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Ever since its beginnings, mathematics has occupied a special position among all scienc-
es, natural, as well as social sciences and humanities. It has not only provided a role mod-
el in terms of methodology, particularly when it comes to natural sciences, but other 
sciences have always relied on mathematics extensively both in their development and for 
solving various open questions. The beginning of the 21st century foregrounded the is-
sue of the so-called explanatory role of mathematics in science. However, the reference 
literature features only a few examples as illustration of this role. This paper aims at show-
ing that those examples, even though they are used for illustrating precisely the same 
purpose, also illustrate various explanatory scopes which mathematical tools can reach 
within a scientific explanation. Some of these examples also show how mathematics, un-
fortunately, provides false credibility to scientific explanations. 
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INTRODUCTION
Mathematics has always had a very special and, in a sense, privileged position among sciences. 
What have been the reasons for this kind of status of mathematics? Two facts, among others, 
could help in searching for an answer to this question. Firstly, science has used mathematical 
tools from the very beginning of its history in order to describe or explain the phenomena it 
has explored. In that sense, we can speak of the indispensability of mathematics to science, 
that is, of the incapacity of science to entirely describe or explain the phenomena it deals with 
without the assistance of mathematics.1 Secondly, deduction, as a main tool of mathematics, 
has often been ‘borrowed’ not only for constructing natural sciences, but also the so-called 

1 When it comes to the indispensability of the mathematics to science, roughly speaking, we can say that 
there exist two types of indispensability. The first type was described by the traditional so-called Quine-
Putnam Indispensability Argument (IA) (Putnam 1971: 65), and the second by the so-called Enhanced 
Indispensability Argument (EIA) (Baker 2009: 613). Historically speaking, the EIA is an ‘improved’ version 
of the IA, according to which the role that mathematical objects have in describing and explaining empirical 
phenomena is reduced to quantification and indexing of the physical objects. In addition to this, the EIA plac-
es an emphasis on the indispensability of the explanatory role of the mathematical objects in the empirical sci-
ence (Drekalović 2016: 281–282). Even though the EIA is a new version of the traditional Platonist argument, 
it inspires new questions and dilemmas regarding its usefulness to the Platonists. See Drekalović (2018).
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social sciences and humanities.2 To construct a science in its own right the methodology of 
which would be as close to the mathematical methodology as possible has proved to be a per-
sistent tendency whose vitality is enduring. The reason is clear enough: deduction, in its for-
mal sense, represents a sort of guarantee of the stability of the scientific construction.

In relation to the above stated, we would like to point out that mathematics can be used 
to explain scientific/physical phenomena in different ways. On the one hand, mathematical 
tools can be used in their full capacity. A physical phenomenon can be explained with all 
the mathematical tools and without indefiniteness by means of creating a complete mathe-
matization of a physical problem. On the other hand, mathematical tools and methodology 
can be merely a part of an explanation which is composed of other scientific and mathemat-
ical propositions. In the first case, mathematics asserts its exact superiority. In the second 
case, however, among numerous and various propositions, mathematical tools become only 
a part of not so certain an explanation. These other types of cases seem to abuse, to some 
extent, the authority of mathematics, as it becomes invested in a project that may abound 
in hypotheses which are not quite justifiable. Therefore, the thesis we want to show in this 
paper is that mathematics is not always a guarantee of the reliability of scientific explana-
tions, as is commonly thought in laymen as well as in professional circles. Moreover, we will 
show that not only is it not always a guarantee of reliability, but it is sometimes even sup-
portive of the false credibility of scientific explanations, a thesis not easily found in the field 
of mathematical philosophy. In this work we will use methods of analysis and comparison 
of concrete examples which are the main illustrations of the so-called explanatory role of 
mathematics in science.

