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We present an overview of our very recent results on the evolution of ultrashort pulses after propagating through various
optical elements. Direct spatiotemporal measurements of the electric field were made using the technique SEA TADPOLE.
Our SEA TADPOLE device can resolve spatial features as small as∼5 µm and temporal features as small as∼5 fs. The
experimental results are verified by theoretical calculations. The superluminality of pulses with Bessel-function-like radial
profiles is discussed.
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1. Introduction

In 1987 Bessel light beams [1] were introduced and
now constitute a mature field with numerous applica-
tions (see review [2]). These beams are important be-
cause they possess a controversial quality: they are
“diffraction-free” and so preserve their tightly focused
central bright spot over large distances of propagation
as if the beam were not obeying the laws of diffrac-
tion. At the same time, quite independently, in mathe-
matical physics, the topic of undistorted or localized
waves emerged, dealing with ultrabroadband pulses
that are not only “diffraction-free” in space but also
propagate without any spread in time [3–5]: “light
bullets” or “electromagnetic missiles.” To date, var-
ious localized waves propagating in vacuum superlu-
minally (faster than the speed of light in vacuum), lu-
minally, or subluminally have been studied in detail,
and promising applications have been proposed (see,
e. g., reviews [6–10] and the first monograph [11] on
the field). The feasibility of such light bullets mov-
ing faster thanc has been experimentally demonstrated
more than once [12–17], but, from time to time, papers
still appear in which the superluminal group velocity
in vacuum of such wave packets is questioned. There-
fore, recently [18] we accomplished, for the first time,
with appropriately high resolution and accuracy, a di-
rect spatiotemporal measurement of the electric field

and propagation velocity of the simplest superluminal
localized wave – the so-called Bessel-X pulse [13],
which comprises an energy lump of a micrometre in
diameter at the joint apex of a sparse double-conical
wave. In this paper, we first present an overview of this
result.

Secondly, we touch briefly on our spatiotemporal
measurements of accelerating and decelerating Bessel
pulses [19]. The term was proposed in [20] where the
generation and properties of such pulses were theo-
retically investigated. These pulses are similar to the
Bessel-X pulses, with the main difference being that
they are generated by crossing and interfering focusing
(or defocusing) pulses, which have curved pulse fronts
and form part of a spindle torus surface, rather than the
double conical surface of Bessel-X pulses. As a result,
their bullet-like, central, intense apex and accompany-
ing Bessel rings become smaller or larger as the pulse
propagates, depending on whether the torus shrinks to-
wards a ring or expands towards a sphere. But the cen-
tral spot of these pulses is still localized and intense
over a propagation distance considerably longer than
that of a Gaussian beam with a comparable waist size.

The third topic that we will discuss involves view-
ing simple, well-known cases of diffraction, but in the
time domain. The bending of light waves in the shadow
region behind an opaque disk and the appearance of
a bright “Spot of Arago” in the shadow centre are

c© Lithuanian Physical Society, 2010
c© Lithuanian Academy of Sciences, 2010 ISSN 1648-8504



122 P. Saari et al. / Lithuanian J. Phys.50, 121–127 (2010)

well-known manifestations of diffraction. Tremendous
progress was made in the mathematical treatment of
diffraction, resulting in the well developed theory with
Fresnel–Kirchhoff and Rayleigh–Sommerfeld versions
(see, e. g., monographs [21, 22] and references therein).
An alternative theory, inspired by the early ideas of
Thomas Young, has been developed by Maggi [23],
Rubinowicz [24], Miyamoto, and Wolf (references
given in [22]). The boundary diffraction wave (BDW)
theory, as it was called, describes diffraction from
openings in opaque screens in a mathematically simple
manner. The BDW theory is especially intuitive when
describing the formation of the diffracted field for the
case of illumination with ultrashort laser pulses.

