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One of the most essential characteristics of a complex
technical system is that it performs ‘an important useful
function only with the assistance of a human operator and
standard infrastructures..’ [1]. At the earliest stages of
the development of a system, deciding whether the human
operator should be regarded as part of the complex system
or an external entity is necessary. In most cases, the human
operator should be treated as an external entity.

Most complex technical systems cannot function
without the active involvement of a human operator, who
retains responsibility for decision-making, control, and
management functions. From a functional standpoint,
operators can be considered an integral part of the sys-
tem. However, the system designer rarely possesses suf-
ficient authority over the operator to incorporate them
fully into the system’s design. From the perspective of
the systems engineer, the human operator instead repre-
sents an element of the system’s environment.

Under this paradigm, the systems engineer must de-
vote particular attention to the design and development
of the operator interface, which is a critically important
aspect of any complex technical system [2]. According-
ly, the development of universal technical solutions that
enhance the quality of the human-machine interface in
complex technical systems represents both a significant
and timely challenge, the resolution of which can be ap-
plied across a wide range of practical applications.

The primary objective of the present work is to im-
prove the performance of the human-machine interface
by compensating for the inertial and nonlinear charac-
teristics of the human operator as a control element with-
in a complex technical system.

Keywords: inertial and nonlinear characteristics of
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INTRODUCTION

According to [m], one of the most essential char-
acteristics of a complex technical system is that it
performs ‘an important useful function only with
the assistance of a human operator and standard
infrastructures...’

Choosing whether the human operator should
be regarded as part of the complex system or an
external entity is necessary at the earliest stages
of the development of a system. In most cases,
the human operator should be treated as an ex-
ternal entity.

The majority of complex technical systems
cannot function without the active involvement
of a human operator, who remains responsible for
decision-making, supervisory, and control func-
tions. From a functional perspective, the operator
may be reasonably regarded as an integral part of
the system.

However, the system designer rarely has suf-
ficient authority over the operator to incorporate
them fully into the system architecture. From
the systems engineer’s standpoint, the human op-
erator should therefore be considered an element
of the system’s external environment.

Under this approach, the systems engineer
must devote particular attention to the design
and development of the operator interface, which
is an essential component of any complex techni-
cal system [E].

Accordingly, developing universal technical
solutions to improve the quality of the human-
machine interface in complex technical systems
constitutes a highly relevant and essential engi-
neering challenge. Solving this problem can lead
to applicable improvements across various prac-
tical domains.

The primary objective of the present study is
to enhance the performance of the human-ma-
chine interface by compensating for the inertial
and nonlinear characteristics of the human oper-
ator as a control element within a complex tech-
nical system.

LITERATURE REVIEW

The focus in [E] is on the human operator as
a source of error, intending to reduce or eliminate
those errors and thereby increase the reliability

of human-machine systems. The study employs
both qualitative and quantitative methods to
identify operator errors and the task contexts in
which they occur. Quantitative estimates of hu-
man error probability are grounded in a qualita-
tive assessment of human factors and task context
to ensure that human reliability analysis objec-
tively appraises operator behaviour. They are then
refined using the relevant performance-shaping
factors.

According to [H], within the Industry 4.0 par-
adigm, investigating human-machine interaction
dynamics and their impact on production per-
formance is a key research issue. The Operator
4.0 concept — an operator integrated into a cy-
ber-physical system - calls for an in-depth human
reliability analysis, specifically assessing human
error probability (HEP) that takes complete ac-
count of the workplace environment. It is noted
that HEP is influenced by several psychomotor
attributes of operator behaviour, including reac-
tion latency, goal-dependent performance char-
acteristics, the non-stationarity of those char-
acteristics, their pronounced non-linearity, and
stochastic nature.

According to [E], employees can damage
a company through human error, and such errors
are closely correlated with the operator’s reliabil-
ity level: low reliability leads directly to defects in
finished products. The study is a descriptive, qual-
itative investigation that applies the Human Error
Assessment and Reduction Technique (HEART)
to determine operator reliability.

