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We devise a modified delayed feedback control algorithm that allows one to stabilize unstable target states of chaotic
systems for any initial conditions placed on a strange attractor. The algorithm is based on ergodicity of chaotic systems. We
first let the chaotic system to evolve unperturbed until it approaches the neighbourhood of the target state. Then we activate
the controller that stabilizes that target state. We propose a special algorithm that evaluates the closeness of the current state of
the system to the target state. For continuous-time systems, this algorithm can be implemented by simple low-pass filters. We
demonstrate the efficacy of our algorithm with numerical computations of statistics of successful stabilizations.
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1. Introduction

The field of controlling the chaos, as it has been
introduced by the pioneering work of the Maryland
group [1], has developed during the last two decades
into one of the most active fields in applied nonlinear
science. Although control theory is a well-developed
discipline in applied mathematics and engineering sci-
ence, some new aspects have been emphasized in the
physics literature, like noninvasive control for stabiliz-
ing the vast number of unstable periodic orbits (UPOs)
embedded in a chaotic attractor. An extremely simple
control scheme, delayed feedback control (DFC), has
been proposed in 1992 [2], which allows the stabiliza-
tion of time-periodic states when noa priori informa-
tion about the internal dynamics of the system is avail-
able. Nowadays the DFC has become one of the most
popular methods in chaos control research [3]. The
DFC algorithm is reference-free and makes use of a
control signal obtained from the difference between the
current state of the system and the state of the system
delayed by one period of a target orbit. The method al-
lows a noninvasive stabilization of UPOs in the sense
that the control force vanishes when the target state
is reached. The controlled system can be treated as a
black box, since the method does not require any ex-
act knowledge of either the form of the periodic orbit
or the system’s equations. Successful implementations

of the method include quite diverse experimental sys-
tems from different fields of science. For the details of
experimental implementations as well as various mod-
ifications of the DFC algorithm we refer to the recent
review paper [4].

Although the experimental implementation of DFC
is almost trivial, the price one has to pay from the the-
oretical point of view is that the discussion of DFC
schemes requires the analysis of differential-difference
equations. Such systems are quite difficult to handle
since the dynamics takes place in infinite-dimensional
phase spaces. The standard tool for discussing the
control performance consists in linear stability analy-
sis [5–16]. As a particular benefit of such concepts
one has now gained a quite complete overview of the
control performance of DFC from the local point of
view. But even if such a local analysis predicts stable
states, experimental success is not guaranteed, because
the control performance may strongly depend on initial
conditions. The analysis of global properties of DFC
systems, such as basins of attraction of stabilized or-
bits, is a much more complicated problem. There exists
virtually no systematic investigation of time-delayed
feedback control beyond the linear regime.

Numerical analysis of particular systems shows that
the DFC algorithm can form incredibly complex basins
of attraction. In [17, 18] it has been shown that one
should pay attention to the global dynamics besides
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linear stability in understanding the behaviour of the
controlled system and designing the control parame-
ters. For instance, it is completely unclear how large
the basins of attraction are, i. e. which initial condition
is attracted towards a particular stabilized orbit. It has
also been noted that some targeting method is addition-
ally needed for avoiding unexpected stabilization of an
orbit which has the same period with the target orbit.

Although the general results concerning global prop-
erties of DFC systems are missing, recently the first
step has been taken in understanding a possible mech-
anism responsible for the size of basins of attraction in
DFC schemes [19–21]. In [20], the authors have devel-
oped a theory which states that depending on the type
of transition at the control boundary there appear basins
of attraction of different size. The above authors have
expected that the basin of attraction is large when a con-
tinuous transition at the control boundary appears; on
the other hand, a discontinuous transition at the con-
trol boundary indicates that stabilization works only in
some neighbourhood of the target state. However, this
approach is not universal and does not guarantee the
correct prediction for the system parameters far away
from the bifurcation point. The lack of a general the-
ory, concerning the global properties of DFC systems,
represents a serious drawback of the method.

To improve the global properties of the DFC algo-
rithm several nonlinear modifications have been pro-
posed. A first heuristic idea has been suggested in
the original paper [2]. It has been shown that limit-
ing the size of the control force by a simple cut-off in-
creases the basin of attraction of the stabilized orbit.
This idea has proved itself in a number of chaotic sys-
tems and now it is widely used in experiments. An al-
ternative two-step DFC algorithm has been considered
in Ref. [22]. In the first step this algorithm generates
an extraneous stable periodic orbit close to the target
orbit and in the second step it stabilizes the target. Fi-
nally, a nonlinear DFC for systems close to a subcritical
Hopf bifurcation has been proposed in Ref. [21]. Here
the basin of attraction is enlarged by coupling control
forces through the phase of the signal.