Contrary to the traditional treatment using mono-
chromatic fields, in which the transmitted waves fill
large depths of space behind the screen and overlap
with each other there, ultrashort pulses – typically only
few micrometres “thick” – behave almost like a soli-
tary wave-front surface. Hence, the time-domain study
of diffraction in terms of pulsed BDWs is not only di-
dactically preferable but also opens new interesting di-
rections and applications, such as in the study of focus-
ing and other transformations of ultrashort pulses (see,
e. g., paper [25] and references therein). The formation
of an ultrashort boundary wave pulse just after a cir-
cular aperture has been theoretically studied [26], and
experimental evidence for its existence was obtained
by measuring modulations in the spectrum of the on-
axis field as well as with CCD-recordings of the time-
integrated radial intensity distribution of the field [27].
Our aim has been to directly record, with simultaneous
spatial and temporal resolution, the evolution and inter-
ference of the boundary waves behind various screens.
The results obtained are presented in the paper by Lõh-
mus et al. which can be found in this issue, and here
we consider only the spot of Arago.

2. Spatiotemporal measurement of light fields

In our experiments we used a KM Labs Ti:Sa oscil-
lator with 33 nm of bandwidth (FWHM) and an ap-
proximately Gaussian spectrum with a central wave-
lengthλ0 = 805 nm. The spot size of the laser beam
was 4 mm (FWHM). Our measurements not only re-
quired high spatiotemporal resolution, but also high
sensitivity. First of all, we routinely measure the rel-
atively intense, spatially uniform pulse directly out of
our laser, which is the input pulse in these experiments,
and which also acts as a reference pulse in the mea-
surements, using the FROG technique [28]. To obtain

ultrahigh spatiotemporal resolution in both the inten-
sity and phase, in conjunction with the required sen-
sitivity, we used a technique called SEA TADPOLE
(Spatially Encoded Arrangement for Temporal Analy-
sis by Dispersing a Pair of Light E-fields [29]), which
is based on spectral interferometry. It involves mea-
suring the spectrum of the sum of the known refer-
ence pulse and the unknown pulse to yield the unknown
pulse’s temporal field. This approach is much like
monochromatic-beam spatial interferometry or holog-
raphy, where measurement of the spatial intensity of
the sum of a known spatial field and an unknown
monochromatic wave yields the unknown wave field
in space. Finally, we achieve the high spatial reso-
lution of the unknown field by simply scanning the
micrometre-sized tip of the SEA TADPOLE input fibre
point-by-point through the space where the unknown
light field propagates. SEA TADPOLE has demon-
strated a spatial resolution as small as 0.5 micrometres
by using near-field scanning optical microscopy fibre
tips, but 5 micrometres is sufficient for these measure-
ments, allowing the use of standard off-the-shelf fibres.
A description of the SEA TADPOLE set-up used can
be found in Refs. [18, 25] and in the paper by Lõh-
mus et al. in the given issue. The plots from our SEA
TADPOLE measurements, which are shown below, can
be viewed as still images or “snapshots in flight,” since
they are spatiotemporal slices of the magnitude of the
electric field|E(x, y, z, t)| of the pulses.

3. Results on “diffraction-free” Bessel-X pulse

The most effective Bessel beam generator – a coni-
cal lens (axicon) – refracts plane waves towards its axis
and thus shapes a femtosecond pulse into the Bessel-X
pulse with its characteristic double-conical profile, as
shown in Fig. 1. If the aperture radiusR of the axicon
were infinitely large, the pulse would propagate rigidly
and without any spread of its micrometre-size central
bright spot at the joint apex of the cones over an in-
finitely large distance. In the case of a limited aperture,
it follows from the geometry that the depth of the in-
variant propagation of the pulse (let us call it the Bessel
zone) is restricted tozB = R/tan θ, whereθ (the so-
called axicon angle) is the angle of inclination of the
wave vectors of the constituent plane waves toward the
axisz.