Reference [E] provides a systematic review of
gesture-recognition and motion-capture technol-
ogies. It explores how gesture data can be used
for ergonomic assessment and control strategies
in complex equipment based on operator gesture
and motion identification. An optimisation algo-
rithm is developed to obtain the best solution by
minimising an objective function that combines
the RULA ergonomic score with the cycle time of
each assembly workstation, while accounting for
individual worker capabilities.

Reference [ﬁ] examines the simple psycho-
physiological visual-motor response (SPPR) la-
tency as a function of waiting time, the interval
between the preceding response, and the subse-
quent stimulus. The resulting monotonic rela-
tionship is fitted with an ordinal approximation,
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and the latency was shown to comprise at least
two distinct components.

Operator control actions have a complex psy-
chophysiological nature. Two principal compo-
nents can be distinguished in the operator’s re-
sponse [E, E]:

o deterministic component - the response

produced by a dynamic element that is equiv-

alent to the human operator when the input
signal drives it;

« remnant component (‘residual’) - the differ-

ence between the operator’s actual input signal

and the response predicted by the correspond-
ing linear model.

The statistical properties of this component
are strongly influenced by the nature of the input
signal, task complexity, and the ergonomic con-
ditions of a workstation (including operator fa-
tigue), and they can vary substantially over time.
However, the referenced studies do not provide
any numerical characterisation of the operator’s
dynamic model.

The mathematical model of an operator in
an erratic (human-machine) system must in-
corporate the full spectrum of human-specific
biochemical, physical, and psychophysiological
factors. Data obtained from experimental stud-
ies can be used to identify this model structurally
and parametrically.

Numerous empirical coefficients that can vary
across a wide range are present in such models,
and the need to identify them from psychophys-
iological measurements constitutes a demanding
scientific and engineering problem.

The contemporary scientific literature de-
scribes a variety of approaches to the problem of
identifying a mathematical model of the human
operator.

One of the most widely used - though by no
means the only - approaches to dynamic identifi-
cation problems in control systems is application
of the proven algorithms available in MathWorks
System Identification Toolbox® [].

The distinctive features of operator modelling
based on C*-algebras are examined in [@].

The parameter-identification problem for Vol-
terra nonlinear dynamic systems affected by mov-
ing-average noise are tackled in []. To acceler-
ate convergence, the authors propose a gradient
iterative algorithm that replaces unmeasurable

variables with their current iterative estimates
and refines the parallel noise estimates based on
the updated parameter values.

A maximum-likelihood estimation algorithm
for nonlinear controlled autoregressive systems of
the Hammerstein type with moving-average dy-
namics (CARARMA), implemented via an itera-
tive Newton method, is proposed in [B].

The effectiveness of modified meta-heuris-
tic algorithms in identifying structural dynamic
systems is compared in [@]. The study evaluates
a genetic algorithm, an ant-colony optimisation
algorithm, and an artificial-bee-colony algo-
rithm, some of which belong to the evolutionary
algorithm class and others to the swarm algo-
rithm class. Simulation results demonstrate that
the proposed algorithms deliver accurate param-
eter estimates even with limited measurement
data and high noise levels.

The initial release of the MATLAB Non-Par-
ametric System Identification Toolbox is pre-
sented in []. The toolkit incorporates classical
non-parametric techniques (based on kernel
methods or orthogonal expansions) and state-of-
the-art algorithms, including hybrid approaches
that combine parametric and non-parametric
identification. The package supports Hammer-
stein and Wiener models, along with their cas-
cade configurations.

In [], the System Identification Toolbox®
(SIT) is employed to perform parametric identifi-
cation of a human-pilot behavioural model while
flying an X-Plane flight simulator.

The SIT® is used in [] to obtain a mathemat-
ical model of a loss-in-weight feeder employed in
cement manufacturing.

The current scientific and engineering litera-
ture actively explores the identification of tech-
nical systems and the design of control schemes
based on dynamic models with fractional order
derivatives.

A set of computational routines for working
with fractional-order transfer functions in MAT-
LAB is introduced in [@].