However, the above nonlinear DFC schemes are
suitable only for specific systems. In this paper, we
are using the ergodicity in order to improve the global
properties of DFC. Ergodicity is the universal property
of chaotic systems. This feature means that the chaotic
trajectory visits the close neighbourhood of any orbit
with finite probability. In the seminal paper by Ott,
Grebogi, and Yorke (OGY) [1], the idea to use the er-
godicity in chaos control was formulated for the first

time. However, a straightforward implementation of
ergodicity in DFC schemes has not been considered so
far. Our aim is to fill this gap and use the OGY ideas
for DFC algorithm. Note that unlike the OGY algo-
rithm the perturbation in the DFC algorithm increases
the phase dimension of the closed-loop system.

In this paper, we consider two discrete-time systems
under DFC, namely, the logistic map in Sec. 2 and the
Hénon map in Sec. 3. In these two problems, we let
the system to evolve unperturbed until it approaches a
close neighbourhood of the target steady state. At this
moment we activate the DFC perturbation that stabi-
lizes the target state. The algorithm does not require a
knowledge of location of the target. We also consider
the stabilization of continuous-time non-autonomous
double-well Duffing oscillator in Sec. 4. Note that in
Ref. [23] we have already realized the selection and sta-
bilization of one of three period-one UPOs embedded
in the chaotic attractor. However, here we consider the
selection and stabilization of a period-two orbit. This
problem is much more complicated since it requires the
use of an extended DFC (EDFC) algorithm [5], and
the knowledge of the time average of the displacement
of the target orbit. We first let the chaotic system to
evolve unperturbed until it approaches the close neigh-
bourhood of the target orbit. As soon it happens, we
activate the EDFC feedback perturbation that contains
a Gaussian multiplier. This multiplier automatically
zeroes the perturbation as long as the solution moves
far away from the target. As soon as the target is ap-
proached, the feedback perturbation begins to act until
it stabilizes the target or moves away from it. The ap-
proach to and remoteness from the target state can be
repeated several times until the final stabilization of the
target is achieved. We finish the paper with conclusions
presented in Sec. 5.

2. Controlling the logistic map

Time-discrete maps are very convenient dynamical
toy models for analysis of the DFC algorithm. Such
systems are easer to handle since the dimension of
phase space stays finite even if the control loop is in-
cluded. The trends discovered through analysis of dis-
crete maps are a good starting point for developing
intuition about the behaviour of continuous systems.
Moreover, in systems with slow dynamics, the schemes
for controlling discrete maps may be directly imple-
mented.

We start our analysis with the simple 1D logistic
mapxn+1 = bxn(1 − xn). For b > 3 the system has
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two unstable fixed points,̃xF = 0 andxF = 1 − 1/b.
Our aim is to stabilize the nonzero fixed pointxF by us-
ing the DFC algorithmxn+1 = bxn(1− xn) + k(xn −
xn−1), wherek is the feedback gain. Introducing an
auxiliary variableyn = xn−1 the latter equation can be
rewritten in the form of 2D map:

xn+1 = b xn(1− xn) + k(xn − yn) , (1a)

yn+1 = xn . (1b)

The fixed points of this map are(x̃F, ỹF) = (0, 0) and
(xF , yF ) = (1− 1/b, 1− 1/b). From linear analysis of
Eqs. (1) it follows that the nonzero fixed point becomes
stable for the values of the feedback gain in the interval

b− 3
2

< k < 1 . (2)

The optimal value of the feedback gain, which leads
to the fastest convergence of nearby initial conditions
towards the desired fixed point, is given by

kop = b− 2(b− 1)1/2 . (3)

In order to obtain this result we have to linearize the
system (1) around the target fixed point(xF, yF). The
linearization yields(

δxn+1

δyn+1

)
=

(
2− b + k −k

1 0

) (
δxn

δyn

)
. (4)

Hereδxn = xn − xF andδyn = yn − yF are the de-
viations from target fixed point. The eigenvalues of the
Jacobian are given by

λ1,2 =
σ ± (σ2 − 4∆)1/2

2
, (5)

whereσ = 2−b+k and∆ = k are the trace and deter-
minant of the Jacobian, respectively. The feedback gain
k is optimal when the magnitude of leading eigenvalue
is minimal. Such a situation occurs if the discriminant
in (5) is zero, i. e.σ2 = 4∆,

(2− b + k)2 = 4k . (6)

Solving this equation in respect tok, we get

k± = b± 2(b− 1)1/2 . (7)

The rootk− corresponds to the case for which the mag-
nitudes of|λ1,2| are minimal, and thuskop = k− as
stated in (3).

In the following we fix the value of the parameter
b = 4, which corresponds to a chaotic regime of the
free (k = 0) logistic map. Then the optimal gain is
kop ≈ 0.536.

Fig. 1. The phase plane of DFC controlled logistic map (1).
Crossed circle and square indicate the target(xF, yF) and zero
(x̃F, ỹF) fixed points, respectively. The bold curve is the parabola
xn = b yn(1−yn) representing an attractor of the free logistic map.
The dotted line is the identity linexn = yn and two straight dashed
linesx±n = yn ± ε parallel to the identity line indicate the bound-
aries of condition (11a). The vertical lineyn = Yth shows the
boundary of condition (11b). The thin black dots show the stable
manifold of the zero fixed point (in some regions they are blurred
to a black line). The large grey dots show the domain of attraction
of the target fixed point(xF, yF). The values of parameters areb =

4.0,k = kop ≈ 0.536,ε = 0.24.

