylindrical coordinates (radial direction)
gradient equals zero. Accordingly, in the finite B,=b-(i-1/2) o A, /AP,

difference approximation of the boundary condi-
tion, the first term on the right-hand side of (9)
vanishes.

Introducing the indicator coefficients (6), we
reduce (8)-(10) analogously to (5), yielding a fi-
nal heat balance equation for an arbitrary node on
the computational grid i = K...N:

[a-(i-1/4)+b-(i+1/4)]x
T e

cAr—t——1 =
*Pi 2AT

=(1-a)-io, (T, —T7*)+

(1_1/2) ZAZZ (TT+AT 7;1+AI)_ (11)
~b-(i+1/2) ’A”r/z (77 15 )+
—(1=b)-iay (7> -1, )+

+[a-(i—l/4)+b~(i+l/4)}%q,,.

To solve (11) using TDMA, we again write gener-
al equations for calculating the coeflicients of (4)
for any node of the computational grid i = K...N:

A=a-(i-1/2)o )\ /AP,

i- 1/2

i+1/2

C=1+4+B +

it (1-a)-a, +(1—b)-aR],

Ar

Ez]}’+i0{(l—a)-a—LTm
Ar "
+(1-0)-—£T

K-8ty

(1—1/4) (i+1/4) qy}

2At
[a-(i=1/4)+b-(+1/4) Jpe,

where 6, =

For the azimuthal (¢) direction of heat trans-
fer, the implicit finite difference scheme with
third-kind boundary conditions on both surfaces
of a ring sector (Fig. H) has the form:

TT+AI T'c
C.RAQp——— =
P RAG=—
A,
= ’_1/2( 1+Ar_];r+Ar)_ (12)

RAG
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Fig. 3. Computational grid in cylindrical coordinates (azimuthal direction)

}"H THAT THAT
“ng LT+

+RAYq, ,i=2...N -1, (12 continued)

T‘E+A‘c _ T‘r

T
=a, (T, -T7)- (13)

I8 1+1/2 T+AT T+AT R Ad)
g R ) ey

TT+AT _ T‘E

pycyRAD NZAT =

}\'N,] 2 Tt+AT T+AT
Loy

THAT RAd)

—a, (73 —TwR)+TqV.

In the case of a computational domain with
a ring cross-section, i.e., closed in angle (peri-
odic in the azimuthal direction ¢), the coordi-
nates of the nodes with indicesi=1andi=N
coincide. Hence, periodic boundary conditions
apply, where the temperatures at the first and

last azimuthal points are equal. In the previ-
ously discussed finite difference approximation
of boundary conditions, it is more convenient
to apply no-flux boundary conditions, where
the boundary terms in (13), (14) vanish. This
can be achieved by setting the corresponding
coefficient values o, and (or) a,, to zero.

Again, introducing the indicator coefficients
(6), we reduce (12)-(14) analogously to (5),
yielding a final heat balance equation for an arbi-
trary node on the computational gridi = 1...N:

-HAT—TT
b)-p.c.RAp———=
(a+b)-pc,RAG=———

=(1-a)-0, (T, -1 )+

b (e )

RAG
7\'l'-*-1/2 T+AT T+AT ( 15)
_b'R—A(b(Ti ~T5) -
~(1=b)- oy (7™ -1, )+
RA
+(a+b)-7¢qy.
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To solve (15) using TDMA, we write universal
equations for computing the coefficients of (4) for
any node on the gridi =1...N:

A=a-o, )\i-l/z/(RA(P)z’
Bi =b- 0; )‘i+1/2/(RA(P)2’
C,=1+4+B+

+R“_Af¢ (1-a)-o, +(1-b)-a, ],

w T
RAG

G, +(a+b)
RAG ¢ 2

F =7;’+6{(1—a)- %ot

+(1-b)

4y |5

2AT

where6. =——«—.
" (a+b)-pg

As seen, for the azimuthal direction of heat
transfer, the implicit finite difference scheme
takes the same form as (5), where An = RA¢.

For the axial (Oz) direction, the implicit
scheme also has the form of (5), where An = Az.

In the problems considered above, the effec-
tive thermal conductivities of segments are com-
puted using one of the following formulas:

T

HOATE) T )

RIAEY:S)
TZ.T+TfH

Ay =2 Tl_

Thus, when modelling a heat transfer problem
for a real physical system using the methodology
presented here, the heat conduction equation (1)
must be supplemented with boundary conditions
(uniqueness conditions).

These conditions primarily include geometric
specifications that define the shape and dimen-
sions of the object under study. That is, to compute

temperature fields, one must determine the di-
mensionality of the heat conduction equation and
the coordinate system to be used. The solution is
considered in Cartesian (2) and cylindrical (3)
coordinate systems in the present work.