THREE EXAMPLES – FROM CERTAIN TO A HYPOTHETICAL SCIENTIFIC EXPLANATION
We will here mention and analyse three examples given in the  literature as illustrations of 
the mathematical explanation in science: Königsberg bridge problem, honeycomb problem 
and the cicada’s case.3 We have chosen precisely these in order to show how varied the role 
of mathematics could be in scientific explanation.4 These examples will point to the fact that 
the role which mathematics can have in an explanation within a science cannot be represent-
ed by the two discrete and extreme situations mentioned in the introduction, but that differ-
ent grades of in-between cases could be found, containing more or less elements of either one 
or the other of the extremes.

In the  Königsberg bridge problem (KBP), a  specific physical phenomenon was en-
tirely explained by means of mathematical tools (Fig. 1). It is a problem that dates back to 
the 18th century and which Euler solved by graph theory. The question was: Is it possible 
to cross all seven Königsberg bridges once and only once ending the trip at the same place 
where it had started?5 Euler solved the problem in a typically mathematical manner. He rep-
resented all the objects that were of relevance to the solution (bridges and parts of the land) 
by a mathematical object – a graph – in the same order in which they exist in the physical 
world.

2 These ideas were promoted, among others, by the Vienna Circle philosophers and Positivism sociolo-
gists between the two World Wars.

3 See Pincock (2012).
4 The topic of varying explanatory degrees of mathematics in science has been addressed by several other 

authors. See, for example, Friend & Molinini (2016).
5 For more details, see, for instance, Lovász et al. (2003: 135–139).
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    Fig. 1.  Bridges of Königsberg and Graph Theory6

In that way, he reduced a physical situation and a solution to the problem occurring in 
it to a purely mathematical level. A complete mathematization of the problem was carried 
out. The bridges, as well as land areas and Königsberg buildings, as well the river, were no 
longer relevant to solution of the problem. The land areas were represented by the vertices 
and the bridges by the edges. None of the physically concrete details were needed in order to 
solve the problem. It was ‘extracted’ from its physical context and transported into the math-
ematical context. Following its solution within the mathematical environment, the explained 
and solved problem should then be brought back into its physical reality.6 In the explanation 
of this type, the hands of the mathematician remain entirely ‘clean’ throughout the process, as 
they are unblemished and untouched by any empirical and physical details and propositions. 
The mathematician is left to do his work in his own field of expertise. Hence, in a nutshell, we 
can say that in the above example a physical problem was solved and explained only and exclu-
sively by means of the mathematical tools. It should also be noted that the process of solving 
it was not conditioned by any hypotheses whatsoever, whether justifiable or not, empirical or 
mathematical.

The second problem, the so-called honeycomb problem (HP), is even older than the pre-
vious, but, unlike the previous, it has been solved only recently (Fig. 2). It concerns the fact 
that the honeycomb cells are in the form of regular hexagon and, consequently, the question 
naturally arises: Is there a reason why, in their architecture, the bees should have chosen that 
polygon in particular if we accept the theory of evolution, and not, for example, an equilateral 
triangle, a square, or another shape different from the hexagon, or any other combination of 
different convex or concave polygons?

6 On the basis of the theorem from the graph theory which examines necessary and sufficient conditions 
for the mentioned moving in an arbitrary graph, the answer to the question asked in KBP is negative. 
For more information, see, for example, Diestel (2005: 21–22).
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 Fig. 2.  Honeycomb Pattern Background8 

As this question includes geometrical concepts, mathematicians were naturally expect-
ed to take part in the quest for the answer. After a long period of waiting, it finally arrived 
about twenty years ago.7 Namely, it turned out that the most ‘economical’ way to cover an 
area by polygons is the one in which the basic units will be precisely the regular hexagons. 
The circumference formed by the basic units thus chosen is the optimal option when com-
pared to all other possible polygon units having the same surface. Taking into consideration 
the evolutionist idea that the species with the most efficient mode of life organization will 
have the highest odds of survival, we come to the explanation of the honeycomb problem. 
The groups of bees that spend the least amount of wax, time and energy for building their nat-
ural habitat are more likely to survive than other groups belonging to the same type of insect.8