Reference [] gives a detailed description and
illustrative examples of the FOMCON library,
which automates the dynamic identification of
plants via fractional-order transfer functions and
enables the synthesis of fractional-order PI*D*
controllers for dynamic systems.
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References [@, @] likewise report success-
ful identification and control of technical objects
using fractional-order transfer functions. To date,
however, this approach has not been applied to
the dynamic identification of the human operator.

THE AIM AND OBJECTIVES OF
THE STUDY

This study aims to develop a compensator archi-
tecture that mitigates the human operator’s inertial
and nonlinear characteristics by employing a frac-
tional-order PI'D* controller and to determine
how this compensator affects the control quality
metrics of a complex technical system.

The following tasks were defined to achieve
the objective

1. Conduct an experimental investigation of
the human operator’s physiological response while
acting as a control element within a complex tech-
nical system.

2. Dynamically identify the human opera-
tor and select an appropriate representation for
the operator’s transfer function.

3. Synthesise a fractional-order PI*D* controller
tailored to the identified operator model.

4. Analyse the dynamic performance of the
complex system when governed by the controller
and evaluate the resulting control quality indices.

RESEARCH MATERIALS

Experimental study: setup and results

An experimental investigation was carried out to
develop a model of operator responses. Twenty sub-
jects participated in the experiment, where, within
the MATLAB/Simulink model created by the au-
thors (Fig. 1), they used a joystick to track a step-in-

put reference signal. The amplitude and the onset
time of each step were assigned at random. The sub-
jects displayed diverse psychomotor characteristics;
each completed five trials, for a total of 100 trials.

During the experiments, Logitech Extreme
3D Pro L942-000031 and Radiomaster TX12 joy-
sticks were used (Fig. E).

Fig. 2. External appearance of the joysticks used
in the experimental study: a — Logitech Extreme
3D Pro L942-000031; b — Radiomaster TX12

The operator’s actions were stored in a dedi-
cated variable in the MATLAB Workspace. Fig-
ure H shows representative operator performance
while tracking a step reference signal in the de-
veloped model.

Fig. 1. MATLAB/Simulink model used for the experimental study
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Fig. 3. Examples of the operator participants’performance during the experiment

An operator-response model can be derived
in two ways: by averaging the identification pa-
rameters of each response curve or by first aver-
aging the response curves themselves and then
identifying the parameters of the resulting mean
curve.

Next, we will carry out an analytical and
mathematical comparison of these parame-
ter-identification methods.

Assuming that we have a set N of dynam-
ic response curves y, (t), each is described by
the same parametric model:

y, O =f(t0)+e(),i=12,...,N (1)
where: f (£, 8) is the parametric response-curve
model with parameter vector 8, and ¢, (¢) repre-
sents random noise.

Let us determine the parameters that best
characterise the overall behaviour of the
system.

Approach 1: averaging the identification pa-
rameters of the individual curves.

For each curve y, (t) we separately identify its
parameter vector é,—‘

éi = argminZ(yi (t)—f(t,e))z.

0
t

(2)

Then the average parameter vector is:

(3)

-1 N R
ezﬁgei.

The model based on the averaged parameters
takes the form:

3(8) = £, ) (4)

This approach is straightforward to imple-
ment; however, the variance of the parameter
estimates can be significant when the individ-
ual curves display substantial variability, and in
the nonlinear-model case, the mean parameter
vector 8 does not necessarily minimise the aver-
age fitting error.

Approach 2: identification of parameters from
the averaged response curve

First, all measured curves are averaged:

(5)

y(0)= 2 (0)

We then identify the parameter vector éeq for
the averaged curve:

. . - 2

O¢y :argmcinZ(y(t)—f(t,G)) .
t

The resulting model is:

(6)
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Feg (1)=1(1:0eg) @)

Applying the curve-averaging approach re-
duces the influence of random noise, because
the noise is averaged out and yields more stable
parameter estimates. In nonlinear systems, how-
ever, the parameters identified from the averaged
curve can differ significantly from the averaged
parameters of the individual curves.