Next, physical conditions must be defined:
that is, one must describe the physical properties
of the material, including their temperature de-
pendence (this information can be found in ded-
icated reference sources on materials and their
properties) and the spatial and temporal distribu-
tion of internal heat generation, if present.

As previously noted, the quasi-linear discre-
tisation scheme employed in this study, wherein
temperature-dependent coefficients are comput-
ed using the temperature values from the previ-
ous time layer, prevents nonlinearities in the dif-
ference equations. This simplifies the numerical
implementation of the algorithm for solving
the resulting linear systems, enabling the effi-
cient use of the TDMA, which overall reduces
both computational complexity and runtime.
Although the quasi-linear scheme does not ac-
count for instantaneous changes in the coeffi-
cients at every time step, the errors introduced
due to this delayed updating are small if a suf-
ficiently small-time step is used. Thus, the pro-
posed scheme represents a compromise between
accuracy and computational efficiency, making
it particularly attractive for simulating unsteady
thermal processes.

Initial conditions are also required to define
the temperature distribution within the body
at the initial time T = 0. In most cases, a uni-
form initial temperature is specified through-
out all nodes of the computational domain. In
the simplest case, this temperature corresponds
to the ambient temperature before the onset of
heat exchange.

Ultimately, it is imperative to acknowl-
edge that the boundary conditions constitute
the most critical factors in determining the ad-
equacy of the resulting heat transfer solution,
which describe the heat exchange behaviour be-
tween the surface of the body and the surround-
ing environment. This study focuses primarily
on solving the boundary value problem for heat
conduction with the most common - and at
the same time most computationally demand-
ing - third-kind (Robin) boundary conditions.
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The work derives heat balance equations and
expressions for calculating the coefficients in
the boundary value problem of heat conduction.
These formulations allow the temperature field
to be calculated in bodies of arbitrary shape,
approximated by surfaces of classical geome-
try using Cartesian and cylindrical coordinate
systems.

To solve the problem numerically, a split-
ting method with respect to spatial variables
is applied. This method enables the simultane-
ous solution of a multidimensional problem to
be reduced to the sequential solution of sever-
al one-dimensional subproblems. At each step,
the resulting one-dimensional temperature field
computed using TDMA is used as the input for
calculating the next subproblem.

Any such subproblem, depending on the co-
ordinate system used, can be selected from
the methodology presented. The researcher needs
only to implement an iterative procedure for cal-
culating the coefficients A,B,C,F and pass these
arrays as arguments to a dedicated function for
the numerical implementation of TDMA, which
returns the desired temperature T, field. The num-
ber of consecutive calls to this function equals
the dimensionality of the problem.

The indicator coeflicients a and b, introduced
into the computational algorithm, allow for
flexible use of the balance equation, selectively
including or excluding specific terms related to
heat flows and the position of the control node
in the computational mesh. This enables the cal-
culation of coefficients A, B, C. and F, within
a single loop, without separating the process-
ing of boundary node coefficients into separate
blocks. As a result, the implementation becomes
simpler, and the code becomes more readable,
facilitating easier development, ongoing main-
tenance, and long-term success of the software

product [Bg].

Figure { shows the results of implementing
the proposed IDE Visual Studio C++ 2022 algo-
rithm. The following input data were used to im-
plement the heat conduction problem [@]:

One-dimensional rod of length I = 0.05 m;

Physical properties: p = 7200 kg/m’, c = 544 ]/
(kg-K), A = 54.42 W/(m-K);

Initial temperature: T (1, 0) = 0 K;

Dirichlet condition at the right boundary
T, = 300 K, the left boundary is thermally insulated.

A comparison of the results obtained with
analytical and numerical solutions from [@]
demonstrates their high accuracy (Fig. H).

Fig. 4. Temperature profile of the rod
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t=240s

t=120s

T=60s

T=30s

t=10s

Fig. 5. Simulation data (solid lines) and data from [Rd] (dashed lines)

CONCLUSIONS

A numerical methodology has been proposed to
solve the boundary value problem of heat conduc-
tion with an internal heat source. This approach
enables the simulation of temperature fields in
real physical systems, including multidimension-
al ones, in Cartesian and cylindrical coordinate
systems. The locally one-dimensional implicit
finite difference splitting schemes for the spatial
problems under consideration were derived using
the integral-interpolation (balance) method on
a uniform coordinate grid.

Discretisation techniques for first-, second-,
and third-kind boundary conditions were con-
sidered. Special attention was given to the prac-
tically important case where Robin boundary
conditions are applied on all sides of the compu-
tational domain.