Some measured “snapshots” of propagation of the
Bessel-X pulse are shown in Fig. 1, together with the-
oretical simulations (this time calculated as an axisym-
metric superposition of plane waves with a Gaussian
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Fig. 1. Left: the measured field amplitude at three different distances (z) after the axicon. Right: the corresponding simulations. The
greyscale bar indicates the amplitude, and we have normalized each field to have a maximum of 1. The white bar on the time axis emphasizes
t = 0 relative to the reference pulse, which is where the pulse would be located if it were propagating at velocityc. The “thickness” of each

of the X-branches indicates the duration of the input (and reference) pulse.

aperture). The two are in good agreement except that
the wings in thez = 5.5 cm image are shorter in the
measurement. This is because axicons are difficult to
machine perfectly; in particular, the tip of the cone is al-
ways distorted, so the Bessel zone is shorter than what
would be expected in the ideal case.

There are several interesting features in these plots.
The central maximum of the pulse has a width of
∼20 µm, which – as well as the coaxial intensity
rings surrounding it – remains essentially unchanged
in shape fromz = 5 cm throughz = 13.5 cm. Thus
the apex flies rigidly as a light bullet together with
its sparse wings at constant speed. This is because
the Bessel-X pulse is a propagation-invariant conical
wave. Also, the Bessel-X pulse’s superluminal speed
is apparent in these plots. SEA TADPOLE measures
the pulse’s arrival time with respect to the reference
pulse, which travels at the speed of light (c). Therefore,
if the Bessel-X pulse were travelling at the speed of
light, then at eachz its spatiotemporal intensity would
have the same centre on the time axis (heret = 0 and
emphasized with the white line), but it is easy to see
that this is not the case. From the axicon angle value
θ = 0.92◦ (corresponds to our axicon’s apex angle
176◦) as well as from the simulations, we find that the
Bessel-X pulse’s speed (axial group velocity) should
be 1.00013c. From our experimental plots we deter-
mined [18] it to be 1.00012c – within 0.001% error of
the expected value.

4. Results on accelerating and decelerating Bessel
pulses

In order to generate accelerating (or decelerating)
pulses we mounted a lens with focal length of+153 mm
(or−152 mm) before the axicon. All these results were
published in [19], and here we restrict ourselves to the
decelerating pulse case only.

The spatiotemporal profiles of the decelerating Bes-
sel pulse at nine positions were measured. In all cases,
we measured the complete spatiotemporal intensity and
phase, but we show only the spatiotemporal intensities
here, as this information is more interesting. Three of
these measurements for each case are shown in Fig. 2.
For comparison, numerical simulations were carried
out, and as seen in the figure, the two are in very good
agreement. The X-branching corresponding to the dou-
ble conical profile of the pulse is not seen because, due
to the lens and deceleration, the axicon angleθ is less
than in Fig. 1 and decreases with propagation distance.
Due to the negative lens the fronts of the pulses (and
phase fronts) obtain a curvature which decreases in the
course of propagation and therefore the axicon angle
θ on the axis also decreases – resulting in deceleration
of the movement of the strong interference field on the
axis, which is still in a good approximation nothing but
a Bessel-X pulse.

SEA TADPOLE measures the pulse’s arrival time
with respect to the reference pulse, the latter of which,
after passing through the compensating piece of glass,
travels at the speed of lightc. The origin of our time
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Fig. 2. Comparison of the measured and calculated spatiotemporal profiles of the electric field amplitude of a decelerating Bessel pulse at
three positions along the propagation axisz.