Although the logistic map represents a one-dimen-
sional system, the DFC force increases its dimension
to two. If we considered a stabilization of a period-
two cycle of the logistic map the dimension of the con-
trolled system would be three. The main difference be-
tween the DFC and OGY algorithms is that the first
increases the dimension of the system under control
while the second preservers it unchanged. Note that
the phase space dimension of continuous-time systems
under DFC control increases to infinity, while for time-
discrete systems it remains finite.

Here we restrict ourselves by consideration of a sim-
ple fixed point of the logistic map, since we can visual-
ize the closed-loop system dynamics (1) on a 2D plane.
The phase portrait of the system is depicted in Fig. 1.
The basin of attraction of the target fixed point (xF, yF)
is shown by grey dots. It has been determined by iter-
ating the inverse map

xn−1 = yn , (8a)

yn−1 = yn +
−xn + byn(1− yn)

k
. (8b)
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of Eqs. (1) starting from many initial conditions located
in a small circle around the fixed point(xF, yF).

We see that the basin of attraction of the target point
(xF, yF) is very complex. This complexity can be par-
tially understood by analysis of invariant manifolds of
the zero fixed point(x̃F, ỹF). The zero fixed point is a
saddle and its stable manifold appears to be a boundary
curve that confines the basin of attraction of the target
fixed point. The stable manifold of the zero fixed point
(thin black dots in Fig. 1) was depicted as follows. For
the map (1) linearized at the zero fixed point(x̃F, ỹF),
we first defined the eigenvector

φs =
[
1,

b + k

λ2
s + k

]
(9)

of the stable eigenvalue

λs =
b + k − [(b + k)2 − 4k]1/2

2
. (10)

Then the stable manifold of the original map (1) was
plotted by iterating the inverse map (8) from initial con-
ditions placed close to the zero fixed point in the direc-
tion of eigenvector (9). In Fig. 1 we see that the stable
manifold of the zero fixed point confines the grey dots,
i. e. it indeed defines the boundaries of attraction of the
target fixed point. Thus the complexity of the basin of
attraction of the target fixed point is related with tan-
gled structure of the stable manifold of the zero fixed
point.

Although the whole basin of attraction is very com-
plex, it necessarily occupies some region in the vicin-
ity of the target point(xF, yF). This general feature of
the basin of attraction results from linear stability of the
fixed point. Thus the DFC algorithm should be success-
ful if the initial conditions are in fair proximity to the
target. On the other hand, due to the ergodicity, the free
system (k = 0) should approach the target fixed point
as close as desired for any initial conditions placed on
the strange attractor.

Taking into account the above facts we propose the
following strategy based on DFC, which guarantees
successful stabilization of the desired fixed point for
any initial conditions. First we setk = 0, and begin
iterations of the free logistic map (1). The points fall
on the parabolaxn = b yn(1 − yn) shown in Fig. 1 by
bold curve. At every step of iterations we check two
conditions:

|xn − yn|< ε , (11a)

yn > Yth , (11b)

with Yth being a threshold value. As soon as both
conditions are satisfied we switch on the DFC force
with the parameterk chosen in the interval of stabil-
ity (2) and stabilize the fixed point. In the following we
choose the optimal value of the control gaink = kop.

By first condition (11a) we estimate the strength of
DFC perturbation if it would be applied at the given
iteration stepn. In Fig. 1 this condition represents a
region between two thin straight linesx±n = yn ± ε.
The parameterε defines the distance between these
lines. For suitably smallε, the lines separate a fairly
small segment of the parabolaxn = b yn(1 − yn) in
the vicinity of the target such that this segment be-
comes enclosed in the basin of attraction of the tar-
get point. Note that the above lines separate two seg-
ments of the parabola – one close to the desired fixed
point and another close to the zero fixed point. The
second condition (11b) is necessary to exclude the seg-
ment in the vicinity of the zero fixed point. The thresh-
old valueYth is defined as intersection of the parabola
xn = b yn(1−yn) with the upper linex+

n = yn +ε and
is given by

Yth =
b− 1− [(1− b)2 − 4bε]1/2

2b
. (12)

By second condition (11b) we avoid an activation of the
control force in the false region close to the zero fixed
point. This suggests that in general a detailed knowl-
edge of the considered system is necessary.