A quasi-linear discretisation scheme was em-
ployed, allowing for a significant simplification
of the numerical implementation of the algo-
rithm by avoiding nonlinear dependencies of
material properties. This reduces computational
complexity and runtime. The use of implicit ap-
proximation, together with a locally one-dimen-

sional splitting scheme for the heat conduction
equation in space, provided a foundation for
employing the unconditionally stable and effi-
cient TDMA.

The incorporation of indicator coefficients
into the computational algorithm introduced
additional flexibility in the selective use of
the balance equations. This enables the inclusion
or exclusion of specific terms affecting heat flows
and, consequently, the resulting temperature dis-
tribution. Furthermore, the developed approach
to software implementation of heat conduction
problems unified the solution procedure based
on the locally one-dimensional scheme in Car-
tesian and cylindrical coordinates.

The numerical simulation results obtained
using the proposed methodology were com-
pared with known analytical and numerical
solutions, demonstrating high accuracy.

This study developed a unified approach
to the numerical solution of boundary value
problems for heat conduction (diffusion) using
the TDMA. The proposed methodology opens
up new possibilities for modelling thermal re-
gimes in complex geometrical systems [@—@],
commonly encountered in power engineering,
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mechanical engineering, metallurgy, and other
industrial sectors.
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Oleg Zhulkovskyi

SILUMOS LAIDUMO RIBINIO UZDAVINIO
SKAITINIO SPRENDIMO METODU
SUVIENODINIMAS NAUDOJANT
TRIJSTRIZAINES MATRICOS ALGORITMA

Santrauka
Silumos ir masés perdavimo procesy modeliavimas
yra svarbus projektuojant ir optimizuojant technologi-
nius procesus energetikos, mechanikos, metalurgijos,
chemijos ir kitose inZinerijos srityse. Siems procesams
matematiskai apra$yti naudojamos Silumos laidu-
mo ir difuzijos diferencialinés lygtys, kurioms spresti
reikia taikyti veiksmingus skaitinius metodus, ypac
esant sudétingai geometrijai ir jvairioms ribinéms sa-
lygoms. Siame tyrime pateikiama vieninga metodika,
skirta $ilumos laidumo su vidiniais $ilumos $altiniais
krastiniy uzdaviniy skaitiniam sprendimui. Ji pagrijsta
vietinémis vienmatémis netiesioginémis ribiniy skir-
tumy schemomis, sudaromomis taikant integralinés
interpoliacijos (balanso) metoda Dekarto ir cilindri-
néje koordinaciy sistemose. Ypatingas démesys skiria-
mas pirmosios, antrosios ir trec¢iosios rasies krastiniy
salygy diskretizavimui, daugiausia démesio skiriant
dazniausiai inZinerinéje praktikoje pasitaikan¢ioms
Robino salygoms. Siekiant padidinti skaitiniy sprendi-
my efektyvuma, rekomenduojama taikyti kvazitiesinés
aproksimacijos ir erdvinio skaidymo schemas. Sis me-
todas leidzia naudoti besalygiskai stabily trijstrizainés
matricos algoritmg. [vedus indikatorinius koeficientus,
igyvendinimas tampa lankstesnis, todél balanso lygti
galima jvairiai pritaikyti, kei¢iant terminus, atsakingus
uz $ilumos srautus, ir skai¢iavimo mazgy vieta. Tai uz-
tikrina paprasta jgyvendinimg ir padidina kodo skai-
tomumg, o tai palengvina skai¢iavimo modeliavimo
programinés jrangos karimg. Skaitinio modeliavimo
rezultatai, gauti taikant pasialyta metoda, lyginami su
Zinomais analitiniais ir skaitiniais sprendimais ir rodo
didelj tikslumg. Sialoma metodika atveria platesnes
galimybes modeliuoti sudétingy inZineriniy sistemy
$iluminius rezimus.

Raktazodziai: $ilumos perdavimas, balanso me-
todas, vietiné vienmaté schema, skaitinis sprendimas,

kompiuterinis modeliavimas, inZineriniai taikymai


https://doi.org/10.1109/MEES58014.2022.10005676
https://doi.org/10.1109/MEES58014.2022.10005676
https://doi.org/10.1007/978-3-031-33309-5_6
https://doi.org/10.1007/978-3-031-33309-5_6
https://doi.org/10.1109/ICSME46990.2020.00041
https://doi.org/10.1109/ICSME46990.2020.00041
https://doi.org/10.3103/S0967091222050138
https://doi.org/10.1109/TCSET49122.2020.235544
https://doi.org/10.1109/TCSET49122.2020.235544
https://doi.org/10.1007/978-3-031-67348-1_6

	_GoBack
	_Hlk185876664
	_Hlk185876702
	_Ref467511674