The mean equivalent curve is shown in Fig. @

Fig. 4. Averaged equivalent operator response curve

In summary, averaging the response curves
reduces random errors. It provides more sta-
ble results, while identifying the parameters of
the averaged curve is preferable because it min-
imises the mean fitting error. By contrast, aver-
aging the parameters can introduce systematic
errors, since the mean parameter values fail to

capture nonlinear effects. This distinction is es-
sential for nonlinear models, in which direct pa-
rameter averaging can yield incorrect results.

Identification of the characteristics of

the human operator using an integer-order
transfer function

A comparative analysis was conducted to deter-
mine how closely the transient responses of var-
ious candidate transfer-function types matched
the experimental data presented above for
the structural and parametric identification of
the human-operator transfer function. The inte-
ger-order transfer functions considered in this
study are listed in Table 1.

To perform the structural and parametric
identification of the operator’s dynamic model,
the built-in process routine from MATLAB’s
System Identification Toolbox® was employed.

The regression coefficients obtained for
the various candidate models are listed in
Table 1.

As the data show, all models achieve a very
high regression coefficient (exceeding 95%).
Consequently, for further analysis, it is sufficient
to adopt the simplest candidate: the first-order-
plus-dead-time (P1D) dynamic model.

The parameter estimates for the P1D human
operator model are summarised in Table 2.

Thus, based on the experimental study, it was
established that the human operator transfer
function could be represented in the following
form:

Table 1. Integer-order transfer functions investigated for modelling the human operator

No. | Model name Model transfer function Regression coefficient
K o
1 P1D G(s)=—"F—e ™" 96.60%
1+7,S8
K
G(s) = £ s 9
2 P2DU 1+ 2§TWS N (TWS) 97.30%
K
G(S) = z . e_TdS 0
3 B 14 26T, 5 +(Ty5)°) - (1+ Tpys) 57:30%
K, (1+T,s)
4 P1DZ G(s)= K A2 155) oo 96.50%

1+T,s
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Table 2. Parameter-identification results for the P1D operator model

ey | Mty | Soni

Kp 1.004 0.0098
Th 0.25349 0.14967
Tp 0.57644 0.15444
R, % 92.62 6.0382

Cs(s) = 1+KTP s el =

P1
- 1 . g 0576445
0.25349s +1 (8)

Identification of the characteristics of

the human operator using a fractional-order
transfer function

To identify the operator with a fractional order
transfer function, we employed the FOMCON
library for MATLAB, which implements the frac-
tional order integral via the Oustaloup recursive
approximation, realised as a cascade of first-order
integrator—differentiator elements [@].

Below, we set out the step-by-step procedure for
identifying the operator’s fractional-order transfer
function using the averaged response curve.

First, create an FIDATA variable named oper-
ator by calling the fidata function as follows:

operator = fidata(y, u, t);

To initiate the fractional-order identifica-
tion procedure, enter the command fotfid in
the MATLAB Command Window; this launches
the dedicated FOMCON tool (Fig. E).

After the fractional order identification is
complete, it is recommended that a variable that
stores the identification parameters be saved to
the Workspace (Fig. E).

Fig. 6. Saving the fractional-order identifi-
cation results to a Workspace variable

Fig. 5. Using the FOMCON fotfid tool for fractional order dynamic identification: a — setup; b — identification result
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It is recommended to round the obtained re-
sults to avoid calculation inaccuracies and the ap-
pearance of coefficients comparable to machine
zZero:

round(operator_FO_TC, le-4, le-4)

To assess the quality of the obtained model,
execute the following command:

validate(operator, operator_FO_TC)

The result of executing this command is pre-
sented in Fig. ﬁ

=~ 15
<
5 10
oy
=]
© 5
g Initieal data
£ 0 Identified model
L’>"0246810 12 14 16 18 20
= 15
=t
210
g
E 5
% 0
0 2 4 6 8 10 12 14 16 18 20
1 Error norm: 222.6086; Fit: 96.40%
§O.5
s 0
%0.5
3 -1
0 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig. 7. Quality assessment of the human operator fractional order
transfer function

One of the outputs of the validate command
is the regression (fit) coefficient of the identified
model.