We must notice that, unlike the explanation of the KBP, the HP explanation is not purely 
mathematical. To be more precise, it is composed of two parts, none of which could provide 
explanation alone and independently from the other. The mathematical component of the ex-
planation solves in the exact manner the question of the optimal solution concerning the least 
possible circumference of the basic units used in the insects’ production of honeycomb. In 
that sense, the answer is precise and with no additional options. This part of the explana-
tion is not, however, sufficient and cannot explain why the bees, being animals and hence, 
presumably, not able to consider problems theoretically as people do, choose such a mode 
of organizing their habitat. That is why another proposition was necessary: a biological, evo-
lutionist assumption about the better survival prospects of those species that adjust better to 
natural conditions. In this case, that would imply minimal/optimal consumption of one’s own 
biological resources. Therefore, the offered HP explanation is based on exact mathematical as-
sessment of the optimal size selection, as well as on the evolutionist hypothesis that constitutes 
a biological theory of the development of living species.9

Finally, the  third explanation of scientific phenomenon which employs mathematical 
tools, as mentioned in this paper, is the so-called cicada’s case (CC). This unusual phenomenon 

7 There are testimonies stating that this problem was tackled even by Pappus of Alexandria (III–IV cen-
tury AD) and Marcus Terentius Varro (1st century BC). Its solution, however, was not published until 
1999 by Thomas C. Hales (the so-called Honeycomb theorem). According to Hales, even mathemati-
cians before Varro had been familiar with the problem. For more information, see: Varro (1934), Pappus 
d’Alexandrie (1982) and Hales (2001).

8 In addition to Hales (2001), for further explanation of this problem see Fejes (1964a), Fejes (1964b), 
Morgan (1999) and Weyl (1952).

9 Of course, today, there are various scientific theories that support arguments against evolution (Numbers 
2006; Behe 1996; Fodor and Piattelli-Palmarini 2010, etc.).
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was detected by biologists in the first half of the 20th century; however, it found its place 
in the philosophy of mathematics at the beginning of this century.10 This North-American 
type of cicadas (Magicicada) has life cycles which are repeatedly and incessantly renewed. 
After they are born, these animals live first underground, as larvae, for 13 or 17 years. After 
that, they emerge to daylight, they mate, reproduce and die. Their successors continue and 
repeat the same life-cycle. What attracted a special attention is the fact that the duration of 
their life-cycles is always stated in prime numbers. A probability for the occurrence of such 
a random event is extremely small.11 One of the explanations of this biological phenomenon 
includes elementary facts from number theory. Namely, since prime number is divisible only 
by 1 and by itself, the cicada whose life-cycle is stated by a prime number has better chances to 
survive than the cicada whose life-cycle is stated by a composite number. Why is that? For ex-
ample, the cicada whose life-cycle would last 18 years would have a chance to meet potential 
predators whose life-cycles last for 1, 2, 3, 6, 9 or 18 years, whereas the cicada whose life-cycle 
is 17 years long would have a chance to meet only those predators whose life-cycles are 1 or 
17 years long. Drawing on the specific evolutionist assumption, we can explain the natural 
phenomenon from the above. According to this assumption, the natural selection results in 
disappearing of the organisms that are less adjusted to the life conditions – in this case: or-
ganisms whose odds for meeting with predators are higher. By means of various mutations 
throughout generations, these organisms tend to become more similar to the organisms that 
are better adapted to the environment.

The analysis of this phenomenon in the philosophy of mathematics has a relatively brief, 
although productive history, throughout which there have been various modifications in 
the explanation, created with the aim of rendering it more reliable and more probable. Thus, 
for example, it records the employment of rather feeble propositions, such as the one that 
assumes that the biologically acceptable interval in which it is reasonable to look for a natural 
number expressing the duration of the cicada’s life-cycle is [12, 18] (Baker 2016: 338), [6, 28] 
(Baker 2017: 784), or the one which proposes that the cycle must be stated in natural number 
in the form of 4n+1 (Baker 2017: 783). Eventually, all the versions of the explanation contain 
the least justifiable among the mentioned hypotheses – the one about the existence of period-
ical predators, which, however, has not been recorded so far in any of the biological literature 
(Behncke 2000: 417). Unless this hypothesis is accepted, all the versions of the explanation 
become more speculations than rational explanations of a natural phenomenon.