Fig. 3. Experimentally determined group velocity of the deceler-
ating Bessel pulse as a function of the propagation distance. The

solid curve shows the theoretical function for comparison.

axis can be considered as the location of the reference
pulse if it propagated along the axisz with the Bessel
pulses. So, if the Bessel pulse were travelling at the
speed of light, then, for each value ofz, its spatiotem-
poral intensity would be centred at the same time origin
t = 0 which is emphasized by the white bar in the fig-
ure. Again in Fig. 2, note that the superluminal group
velocity and the pulse’s deceleration are both appar-
ent from thez-dependent shifts of the pulses with re-
spect to the origint = 0. The time shifts were used
for calculation of the pulse’s velocity at different prop-
agation distances (see Fig. 3). The decreasing super-
luminal velocity manifests itself also in the increase

of the fringe spacing (increasing radial period of the
Bessel profile; see Fig. 2). Accelerating and deceler-
ating Bessel pulses can be also observed when tightly
focusing an ultrashort pulse by a lens with spherical
aberration [25].

5. Spatiotemporally recorded diffraction

Here we consider formation of the Arago spot pulse
(for more results on diffraction of pulses through vari-
ous screens, see the paper by Lõhmus et al., also in this
issue).

We propagated ultrashort pulses past an opaque disk
of 4 mm diameter, making a hole in the beam, and we
measured the resulting spatiotemporal field at differ-
ent distances after the aperture to observe its evolution.
These measurements reveal the spatiotemporal struc-
ture of the weak boundary waves and the brighter spot
at the centre of the beam due to their constructive inter-
ference, i. e., the spot of Arago, as it is known in con-
ventional diffraction theory for stationary (monochro-
matic) fields. Interestingly, the plots (like the one in
Fig. 4 for a particular propagation distance) reveal that
this spot is surrounded by coaxial interference rings
and, in the axial region the field, is identical to a decel-
erating Bessel pulse, which we have considered in the
previous section. Moreover, the spot is delayed in time
with respect to the main pulse front, and this delay de-
creases withz, indicating a superluminal propagation
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Fig. 4. Schematic of the experiment and the measured time-domain
formation of the Arago spot behind an opaque disk with radius
2 mm. Inset: measured electric field amplitude (actually square
root of it – |E|1/2 – for better contrast) 9 cm behind the disk. This
measurement reveals the weak boundary waves that originate from
the points along the perimeter of the disk. The boundary waves
interfere with the plane wave pulse or the part of the field coming
from radii greater than that of the disk, which propagates accord-
ing to the rules of geometrical optics. Constructive interference
between the expanding boundary waves produces a brighter super-
luminally propagating spot on the axis. The strength of the field is
shown “in a negative colormap”, in which black corresponds to the

maximum strength.

speed along thez axis (the main pulse front propagates
at c). This occurs, because, asz (or the distance from
the disk) increases, the extra distance that the bound-
ary waves must propagate (compared to the main pulse
front) to reach thez axis (x = 0) decreases, so the rela-
tive delay of the boundary waves and the bright spot
due to their interference decreases. As a result, the
group velocity of the Arago spot – geometrically lo-
cated at one pole of a luminally expanding spindle torus
formed by the boundary diffraction wave pulse – varies
from infinity at z = 0 to c for very large values ofz.
Therefore, the spot of Arago is in fact just a decelerat-
ing Bessel pulse.

6. Discussion

The superluminality of the Bessel-X-type pulses is
intriguing. Indeed, while phase velocities greater than
c are well known in various fields of physics, a su-
perluminalgroup velocityis still somewhat taboo, be-
cause, at first glance, it seems to be in violation of
relativistic causality. However, thanks to the numer-
ous studies throughout the previous century – starting
from Sommerfeld’s works on the propagation of plane

wave pulses in dispersive media – it is well known (see,
e. g., a thorough review [30]) that the group velocity
need not be a physically profound quantity and by no
means should be confused with the signal propagation
velocity (which must be less than or equal toc in vac-
uum). But in the case of Bessel-X-type pulsed waves,
no dispersive medium is needed, and still not only is the
group velocity superluminal, but the pulse as a whole
is also, that is, it rigidly propagates faster than a plane
wave.