We shall represent the operator’s fraction-
al-order transfer function in the following gener-
al form:

1
F(s)=——. 9
1(5) s +1 )

The acronym FOP1 (Fractional Order
Poles = 1) was adopted for this transfer function
form.

The statistical results of the parameter estima-
tion for the FOP1 fractional-order human opera-
tor transfer function are summarised in Table 3.

Table 3. Parameter identification results for the FOP1 fractional
order human operator transfer function

No. | Parameter | Mean value, p | Standard deviation, o

1 Ter 0.90718 0.21631
2 a 1.1782 0.04322
3 R 83.2591 5.1704

Table 3 shows that the mean regression coef-
ficient R for the FOP1-type fractional-order hu-
man operator transfer function is roughly 83%;
only one experiment produced an R value below
70%. R for the FOP1 model is noticeably lower
than for the integer-order P1D model.

Although the FOP1 model yields a lower re-
gression coeflicient than the P1D model, it cannot
be discarded - its fit is still high, exceeding 80%.

The P1D model is often a sensible approxima-
tion of process behaviour. It has proved helpful for
controller-tuning rules, structuring decoupling
devices and feedback algorithms, conveying key
process characteristics, and being a lightweight
surrogate in training and optimisation simulators.

Nevertheless, P1D is not necessarily a faithful
representation of the actual process. It is a practical
compromise that balances several aspects of use-
fulness.

The process is likely to be more complex. For
example, Fig. @ shows a prolonged ‘creep’ toward
steady state at the end of the transient, a feature
typical of systems governed by fractional-order
differential equations.

Therefore, the present study focuses on identi-
fying the human operator transfer function with
fractional-order models of the FOP1 type rath-
er than their linear P1D counterparts. Although
the FOP1 model yields a lower mean regression
coefficient, it is more likely to represent the oper-
ator’s dynamics accurately.

A further reason to favour an FOP1 operator
model is the relative ease of designing control sys-
tems for such a plant, because its structure con-
tains no explicit transport delay element.

Application of controllers in the human-
machine interface of complex technical

systems
The principal difficulty in a human-machine
interface in a complex system is that, regardless
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of the operator’s skill level, the human introduc-
es additional distortions into the control signals
applied to the system’s actuating inputs, as illus-
trated in Fig. H One of the theoretically simplest
and technically most accessible ways to improve
control quality is to incorporate an auxiliary con-
troller directly into the interface, thereby partially
compensating for the operator’s non-linearity and
inertia (Fig. §).

A key advantage of this approach is that
the compensating controller becomes an integral
part of the overall system, and its design is gov-
erned solely by the operator’s characteristics, in-
dependent of the plant dynamics.

Theoretically, the operator’s non-linearity and
inertia compensation could be achieved by cas-
cading a corrective element whose transfer func-
tion is the exact inverse of the human operator’s
transfer function.

In practice, such a solution is unattainable,
because (1) the precise form of the operator’s
transfer function is still an open research prob-
lem, and (2) the operator’s psychophysiological
state — and hence the parameters of that transfer
function - can vary over a wide range.

Using the identification results obtained
above, we now demonstrate how a controller can
mitigate the operator’s physiological response
for the integer order transfer function (8) and
the fractional-order transfer function (9).

Accordingly, two realisations of the corrective
element are proposed, featuring integer and frac-
tional order transfer functions, respectively.

(T, +T,))s+1 0.83s+1
Ts+1 0.05s +1

WC710 (s)=

T,s*+1 09071857 +1

,(10)
Tps+1 0.05s +1

chFo (s)=

where Ty is a small time constant required to en-
sure the proper operation of the differentiating
elements.

Investigation of controllers of various types for
compensating human operator characteristics
in a mathematical model

The following experimental plan was devised to
examine the performance of different controller
types.

Assuming there is an ideal reference control
signal Uref(t). The operator’s actions, transmit-
ted through the available control devices, distort
this signal, producing Ujoy(t). This distorted
signal is applied to the controller input, which
generates a corrected control signal Ucor(t) at
its output; Ucor(t) is then fed to the plant input.
The plant executes the control command and
produces the output trajectory Uout(t).