In Fig. 2 we demonstrate the performance of our al-
gorithm for different values of the parameterε. We
show the distribution of timesN (number of iterations)
needed to achieve control from different initial con-
ditions y0. We suppose thatx0 = b y0(1 − y0), i. e.
the initial conditions of the map (1) are placed on the
strange attractor of the free system. For a given ini-
tial condition(x0, y0), the total timeN consists of two
time-spans,N = N1 + N2. The first timeN1 repre-
sents a number of iterations of the free system needed
to approach the neighbourhood of the target point de-
fined by conditions (11). This time describes a tran-
sient behaviour of the free system and is determined by
the ergodic properties of the chaotic attractor [1]. The
second termN2 represents a time of stabilization, i. e.
the number of iterations of controlled system needed to
approach the stabilized fixed point with a given accu-
racy εF � ε. We assume that control is successful if
[(xN − xF)2 + (yN − yF)2]1/2 < εF. Here we choose
εF = 5·10−3. The timeN2 is defined by the eigenval-
ues of the stabilized fixed point.
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Fig. 2. Distribution of timesN needed to achieve control in the logistic map (1). Initial conditions(x0, y0) are chosen on the attractor of
the free system,x0 = b y0(1 − y0). The parameterε and the mean time〈N〉 are (a)ε = 0.4, 〈N〉 = 19.64; (b)ε = 0.24,〈N〉 = 24.64;
(c) ε = 0.12,〈N〉 = 39.60; (d)ε = 0.06,〈N〉 = 71.83. In (a) only 78.9% of initial conditions are successful; the empty (white) windows
correspond to initial conditions for which the algorithm fails.〈N〉 for panel (a) includes only successful realizations. In (b–d) the 100%

success rate is obtained.

In Fig. 2(a) the parameterε = 0.4 is too large to
guarantee the success of the algorithm for any initial
conditions. Only 78.9% of initial conditions taken from
the unity intervaly0 ∈ (0, 1) are successful. The mean
time of successful control is〈N〉 ≈ 19.64. In Fig. 2(b)
the parameterε is equal to the critical valueεc = 0.24
at which the algorithm produces 100% success rate for
any initial conditions. Now the mean time is〈N〉 ≈
24.64. With the decrease of the parameterε below the
critical value, the algorithm also guarantees the suc-
cessful stabilization for any initial conditions, however,
the mean time increases drastically. Forε equal to 0.12
and 0.06 the mean time〈N〉 is respectively 39.60 and
71.83 (Fig. 2(c, d)). Thus the fastest and still reliable
convergence of the system towards the desired fixed
point is attained forε = εc.

Why is the success rate not 100% for larger values of
ε > εc? The reason for this is that the term of control
perturbation disturbs the original system, and for some
initial conditions the solution escapes to infinity. The
largerε makes the boundaries in Fig. 1 wider. Unfor-
tunately, one cannot see the reason for the failure from
this figure, and the critical valueεc can be found only
numerically by iterating the controlled map.

3. Controlling the Hénon map

Now we apply our algorithm to a more complex
discrete-time chaotic system. We consider the Hénon
map [24] subjected to DFC:

xn+1 = 1− ax2
n + byn + k(xn − yn) , (13a)

yn+1 = xn . (13b)

The Hénon map is the 2D dynamical system described
by two variables(xn, yn). In the following we fix the
values of the parameters of the Hénon map ata = 1.5
andb = 0.2. The last term in Eq. (13a) describes the
DFC force, wherek is the feedback gain. Generally, the
DFC perturbation should increase the dimensionality of
the map, but here it is not the case. The exception here
is related to the specific form of the second equation of
the Hénon map,yn+1 = xn. In fact it represents the
definition of the time-delayed observablexn−1 = yn

employed in the DFC force. This feature of the Hénon
map allows us to visualize its dynamics on the 2D plane
even in the presence of the control force.

The free as well as controlled Hénon map possesses
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Fig. 3. The phase portrait of the free Hénon map (13) fora =
1.5 andb = 0.2. The black dots show the strange attractor. The
crossed circle and square denote the target(xF, yF) and extrane-
ous (x̃F, ỹF) fixed points, respectively. The straight dash lines
x±n = yn ± ε define the boundaries of inequality (17a). The
inverse transformation of these lines shown by dashed parabolas
x±n = 1+byn−ay2

n±εb define the boundaries of inequality (17b).
The whole region restricted by conditions (17) is marked by grey
colour. The identity linexn = yn and its inverse transformation
are shown by dotted lines. Their intersections produce the fixed

points. The boundary lines are depicted forε = 0.7.

two fixed points,(xF, yF) = (x∗1, x
∗
1) and(x̃F, ỹF) =

(x∗2, x
∗
2), where

x∗1,2 =
b− 1± [(1− b)2 + 4a]1/2

2a
. (14)

In Fig. 3 we show the phase portrait of the free (k =
0) Hénon map. We see that the fixed point(xF, yF)
is embedded in the chaotic attractor, while the point
(x̃F, ỹF) is an extraneous fixed point, which is outside
of the attractor. Our aim is to devise the DFC algorithm,
which is able to stabilize the fixed point(xF, yF) for
any initial conditions placed on the strange attractor.

