Short communication

MORSE'S RADIAL WAVE FUNCTION

J.H. Caltenco, J. López-Bonilla, and R. Peña-Rivero
Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Anexo Edif. 3, Col. Lindavista CP 07738 México DF
E-mail: jlopezb@ipn.mx

Received 26 April 2010; revised 9 September 2010; accepted 25 October 2010

Abstract

We show that the matrix elements $\langle m| \mathrm{e}^{\beta x}|n\rangle$ for the one-dimensional harmonic oscillator permit to resolve the vibrational Schrödinger equation for the Morse interaction.

Keywords: Morse potential, one-dimensional harmonic oscillator, matrix elements
PACS: 02.10.Yn, 03.65.Ge, 03.65.Fd

1. Introduction

In [1--3] were calculated the matrix elements

$$
\begin{equation*}
f(\beta)=\langle m| \mathrm{e}^{\beta x}|n\rangle=\int_{-\infty}^{\infty} \psi_{m}^{*}(x) \mathrm{e}^{-\beta x} \psi_{n}(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

for the harmonic oscillator (HO) in one dimension, where $\beta \geq 0$ is an arbitrary parameter. Thus, it was obtained the following result for $m \geq n$:

$$
\begin{equation*}
f(b)=\sqrt{\frac{n!}{m!}}\left(-\frac{\beta}{\sqrt{2}}\right)^{m-n} \mathrm{e}^{-\beta / 4} L_{n}^{m-n}\left(-\frac{\beta^{2}}{2}\right), \tag{2}
\end{equation*}
$$

in terms of the associated Laguerre polynomials L_{n}^{q}.
It is interesting to observe that the 2 th order differential equation defining to L_{n}^{q} (see [4] p. 781) permits to prove via (2) that $f(\beta)$ satisfies the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} f}{\mathrm{~d}^{2} \beta}+\frac{1}{\beta} \frac{\mathrm{~d} f}{\mathrm{~d} \beta}-\frac{1}{4 \beta^{2}}\left(\beta^{4}+4 A \beta^{2}+4 Q\right) f=0 \tag{3}
\end{equation*}
$$

where $A=m+n+1$ and $Q=(m-n)^{2}$; that is, (2) is a solution of (3).

In Sec. 2, $f(\beta)$ is employed to resolve the radial Schrödinger equation for the Morse potential.

2. Radial wave function for the Morse potential

Morse [5-7] proposed the potential

$$
\begin{equation*}
V(r)=D\left[\mathrm{e}^{-2 a r-r_{0}}-2 \mathrm{e}^{-a r-r_{0}}\right] \tag{4}
\end{equation*}
$$

as an approximation to vibrational motion of a diatomic molecule, where D is the dissociation energy (well depth), r_{0} is the nuclear equilibrium separation, and a is a parameter associated with the well width, such that $a \sqrt{2} D /(2 \pi)$ gives the frequency of small classical vibrations around r_{0}. If we make the change of variable $u=r-r_{0}$ and we use natural units, then the corresponding Schrödinger equation is

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} \beta^{2}} \psi_{\mathrm{M}}+2\left[E-D\left(\mathrm{e}^{-2 a u}-2 \mathrm{e}^{-a u}\right)\right] \psi_{\mathrm{M}}=0 \tag{5}
\end{equation*}
$$

where ψ_{M} / r is the Morse's radial wave function.
If now at (5) we introduce a new independent variable β given by

$$
\begin{equation*}
\beta=\mathrm{i} \sqrt{2 K} \mathrm{e}^{-a u / 2}, \quad \mathrm{i}-\sqrt{-1}, \quad K=\frac{2}{a} \sqrt{2 D} \tag{6}
\end{equation*}
$$

then (5) adopts the form

$$
\begin{align*}
& \frac{\mathrm{d}^{2}}{\mathrm{~d} \beta^{2}} \psi_{\mathrm{M}}+\frac{1}{\beta} \frac{\mathrm{~d}}{\mathrm{~d} \beta} \psi_{\mathrm{M}}-\frac{1}{4 \beta^{2}}\left(\beta^{4}+4 K \beta^{2}-\frac{32 E}{a^{2}}\right) \psi_{\mathrm{M}} \\
& =0 \tag{7}
\end{align*}
$$