In the ideal case, with neither a human oper-
ator nor an auxiliary controller present, the sys-
tem yields an idealised plant trajectory. This
perfect response will later serve as a benchmark
for evaluating the quality of the compensating
device.

To improve the reliability of the results, a pe-
riodic reference signal Uref(t) in the form of
a meander (square wave), with a period of 10 s
and a 50% duty cycle.

The signal’s total duration is 360 s, and its
amplitude varies between 0.4 and 0.9.

The reference signal Uref(t) is processed by
the human operator, who inevitably introduces

Fig. 8. The principle of using controllers to compensate for the human operator
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distortions, at least due to delays in physiologi-
cal response. The plots of the operator’s response
Ujoy(t), averaged over all periods and overlaid
with the reference control signal Uref(t), are
shown in Fig. H

. Meander waveform
Ref
0.9 Joystick
» 0.8
o
=3
= 0.7
g
< 0.6
0.5
04
0 2 4 6 8 10
Time (s)

Fig. 9. Control signal Uref(t) and the averaged human operator res-
ponse Ujoy(t) used in the study

Two alternative plants were analysed as
the control object:

1. Plant DA - the model structure is first-order
plus dead time (FOPDT) with the transfer func-
tion

G(s)= Le’s.

1+

2. Control plant DCM - a standard DC-motor
model with the following parameters: rated pow-
er 1750 kW; armature voltage 600 V; rotational
speed 190 rpm; armature resistance 0.0326
armature inductance 0.000651 H; flux constant
25.13 V-s; moment of inertia 18 000 kg-m®.

The plant responses will be analysed to eval-
uate the influence of operator dynamics while
the operator’s equivalent time constant is var-
ied within +50% of the nominal value obtained
from Tables 2 and 3.

During each experiment, the plant’s re-
sponse to the signal Ujoy(t) was computed for
different variants of the compensating element.
An averaged plant response over one period
of the control signal was obtained for every
experiment.

To evaluate the quality of the various con-
trollers, the plant response obtained with
the compensator must be compared with

(11)

the plant response to the ideal control signal
Uref(t).

Several criteria can be used to assess the sim-
ilarity of two data arrays of equal length:

1. Pearson correlation coeflicient

This metric quantifies the linear dependence
between the arrays; a coeflicient value close to 1
indicates high similarity in data trends.

2. Mean-squared error (MSE)

Computed as the average of the squared
differences between corresponding elements
of the arrays; the smaller the MSE, the closer
the arrays are in absolute value.

3. Cosine similarity

Evaluates the angle between the vec-
tors formed from the arrays; a value close to
1 indicates that the vectors point in almost
the same direction, signalling similarity in their
structure.

These criteria capture the absolute similarity
of the values, their relative alignment, and in-
ter-relationship.

In the present study, the mean-squared error
(MSE) is adopted as the evaluation metric.

The consolidated results of the investigation
are presented in Fig. .

The tables embedded in Fig. ] list the MSE
values obtained by comparing the plant re-
sponse in the operator-in-the-loop configura-
tion with the benchmark response of the un-
controlled plant. The following labels are used:
Joy - operator without a controller; f00 — op-
erator with a fractional-order controller, time
constant T, ; f05 - operator with a fraction-
al-order controller, time constant 0.5 x T, ;
f15 - operator with a fractional-order con-
troller, time constant 1.5 x T, ; i00 - opera-
tor with an integer-order controller, time con-
stant T, ; i05 - operator with an integer-order
controller, time constant 0.5 X T,; il5 - op-
erator with an integer-order controller, tim
constant 1.5 x T, .