From linear analysis of the map (13) it follows that
the target fixed point(xF, yF) is stable for values of the
feedback gain in the interval

(b− 1 + 2ax∗1)/2 < k < b + 1 . (15)

An optimal value of the feedback gain providing the
fastest convergence to the target state is given by

kop = 2[ax∗1 + 1− (2ax∗1 + 1− b)1/2] . (16)

For the chosen values of parameters we getkop ≈
0.566. In the following we use this value in our con-
trol algorithm.

The linear stability guarantees that the basin of at-
traction of the target point for the nonlinear map (13)
occupies some region around this point. As well as in
the previous section, we need conditions which allow
us to check whether the current state of the free sys-
tem is in vicinity of the target state. For 2D map we
require two conditions in order to separate some region
around the target point. Our aim is to formulate these
conditions without any knowledge of even approximate
position of the fixed point. Moreover, we suppose that
only one scalar variable, sayxn, is available for obser-
vation. Then we formulate the desired conditions as
follows: |xn−xn−1| < ε and|xn−1−xn−2| < ε. This
means that we check the smallness of DFC perturbation
if it would be applied not only at the current momentn
but also at the previous timen − 1. Sincexn−1 = yn,
we can rewrite the above conditions as follows:

|xn − yn|< ε , (17a)

|xn−1 − yn−1|< ε . (17b)

For anM -dimensional map we would writeM analo-
gous conditions.

Geometrically, conditions (17) separate some re-
gions in the(xn, yn) plane in the vicinity of the both
fixed points. In Fig. 3, the region surrounding the target
point is marked by grey colour. The region is bounded
by four curves. The inequality (17a) defines the region
between two straight linesx±n = yn ± ε parallel to the
identity line. The inequality (17b) bounds the region
between two parabolasx±n = 1+b yn−a y2

n±ε b, which
represent an inverse Hénon transformation of the above
lines. With the decrease of parameterε, the region de-
fined by conditions (17) shrinks and for suitably smallε
should fit into the basin of attraction of the target point.
Note that for the Hénon system we do not need an ad-
ditional condition like (11b) to exclude the extraneous
fixed point(x̃F, ỹF) since here this fixed point is out-
side of the strange attractor.

In Fig. 4 we demonstrate the performance of our
algorithm for different values of the parameterε. To
gather statistics on times needed to achieve control we
apply our algorithm for many different initial condi-
tions placed on the strange attractor of the free Hénon
map. For a given initial condition(x0, y0) the proce-
dure is as follows. First, we setk = 0 and start an
iteration of the free map (13). On each step of iteration
we check the conditions (17). As soon as these con-
ditions are satisfied we switch on the control force by
settingk = kop. Then we continue the iterations un-
til the system approaches the desired fixed point with a
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Fig. 4. Histogram of timeN needed to achieve control in the Hénon map (13).P (N) shows the number of successful stabilizations with
the given time of control. The parameterε and the mean time〈N〉 are (a)ε = 2.7,〈N〉 = 19.44; (b)ε = 1.77,〈N〉 = 17.41; (c)ε = 0.7,
〈N〉 = 16.93; (d)ε = 0.2, 〈N〉 = 59.27. In (a) only 86.92% of initial conditions are successful, while in (b–d) the 100% success rate is

obtained.

given accuracyεF = 2·10−3 � ε. As this happens we
record the total timeN (number of iterations) elapsed
from the start to the end of this procedure. We repeat
this procedure for 104 different initial conditions ran-
domly chosen on the strange attractor and plot a his-
togram of timeN needed to achieve the control. If the
value of the parameterε is too large, then the algorithm
fails for some part of initial conditions (Fig. 4(a)). By
decreasing the parameterε we can gain 100% success
rate Fig. 4(b–d), similarly as for the logistic map. How-
ever, unduly smallε can lead to rather long mean time
〈N〉.

We have included in Fig. 3 the grey region only for
the value ofε used in Fig. 4(c) that serves as an illustra-
tive example. The grey region for other cases of Fig. 4
would seem similarly to the shown one.

Exactly as in the case of logistic map (Sec. 2), the
success rate is not 100% for larger values ofε > εc.
The reason for this is the same as described in Sec. 2.

4. Controlling the Duffing oscillator

In the two previous sections, we analysed the dis-
crete systems, namely, the logistic map and the Hénon
map controlled by modified DFC algorithm. Here,

however, we are going to consider the continuous sys-
tem, namely, the EDFC controlled non-autonomous
double-well Duffing oscillator:

ẋ = y −G(t) , (18a)

ẏ =−βy + αx− γx3 + A cos (Ωt) . (18b)

Here x, y are the dynamic variables,α = 1, γ = 1
are the parameters of the double-well potential,β =
0.16 is the coefficient of losses,A = 0.27 andΩ = 1
are the amplitude and frequency of the external force,
respectively.

We assume thatx(t) can be measured and one can
add a perturbationG(t) at the r.h.s. of (18a). This per-
turbation is constructed using the delayed difference

D(t) = x(t)− x(t− τ) . (19)

The delayτ must coincide with the period of the target
orbit. For the chosen parameters, the free system (18)
(G = 0) exhibits the chaotic motion.