with the same structure as (3)!
Therefore by formal comparison of (3) with (7) we have:

$$
\begin{align*}
& K=m+n+1 \\
& E_{n}=-\frac{a^{2}}{8}(m-n)^{2}=-\frac{a^{2}}{8}(K-2 n-1)^{2} \tag{8}
\end{align*}
$$

which implies that $m=n$ is not possible because in this case the value $E=0$ is forbidden for bound
states; then from (8) results $K>1$ which is the condition [5] for the existence of a discrete spectrum energy. Besides, as $E_{n} \neq 0$ and $K>1$, then (8) leads to $K-2 n-1>0$, that is,

$$
\begin{equation*}
0 \leq 2 n<K-1 \tag{9}
\end{equation*}
$$

this means [8] a finite number of bound states.
From (3) and (7) is clear that ψ_{M} is proportional to $f(\beta)$ given by (2) then:

$$
\begin{equation*}
\psi_{\mathrm{M} n}(r)=\sqrt{\frac{a b n!}{\Gamma(K-n)} q^{b} \mathrm{e}^{-q}} L_{n}^{b}(q) \tag{10}
\end{equation*}
$$

where $q=K \mathrm{e}^{-a\left(r-r_{0}\right)}$ and $b=m-n=K-2 n-1$, in accordance with [9] for ψ_{M} / r normalized to unity.

Thus, we see that the Schrödinger equation was easily resolved, for the vibrational Morse oscillator, using the matrix elements $\langle m| \mathrm{e}^{\beta x}|n\rangle$ for the one-dimensional HO. This is a one more sample of the multiple correspondences [7, 10, 11] between the Morse and harmonic oscillators. Our results (8) and (10) can be interpreted as a very good approximation, because the associated Laguerre polynomials calculated in $K \mathrm{e}^{a r_{0}}$ generally speaking are not zero [12].

References

[1] J. López-Bonilla and G. Ovando, Matrix elements for the one-dimensional harmonic oscillator, Bull. Irish

Math. Soc. (44), 61 (2000).
[2] W. Duch, Matrix elements of x^{k} and $\mathrm{e}^{\alpha x} x^{k}$ in the harmonic oscillator basis, J. Phys. A 16(18), 4233 (1983).
[3] J. Morales, L. Sandoval, and A. Palma, Int. J. Quant. Chem. 29, 211 (1986).
[4] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (John Wiley and Sons, New York, 1972).
[5] P.M. Morse, Diatomic molecules according to wave mechanics-vibrational levels, Phys. Rev. 34(1), 57 (1929).
[6] M.A. Morrison, Understanding Quantum Physics (Prentice-Hall, New Jersey, 1990).
[7] O.L. de Lange and R.E. Raab, Operator Methods in Quantum Mechanics (Clarendon Press, Oxford, 1991).
[8] J.N. Huffaker and P.H. Dwivedi, Factorization method treatment of the perturbed Morse oscillator, J. Math. Phys. 16(4), 862 (1975).
[9] Ch.S. Johnson Jr. and L.G. Pedersen, Problems and Solutions in Quantum Chemistry and Physics (Dover, New York, 1987).
[10] M. Berrondo, J. López-Bonilla, and A. Palma, Matrix elements for the Morse potential using ladder operators, Int. J. Quantum Chem. 31(2), 243 (1987).
[11] F. Copper, A. Khare, and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rep. 251, 267 (1995).
[12] S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1971).

MORSE RADIALIOJI BANGINE EUNKCIJA

J.H. Caltenco, J. López-Bonilla, R. Peña-Rivero

Nacionalinis politechnikos institutas, Meksikas, Meksika

Santrauka

Parodoma, kad vibracinius Šrėdingerio lygties su Morse sąveika
sprendinius galima išreikšti vienmačio harmoninio osciliatoriaus matriciniais elementais.