Analysis of the MSE values shows that a com-
pensator tuned with the nominal time constant
T,, effectively offsets the operator’s influence on
the plant for both integer- and fractional-or-
der designs. Overall, the fractional-order PI'D*
controller is preferable, as it provides the high-
est level of compensation for human-operator
effects.
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Fig. 10. Comparison of the plant response without a controller and with controllers of various types

CONCLUSIONS

The principal outcome of this study is an im-
provement in the quality of the human-machine
interface of complex technical systems by com-
pensating for the operator’ inertial and nonline-
ar physiological response through the use of frac-
tional-order PI*D* controllers.

The experiments showed that a simplified, clas-
sical integer-order model with dead time (P1D)
provides highly accurate dynamic identification of
the operator, with a regression coefficient of 92.6%.
Although the fractional-order model (FOP1)

yields a somewhat lower average regression coeffi-
cient (=83%), it better captures additional features
of operator dynamics, such as remnant effects and
parameter variations linked to physiological state.
Furthermore, identification and transient-response
calculations performed with the FOMCON tool-
box demonstrate that software implementation of
fractional-order controllers, based on the Ousta-
loup decomposition, into a finite set of first-order
integrator—differentiator blocks is readily execut-
able on modern microcontrollers and computers.
The study validated the controllers on two
plants — a first-order process with dead time and
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a second-order process. Controller effectiveness
was measured by the mean-squared deviation of
the plant output from a benchmark trajectory in
which the human operator’s influence was entire-
ly removed. The results show that the controllers
reduce this deviation by 60%.

These findings confirm that fractional-order
PI'D* controllers can compensate the operator’s
inertia and nonlinearity, enhancing human-ma-
chine interface performance in complex systems.
They lay the groundwork for further research into
optimised human-machine interaction and open
the way to adaptive identification methods and
real-world industrial deployment of the proposed
controllers.
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SUDETINGU TECHNINIU SISTEMU ZMOGAUS
IR MASINOS SASAJOS TOBULINIMAS
NAUDOJANT TRUPMENINES EILES PI*DM
REGULIATORIU

Santrauka

Viena svarbiausiy sudétingos techninés sistemos savy-
biy yra ta, kad ji ,atlieka svarbia naudinga funkcija tik
dalyvaujant Zmogui operatoriui ir naudojant standar-
tine infrastruktara...“ [1]. Ankstyviausiose sistemos
karimo stadijose batina nuspresti, ar Zmogus operato-
rius turéty bati laikomas sudétingos sistemos dalimi,
ar iSoriniu subjektu. Daugeliu atvejy Zmogus operato-
rius turéty buti laikomas i$oriniu subjektu.

Dauguma sudétingy techniniy sistemy negali veik-
ti be aktyvaus Zmogaus operatoriaus dalyvavimo, nes
jis iSlieka atsakingas uz sprendimy priémima, kontrole
ir valdymg. Funkciniu poZiariu operatorius gali buti
laikomas neatskiriama sistemos dalimi. Taciau siste-
mos projektuotojas retai turi pakankamai jgaliojimy
operatoriaus atzvilgiu, kad galéty ji visiskai jtraukti j
sistemos projekta. I§ sistemos inZzinieriaus perspek-
tyvos zmogus operatorius vertinamas kaip sistemos
aplinkos elementas.

Pagal $ig paradigma, sistemy inzinierius turi skirti
ypatinga démesj operatoriaus sasajos projektavimui ir
karimui, nes tai yra vienas svarbiausiy bet kurios sudé-
tingos techninés sistemos aspekty [2]. Todél universa-
liy techniniy sprendimy, gerinanc¢iy zmogaus ir masi-
nos sasajos kokybe sudétingose techninése sistemose,
karimas yra svarbus ir aktualus uzdavinys, kurio rezul-
tatai gali bati pritaikomi jvairiose praktinése srityse.

Pagrindinis $io darbo tikslas — pagerinti Zmogaus ir
masinos sasajos veikimg, kompensuojant Zmogaus ope-
ratoriaus, kaip sudétingos techninés sistemos valdymo
elemento, inercines ir netiesines charakteristikas.

Reik$miniai ZodZiai: Zmogaus operatoriaus iner-
cinés ir netiesinés charakteristikos, trupmeninés eilés

PI*D* reguliatoriai, sudétinga techniné sistema
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