The chaotic attractor contains three period-one or-
bits (with periodτ = 2π/Ω = 2π). One of them (in
the origin) satisfies the odd-number limitation [14, 15],
and its stabilization with an unstable controller [16] has
been considered in the recent paper [22]. The other
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Fig. 5. Two period-two partner UPOs embedded in chaotic attractor
of the free(G = 0) double-well oscillator (18) forα = 1,β = 0.16,
γ = 1,A = 0.27, andΩ = 1. The both orbits have the same period

τ = 4π. The target (left-hand) orbit is depicted by solid line.

period-one orbits are located on the left and the right
sides in respect to they axis. We considered the prob-
lem of their selection and stabilization in [23]. We used
the DFC controller supplemented by two low pass fil-
ters that enabled us to select the desired (say, the right-
hand) orbit, and to estimate the closeness of the solu-
tion to the target. Note that this problem was relatively
simple since the both UPOs were placed on the differ-
ent sides of they axis. In addition, these orbits did not
need the extended version of the DFC (EDFC), i. e. it
was enough to use the DFC scheme. In the present pa-
per, however, we are considering the stabilization of the
period-two UPOs. Their period isτ = 2 · 2π/Ω = 4π.
Note that there are three different pairs of period-two
UPOs embedded in the strange attractor. Here we con-
sider the stabilization of one pair that is shown in Fig. 5.
These two UPOs are crossing they axis, and the left-
hand UPO spends the most time in the regionx < 0,
while the right-hand UPO spends in the regionx > 0.

We now make some remarks about their stabiliza-
tion. First, these UPOs are strongly unstable and
their stabilization requires the use of the extended DFC
(EDFC) method [5]. Second, if we activate the con-
trol perturbation only once (as soon as the solution ap-
proaches the close neighbourhood of the target), we
will see that some of the random initial conditions lead
to the stabilization of desired target, and the other ini-
tial conditions to the stabilization of the the other orbit.

In order to achieve the successful stabilization of the
desired orbit, we change our control strategy presented

in Ref. [23]. It means that we consequently develop
the control scheme proposed in Ref. [23] in order to
achieve the stabilization of orbits of higher order. First
we introduce two low pass filters:

τwẇ = |D(t)| − w , (20a)

τvv̇ = x− v . (20b)

The first filter (20a) estimates the smallness of the de-
layed difference. For theτ -periodic solution it should
vanish. The second one evaluates the time average of
the displacementx(t). If the solution moves around the
left-hand orbit, thenv(t) oscillates around its average
〈xleft〉 with relatively small amplitude. For definiteness
we intend to stabilize the left-hand orbit. The stabi-
lization of the right-hand orbit would require to make
substitution〈xleft〉 → 〈xright〉. The following algo-
rithm enables to distinguish between stabilizations of
two period-two partner orbits.

The control procedure is as follows. We analyse the
free running system (G(t) = 0) by means of the intro-
duced variablesw andv. We simultaneously check two
conditions,

w(t) < ε , (21a)

|v(t)− 〈xleft〉|< εv . (21b)

As soon as both conditions are satisfied, we activate the
control by setting

G(t) = kop S(t) exp[−(v(t)− 〈xleft〉)2/ε2
v], (22)

and we do not check the conditions (21) anymore. In
(22) S(t) is the feedback perturbation of the EDFC
scheme [5]. It can be found from the recurrent relations

S(t) = x(t)− (1−R)B(t− τ) , (23a)

B(t) = x(t) + RB(t− τ) . (23b)

We need a single delay line for the auxiliary variable
B(t). R is the parameter of the EDFC. ForR = 0, this
scheme reduces to the original DFC method.

Now we discuss the control perturbation (22). In this
expression, the usual feedback perturbationkop S(t) is
multiplied by the Gaussian function. Let us suppose
that the solution moves far away from the target orbit
for a characteristic time interval(t − τv, t). Then we
have

|v(t)− 〈xleft〉| � εv . (24)

In such a case, the Gaussian exponent in (22) will be
almost zero, andG(t) ' 0. On the other hand, if the
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solution runs around the close neighbourhood of the
target orbit for a characteristic time interval(t− τv, t),
we get

|v(t)− 〈xleft〉| � εv . (25)

This means that in Eqs. (22) the exponent will be al-
most unity thus yieldingG(t) ' kopS(t).

Summing up we conclude that after the activation,
the controller acts only in the neighbourhood of the tar-
get orbit. When the solution runs away, the control per-
turbation vanishes until the next approach to the target.

The linear stability analysis (forR = 0.5) shows that
the target orbit is stable for 0.54< k < 0.72. The
optimal value of the feedback gain iskop = 0.58. The
average value of displacement for the left-hand orbit is
〈xleft〉 = −0.6352.