ANALYSIS OF THE EXPLANATIONS
We have recalled the three examples from the literature in order to illustrate the use of math-
ematical explanation in science. These examples demonstrate that the role of mathematical 
tools in those kinds of explanations can be different. There are authors who argue that the es-
sential difference between the explanations of the KBP and the CC is contained in the fact 
that the  former is ‘intra-mathematical’ and the  latter is ‘extra-mathematical’, associating 
the first attribute to the so-called explanatory mathematical proof, whereas the meaning of 
the second attribute remains somewhat unexplained (Colyvan 2018). Generally speaking, 

10 See Howard (1937) and Baker (2005).
11 Probability that a randomly chosen natural number from, say, segment [8, 20] will be prime number is 

approximately 0.3. Probability that both out of the two numbers chosen in the same way will be prime 
numbers is approximately 0.1.
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this terminology appears to be in line with the analysis of mathematical explanations in sci-
ence. Nevertheless, we still think that an additional, more distinctive and a clearer analysis 
of the meaning of these attributes is required.

Roughly speaking, all the  explanations in science which employ mathematical tools 
could be divided into two groups regarding the  role mathematics plays in them. The  first 
group would contain those explanations in which a complete mathematization of a physical/
natural phenomenon was performed. By the term mathematization we refer to a process in 
which a specific phenomenon, with all its relevant physical entities, the relations among them 
included, has been isomorphically mapped onto the  respective mathematical structure.12 
From the moment mathematization of a phenomenon is completed, the explanation is no 
longer conditioned by scientific propositions. The explanation is thereof constructed only in 
mathematical context and by mathematical tools. No (un)proved hypotheses can affect the al-
terations within it. The only subsequent connection that this kind of explanation can have 
with the ‘external’ world is the moment in which the solution to the mathematical problem is 
to be transferred back to the physical world by means of inverse isomorphism, the moment 
when the solution/explanation of the initial physical phenomenon is to be recognized. In this 
sense, such an explanation of an empirical phenomenon can justly be named intra-mathe-
matical. The KBP explanation is the example of such an explanation.

The second group of explanations could contain all the explanations in which it is not 
entirely possible to ‘code’ scientific phenomenon by a mathematical structure. In these cases, 
the explanation is not reached by means of mathematical tools exclusively, but results from 
various mathematical as well as non-mathematical facts and propositions. This kind of expla-
nation is not carried out in a purely mathematical context and strictly within a mathematical 
theory. It is not free from the  scientific hypotheses that can affect the  process of creating 
the explanation. On the contrary, the mathematical tools are used only to a certain extent 
and at certain points, merely to assist and support the scientific hypotheses, which remain 
the main guidelines in the explanation. Bearing this in mind, we call these explanations ex-
tra-mathematical. The examples are the HP and the CC explanations. Colyvan tried to show 
that the first of three examples illustrates the so-called intramathematical explanation (explana-
tion by which a mathematical fact is explained by means of mathematical facts), and the other 
two are the so-called extramathematical explanations (explanations in which a physical phe-
nomenon is explained by means of mathematical facts). We want to underline that all three 
cases are about a mathematical explanation of a physical fact/phenomenon, and that meth-
odological differences between the cases depend only on the extent to which mathematical 
explanation is used in a scientific explanation. In other words, the attributes of intramathemat-
ical and extramathematical may in this context be assigned to explanations not on the basis of 
the object of explanation (it is always a physical phenomenon, which Colyvan does not no-
tice) but on the degree of involvement of mathematical explanation in scientific explanation. 
In doing so, the attribute intramathematical makes sense to assign only to an explanation that 
is fully mathematized, free from the influence of any uncertain empirical hypotheses.