Naturally, one may feel some unease in accepting
this startling circumstance. But here we experimentally
observe it in the most direct way. When forced to con-
cede the theoretically and experimentally verified su-
perluminality, one might feel the need to make recourse
to statements insisting that the pulse is not a “real” one,
but instead simply an interference pattern rebuilt at ev-
ery point of its propagation axis from truly real plane-
wave constituents travelling at a slight tilt with respect
to the axis. Such argumentation is not wrong but, alas,
leads nowhere. Of course, there is a similarity between
the superluminality of the X-wave and a simple geo-
metrical faster-than-light movement of the cutting point
in scissors (we refer here to Gedanken experiments de-
scribed in textbooks on relativity). But in the central
highest-energy part of the Bessel-X wave, there is noth-
ing moving at the tilt angle. The phase planes are per-
pendicular to the axis and move rigidly with the whole
pulse along the axis. The Poynting vector, indicating
the direction of energy flow, lies also along the axis.
However, the energy flux is not superluminal. Hence,
to consider the Bessel-X waves as something inferior to
“real” waves is not sound. If we thought so, by similar
logic we would arrive at the conclusion that femtosec-
ond pulses emitted by a mode-locked laser are not real
but “simply an interference” between the continuous-
wave laser modes. In other words, one should not ig-
nore the essence of the superposition principle of lin-
ear fields, which implies a reversible relation between
“resultant” and “constituent” fields and in which no
possible orthogonal bases – plane waves or cylindrical
(Bessel) waves, for the given example – are inferior to
any others.

Another misunderstanding (the author of the review
[30] seems to agree) stems from oversight of the fact
that there are infinitely many ways to form a pulsed ax-
isymmetric wave packet from single-frequency Bessel
beams. They depend on how the radial density of in-
tensity rings in the beam cross-section is related – or
whether or not it is related at all – to the beam’s tem-
poral frequency. In the case of the Bessel-X pulse,
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this is a proportionality relation, and therefore the ax-
ial group velocity is perfectly defined with a single su-
perluminal value within the whole bandwidth of the
wave packet. If, on the contrary, the radial density is
frequency-independent, we obtain a completely differ-
ent wave packet which is not a localized wave because
it has no definite group velocity over its whole spec-
trum and therefore spreads as it propagates. But such
a wave packet – named the ‘pulsed Bessel beam’ in
the literature – propagates with velocity less than c and
can be used for sending signals along the propagation
axis. On the other hand, if one tried to cut a signal
“notch” into the core of the Bessel-X pulse, the notch
would behave like the ‘pulsed Bessel beam’ – spread-
ing out while advancing subluminally. This is expected
since Maxwell’s equations, or the wave equation for
EM fields, do not allow superluminal signalling.

7. Conclusion

We have performed direct spatiotemporally resolved
measurements of pulsed light fields behind various op-
tical refracting and diffracting elements. We believe
that time-resolved measurements and a time-domain
treatment of diffracting waves not only turn out to be
fruitful in modern physical optics, especially in micro-
and meso-optics, but also promote the understanding of
diffraction phenomena.
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DIFRAGUOJANTYS IR NEDIFRAGUOJANTYS ŠVIESOS IMPULSAI ERDV ĖJE IR LAIKE
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Santrauka

Pateikiame savo naujausių rezultatų apžvalgą apie ultratrum-
pųjų impulsų, peṙejusių įvairius optinius elementus, evoliuciją.
Elektrinis laukas tiesiogiai matuotas erdvėje ir laike metodu,
angliškoje literat ūroje vadinamu SEA TADPOLE. M ūsų SEA

TADPOLE prietaisas registruoja net∼5µm smulkumo ir vos∼5 fs
trunkaňcius poky̌cius. Eksperimentiniai rezultatai patvirtinti teori-
niais skaǐciavimais. Aptartas impulsų, turinčių Beselio funkcijos
pavidalo radialųjį pj ūvį, virššviesinis pob ūdis.