In Fig. 6 we illustrate the success of the above EDFC
algorithm by numerical computations. In Fig. 6(a) the
dynamics of the variablev(t) is shown. When the so-
lution is chaotic, it wanders up and down. As soon as
the stabilization occurs, it is attracted to〈xleft〉, and os-
cillates around this value with a relatively low ampli-
tude. In Fig. 6(b) we show the dynamics of the feed-
back perturbationG(t). When the solution is far from

the target orbit, this perturbation is turned off. At about
t ' 480τ the solution approaches the neighbourhood
of the left-hand orbit, and the feedback perturbation
(22) is activated. In Fig. 6(b) we see that the control
perturbation is switched on and off several times (be-
cause of the Gaussian exponent) until the stabilization
of the target occurs. In Fig. 6(c) we show the dynamics
of the displacementx(t). Before the stabilization it is
chaotic, and after the stabilization it periodically oscil-
lates around〈xleft〉. In Fig. 6(d) we present the phase
portrait of the controlled Duffing oscillator for the last
period of integration of Eqs. (18). The obtained solu-
tion exactly coincides with the left-hand UPO in Fig. 5.

In Fig. 7 we show the statistics of successful sta-
bilizations for 103 initial conditions randomly chosen
on the chaotic attractor. We have taken the parameters
τw = τ/20, τv = τ/0.35, εv = 0.3, and varied the
parameterε. For all the values ofε, the algorithm suc-
cessfully stabilizes the target orbit for 100% of initial
conditions. The optimal value isε = εop = 0.2 since
it leads to the minimal average〈N〉 = 143.56. The
lower values ofε < εop require more time for the free
chaotic system to approach this narrow window. On
the other hand, the larger values ofε > εop need also

Fig. 6. The results of numerical integration of the EDFC controlled double-well oscillator described by Eqs. (18), (19), (20), (22), and (23).
Here it is shown the dynamics of (a)v(t), (b) the feedback perturbationG(t), and (c) the displacementx(t). In (d) there is plotted the phase
portrait of the stabilized target orbit (for the last period of integration). The parameters are as follows:εv = 0.3, ε = 0.06,τw = τ/20,
τv = τ/0.35,k = kop = 0.58,R = 0.5, andτ = 4π. The other parameters are the same as in Fig. 5. The initial conditions are randomly
taken on the strange attractor. The dashed horizontal lines in (a) and (c) indicate the time average of the displacement for the target left-hand

orbit, 〈xleft〉 = −0.6352.
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Fig. 7. Histogram of time needed to achieve control in the Duffing system fork = kop = 0.58,R = 0.5,τ = 4π, τw = τ/20,τv = τ/0.35,
andεv = 0.3. N is the number of periodsτ needed for stabilization of the target UPO andP (N) is the number of successful stabilizations
with the given time of control. The parameterε and the mean number〈N〉 of periods needed to achieve control are (a)ε = 0.04,〈N〉 =
465.97; (b)ε = 0.15,〈N〉 = 164.42; (c)ε = εop = 0.2,〈N〉 = 143.56; (d)ε = 0.25,〈N〉 = 161.32. In all the graphs the 100% success

rate is obtained.

the longer time of stabilization since the larger values
of window cause the disturbances of the system that
lead to longer times for controller to find the target
orbit. The mean time needed for successful stabiliza-
tion is approximately equal to140 periods of UPO for
ε = εop. Such a long transient dynamics is related
with the small leading Lyapunov exponent (λmin =
−0.0348) of the target orbit for the optimal value of
feedback gaink = kop.

The success of control is independent ofε contrary
to the findings on the map models in Sections 2 and
3, since the methods of turning on the control are dif-
ferent. In Sections 2, 3 we checked the closeness of
solution to the target states only once, and as it was sat-
isfied we turned on the control perturbation that con-
tinued to act until the success/failure. However, in the
case of continuous-time double-well oscillator we also
checked the closeness of solution to the target, but here
we activated the control perturbation in the form of
Gaussian (22); this Gaussian continued to act until the
successful end. We stress that the Gaussian perturba-
tion contains the turning on/off in itself, since when the
running time average of displacement is near (far away
from) the time average of target orbit then the control is
on (off). This means that we may activate the Gaussian
perturbation (22) at any initial conditions lying on the

chaotic attractor. Therefore the conditions (21) are nec-
essary only for faster capture of the target orbit by the
Gaussian. We thus conclude that the success of control
does not depend onε.

One may intuitively think that the success of control
would depend on the relation ofεv and the radius of the
period-two orbit that is to be stabilized. But apart from
these two parameters there is also present the charac-
teristic timeτv, Eq. (20b), of the filter. Therefore we
think that the dependence of success on the controller
and system parameters is a non-trivial problem.

5. Conclusions

We have considered a modified delayed feedback
control (DFC) algorithm that provides successful sta-
bilization of unstable periodic orbits (UPOs) of chaotic
systems for any initial conditions placed on the chaotic
attractor. In our modification we employ the ergodic
property of chaotic attractors, which are universal for
any chaotic systems. According to this property the
chaotic trajectory visits the close neighbourhood of any
target state with a finite probability. We wait until the
state of the free chaotic system approaches the target
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orbit, and as soon as this happens, we activate the feed-
back perturbation that stabilizes this target.