The three aforementioned explanations are often cited with the same purpose. They il-
lustrate mathematical explanation in science. We can find them in Pincock (2012), Colyvan 
(2018), Baker (2016), etc. However, none of the three authors mentioned indicated the spe-
cific differences and reliability of each of these examples. In addition, none of the authors 

12 More precise definition of this sort of mapping can be found in Drekalović (2019).
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pointed to the misuse of mathematics, the fact that mathematics provides false credibility to 
explanations that use problematic empirical hypotheses. We want to point out just such de-
tails in our paper. Namely, they disclose the difference that may exist in explanations when it 
comes to methodology of using mathematical tools for explaining a scientific phenomenon. 
The fact that there exist differences directly affects reliability of scientific explanations. Indeed, 
in the KBP explanation the entire physical phenomenon is coded in mathematical objects of 
the graph theory. The solution to the problem is thus completely transferred into the hands 
of mathematicians, without a risk that the rest of the process might be rendered disputable 
by a new empirical hypothesis, possibly created by an appearance of new evidence or further 
advances in the science. Therefore, the explanation of the phenomenon is empirically ‘frozen’ 
until the mathematical analysis is completed. This kind of methodology and this kind of role 
mathematical analysis has in an explanation allows for the mathematics to demonstrate its 
potential and its capacity to the fullest. With no room for errors and dilemmas of any kind, 
with utmost exactness and precision, it helps solve a specific problem. The physical problem 
in this case assumes a new form. It becomes a mathematical problem. However, as we tackle 
the HP and, subsequently, the CC as well, the position and significance of the mathematical 
tools are changed. They assume a different role in the entire process of explanation. In the last 
two cases, not only is it impossible to speak of a total mathematization of the empirical phe-
nomenon, but, furthermore, the mathematical propositions and facts become merely a part of 
the phenomenon’s explanation. In the HP explanation, the Honeycomb theorem and the evo-
lutionist hypothesis are joined to make the main body of the explanation. The problem has 
not been entirely mathematicized, but the Honeycomb’s theorem is nevertheless crucial. It 
explains the optimal shape of the honeycomb unit. With the aid of the biological assumptions 
about the adaptation and selection of the species, we arrive at the explanation of the phe-
nomenon. However, should the evolutionist assumption become, for any reason whatsoever, 
disputed at some point, the mathematical attempts would not be sufficient to provide the ex-
planation for the phenomenon, at least not at the present moment.