We have demonstrated the efficiency of our al-
gorithm for two time-discrete systems, namely, the
logistic map, and the Hénon map, as well as for the
non-autonomous time-continuous double-well Duffing
oscillator. With time-discrete systems we were able
to visualize geometrically the main ideas of our algo-
rithm. For time-continuous Duffing oscillator, we have
introduced two low pass filters. The first of them esti-
mates the delayed difference. The second filter serves
to select the desired orbit among several orbits with the
same period. Note that in Ref. [23], we have been deal-
ing with selection and stabilization of the period-one
orbits embedded in chaotic attractor. Here, however,
we solved a much more complex problem, namely, the
selection and stabilization of the period-two orbits. Un-
like Ref. [23], here we needed to use the extended
version of the DFC (EDFC) [5], and we also used a
Gaussian multiplier in the EDFC feedback perturba-
tion. The Gaussian multiplier automatically zeroes the
perturbation when the solution of the system is far away
from the target orbit; the perturbation becomes acti-
vated only in the close neighbourhood of the target or-
bit. One may say that the controller acts by trial and
error until the successful stabilization happens.

By choosing many random initial conditions on the
chaotic attractor we verified the success of our algo-
rithm statistically. For the both discrete-time systems,
we attained 100% success rate, provided that the win-
dows of closeness of the solution to the target were suf-
ficiently small. In the case of the Duffing oscillator, the
reliable stabilization of the desired period-two orbit is
attained for any windowε, but there exists an optimal
value of window,ε = εop, for which the mean time of
stabilization is minimal. The existence of the optimal
εop can be explained in the following way. If we de-
crease the parameterε, the free system will need more
time to approach the close neighbourhood of the target.
On the other hand, if we increase the windowε, it may
happen that the feedback perturbation will be activated
for solutions which are too far from the target, and the
perturbation will disturb the original system.

Note that the proposed algorithm is rather simple
and can be easily implemented electronically.
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UŽDELSTO GRĮŽTAMOJO RYŠIO VALDYMO MODIFIKACIJA PANAUDOJANT CHAOTINIŲ
SISTEMŲ ERGODIŠKUMĄ

V. Pyragas, K. Pyragas

Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka

Pasi ūl̇eme modifikuotą uždelsto grįžtamojo ryšio valdymo al-
goritmą, kuris stabilizuoja nestabilias periodines orbitas bei rimties
taškus, kai sprendinys startuoja iš bet kurių chaotinio atraktoriaus
pradinių sąlygų. Algoritmas yra grindžiamas chaotinių sistemų er-
godiškumu. Pirma leidžiame chaotinei sistemai evoliucionuoti lais-

vai tol, kol ji priartės prie norimos orbitos. Tuomet įjungiame val-
diklį, kuris stabilizuoja norimą orbitą. Pasi ūlėme algoritmą, kuris
įvertina esamo sprendinio artumą norimai b ūsenai. Tolydžiosioms
sistemoms šį algoritmą galima įdiegti paprastais žemų dažnių filt-
rais. Algoritmo veiksmingumą pademonstravome sėkmių statisti-
kos skaitiniais skaičiavimais.

http://dx.doi.org/10.1103/PhysRevE.73.036209
http://dx.doi.org/10.1103/PhysRevE.73.036209
http://dx.doi.org/10.1103/PhysRevE.73.036209
http://dx.doi.org/10.1103/PhysRevLett.93.174101
http://dx.doi.org/10.1103/PhysRevLett.93.174101
http://dx.doi.org/10.1103/PhysRevLett.93.174101
http://dx.doi.org/10.1016/j.physd.2004.08.002
http://dx.doi.org/10.1016/j.physd.2004.08.002
http://dx.doi.org/10.1016/j.physd.2004.08.002
http://dx.doi.org/10.1103/PhysRevLett.98.214102
http://dx.doi.org/10.1103/PhysRevLett.98.214102
http://dx.doi.org/10.1103/PhysRevLett.98.214102
http://dx.doi.org/10.1103/PhysRevLett.98.214102
http://dx.doi.org/10.1103/PhysRevLett.98.214102
http://dx.doi.org/10.1103/PhysRevE.76.026203
http://dx.doi.org/10.1103/PhysRevE.76.026203
http://dx.doi.org/10.1103/PhysRevE.76.026203
http://dx.doi.org/10.1103/PhysRevE.76.026203
http://dx.doi.org/10.1103/PhysRevE.76.026203
http://dx.doi.org/10.1103/PhysRevE.80.067201
http://dx.doi.org/10.1103/PhysRevE.80.067201
http://dx.doi.org/10.1103/PhysRevE.80.067201
http://dx.doi.org/10.1103/PhysRevE.80.067201
http://dx.doi.org/10.1007/BF01608556
http://dx.doi.org/10.1007/BF01608556