Eventually, in the CC explanation, when compared to the previous two examples, the role 
of the mathematical arguments can be said to be considerably marginalized. Within a myriad 
of biological assumptions that have their own evolution and many of which have not been 
clearly justified at that, the mathematical facts seem to be there merely for the sake of filling in 
the void between those assumptions. Since the role and the significance of the mathematical 
position in explaining an empirical phenomenon are transformed as we move from the KBP 
towards the HP and then to the CC, we can say that reliability of these explanations is also 
transformed to the same extent. As far as the KBP is concerned, we are assured of the com-
plete reliability of the explanation. The explanation of the HP will be doubted only by those 
who doubt the theory of evolution. At last, the CC provides no certainty, as a possibility of 
a new scientific hypothesis could shake all the previous versions of the mathematical explana-
tion of the phenomenon. In Baker’s papers (Baker 2009; Baker 2016; Baker 2017) we can trace 
the development, as well as ad hoc change of argumentation, which seems to be ‘fixed’ and 
adjusted to make the CC explanation more justifiable as a whole. It seems to us that Baker has 
set himself the goal of defending a concrete scientific explanation by mathematical means at 
all costs, without taking into account the justification of the empirical assumptions he choos-
es, which generally creates a bad image of the CC explanation. Baker is in the role of a poor 
student who thinks he knows the final solution to a mathematical problem and tries in every 
way, without choosing the validity of the aids, to arrive at that solution.
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CONCLUSIONS
The three examples analysed here underline a gradation of roles that a mathematical explana-
tion can have within a scientific explanation. Generally speaking, the very authority of math-
ematics in the constellation of all sciences – natural, as well as social and humanities – is such 
that the mere presence of a mathematical explanation in an explanation of a scientific phe-
nomenon can lead one toward an incorrect conclusion. It is a conclusion about the doubtless 
reliability of such a scientific explanation. The third of the examples analysed in this paper, 
which abounds in uncertain hypotheses, is a demonstration that such a conclusion cannot be 
accepted without reservation. Presence of a mathematical explanation within an explanation 
of a scientific phenomenon is not a guarantee of reliability of the explanation. The measure 
of reliability, as we could see from the examples analysed here, is conditioned by the role and 
function of the mathematical tools employed in the explanation. A complete mathematization 
of an empirical phenomenon creates a possible way toward a complete reliability of the ex-
planation. Mathematization establishes a model – mathematical, abstract –  that thoroughly 
represents a specific empirical phenomenon in the mathematical context. In that respect, it 
is useful to consider the scope and general applicability of this kind of methodology to phys-
ical phenomena explanations. The  main open question that emerges in this only partially 
examined area is the following: What are the conditions, generally speaking, that determine 
a possibility of the complete mathematization of an empirical phenomenon? Regardless of our 
remoteness from or closeness to the answer to this question, it is obvious from the examples 
analysed above that a mere employment of the mathematical explanation in science does not 
guarantee reliability of the scientific explanation. As we have seen, in some of the cases the em-
ployment displays the full power of the mathematical explanation – it helps to arrive at the re-
liable scientific/physical explanation. In some other cases, however, the use of mathematical 
explanation becomes rather an ‘abuse’ of the authority of mathematics, as it serves as a formal 
decoration aimed at making an explanation which is full of uncertain hypotheses appear more 
reliable than it really is. Moreover, an analysis of the last of our three examples has shown that 
a mathematical tool is sometimes used to provide false credibility to unconvincing scientific 
explanations that abound in uncertain hypotheses. In these cases, mathematics is only used to 
close the many cracks that exist in such explanations. This role of mathematics does nothing 
to preserve its authority, which has been built for centuries. In pointing out this misuse of 
mathematics, we had no ambition to list all possible cases of this kind but wanted to point out 
a potential problem that may exist in the explanatory field of any science.
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V L A D I M I R  D R E K A LO V I Ć

Matematinių priemonių vaidmuo aiškinant socialinius 
reiškinius – tikro patikimumo garantas ar tariamo 
patikimumo priedanga?

Santrauka
Nuo pat susiformavimo pradžios matematika mokslų sistemoje, aprėpiančioje tiek gam-
tos, tiek ir socialinius bei humanitarinius mokslus, užėmė ypatingą vietą. Viena vertus, 
ji teikė mokslams sektiną metodologinį modelį. Tai ypač aktualu gamtos mokslams. 
Antra vertus, kiti mokslai visada rėmėsi matematika tiek plėtodami savo teorijas, tiek 
ir spręsdami įvairiausius klausimus. 21 a. pradžioje iškilo vadinamoji aiškinamojo ma-
tematikos vaidmens moksluose tema. Analitinėje literatūroje galima atrasti keletą aiški-
namąjį matematikos vaidmenį iliustruojančių pavyzdžių. Straipsnyje siekiama parodyti, 
kad tie pavyzdžiai, nors ir naudojami tuo pačiu tikslu, taip pat atskleidžia matematinių 
skaičiavimų mokslinio aiškinimo ribas. Be to, kai kurie, pavyzdžiui, kaip matematika, 
moksliniam aiškinimui suteikia, deja, ir tariamą patikimumą.

Raktažodžiai: matematinis aiškinimas, matematikos būtinumas moksle, Karaliaučiaus 
tilto problema, korio problema, cikados atvejis


