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We calculate the conductance of a system of two spinless Luttinger liquid wires with different interaction strengths g1, g2,
connected through a short junction, within the scattering state formalism. Following earlier work we formulate the problem
in current algebra language, and calculate the scale dependent contribution to the conductance in perturbation theory keeping
the leading universal contributions to all orders in the interaction strength. From that we derive a renormalization group (RG)
equation for the conductance. The analytical solution of the RG-equation is discussed in dependence on g1, g2. The regions of
stability of the two fixed points corresponding to conductance G = 0 and G = 1,respectively, are determined.
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1. Introduction

Charge or spin transport in three-dimensional metal-
lic systems may be described in terms of Landau quasi-
particles. In strictly one-dimensional quantum wires
quasi-particles are found to be unstable on account
of the interaction between electrons. An important
part of that physics is captured by the exactly solvable
Tomonaga-Luttinger liquid (TLL) model [1, 2]. As is
well known, transport through junctions of TLL wires
is strongly affected by the interaction in the wires, in
some cases leading to a complete blocking of trans-
mission. The latter behavior can be traced back to the
formation of Friedel oscillations of the charge density
around the barrier, leading to an infinitely extended ef-
fective barrier potential in the limit of low energy. The
suitable language to describe this situation is the renor-
malization group (RG) method, allowing to calculate
the conductance as a function of (length or energy)
scale. Quite generally, the transport behavior at low
energy/temperature is dominated by only a few fixed
points of the RG flow. In the neighborhood of these
fixed points the conductance is found to obey power-
law behavior as a function of temperature T for the in-
finite system or as a function of system length L at zero

temperature. The problem of the two-wire junction has
been studied first in the pioneering works [3, 4], using
the method of bosonization. Later, their results have
been confirmed by many other authors, see [5] and ref-
erences therein. For special values of the interaction
exact results have been obtained [6, 7].

A purely fermionic formulation of the problem has
been introduced in the limit of weak interaction by Yue,
Glazman and Matveev [8]. We have extended that the-
ory to the regime of strong coupling by summing up
an infinite series of terms in perturbation theory, identi-
fied as the leading and universal contributions [9]. The
results obtained with our method for the two-lead junc-
tion as well as the three lead junction with time-reversal
symmetry [10, 11] and with magnetic flux [12] are in
agreement with exact theoretical results, where avail-
able. However, our results go beyond what has been
obtained by other authors in various ways. The ma-
jority of the previous works considered the symmetric
case of equal interaction strength in both half wires,
with exception of the works [13, 14] discussed below.

In this paper we generalize our previous treatment
[9] to the case of two wires with different interaction
strength g1, g2. This includes the case of a barrier at
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the end of a TLL wire, for which one of the interaction
parameters is zero, e. g. g2 = 0. As before, we confine
our considerations to spinless fermions.

2. The model

To illustrate the system we are interested in, we first
consider a tight binding Hamiltonian Htb of free spin-
less fermions describing two quantum wires connected
at a single junction by tunneling amplitudes:

Htb =
[ 2∑
j=1

N∑
n=0

t0c
+
j,ncj,n+1 + tbc

+
2,0c1,0

]
+ H. c. (1)

Here c+j,n creates a fermion in wire j at site n, and tb
is the tunneling amplitude connecting the sites (j, n =
0) at the junction. The 2×2 S-matrix characterizing
the scattering at this junction has the structure (up to
overall phase factors in the individual wires)

S =
(
r t

t̃ r

)
=
(

sin θ i cos θe−iφ

i cos θeiφ sin θ .

)
(2)

We choose this parametrization in terms of the trans-
mission and reflection amplitudes t, r , since it is read-
ily generalizable to the case of multi-wire junctions (n
wires, n > 2 ). The above form of the S-matrix is
completely general (up to irrelevant phase factors) and,
in fact, defines our model. Passing to the continuum
limit, linearizing the spectrum at the Fermi energy and
adding forward scattering interaction of strength gj in
wire j , we may write the TLL Hamiltonian H in the
representation of incoming and outgoing waves as

H =

0∫
−∞

dx

2∑
j=1

[H0
j +H int

j Θ(−L < x < −a)] , (3)

H0
j = vFψ

†
j,ini∇ψj,in − vFψ

†
j,outi∇ψj,out , (4)

H int
j = 2πvF gjψ

†
j,inψj,inψ

†
j,outψj,out . (5)

We put vF = 1 from now on. The range of the in-
teraction lies within the interval (a, L), where a > 0
serves as a ultraviolet cutoff and separates the domains
of interaction and potential scattering on the junction;
non-interacting leads correspond to large |x| beyond
L. In terms of the doublet of incoming fermions
Ψ = (ψ1,in, ψ2,in) the outgoing fermion operators
may be expressed with the aid of the S-matrix as
Ψ(x) = S · Ψ(−x) . We express the interaction
term of the Hamiltonian in terms of density operators

ρ̂j,in = ψ†j,inψj,in = Ψ+ρjΨ = ρ̂j , and ρ̂j,out =

ψ†j,outψj,out = Ψ+ρ̃jΨ = ̂̃ρj , where ρ̃j = S+ · ρj · S ,
as

H int
j = 2πg1ρ̂1

̂̃ρ1 + 2πg2ρ̂2
̂̃ρ2 . (6)

The matrices are given by (ρj)αβ = δαβδαj and
(ρ̃j)αβ = S+

αjSjβ . A convenient representation of
2×2-matrices is in terms of Pauli matrices σj , j =
1, 2, 3, the generators of SU(2) (see [9]). Notice
that the interaction operator only involves σ3 (be-
sides the unit operator (σ0)αβ = δαβ). We note
Tr(σj) = 0, Tr(σjσk) = 2δjk, j = 0, 1, 2, 3. Defin-
ing a two-component vector s = (σ3, σ0), we have
ρj =

√
1/2

∑
µRjµsµ, where the 2 × 2 matrix R

has the properties R−1 = RT , detR = 1, and
R11 = R12 = −R21 = R22 = 1/

√
2. The out-

going amplitudes will be expressed in terms of σ̃j =
S+ · σj · S. With the aid of the σj the S-matrix may
be parametrized by three angular (Euler) variables (see
[9]), S = eiα1σ3/2eiα2σ1/2eiα3σ3/2. For the case un-
der consideration only two of these, θ, φ, are relevant:
S = e−iφσ3/2ei(π−2θ)σ1/2eiφσ3/2. The corresponding
elements of the S-matrix have been given in Eq. (2).

3. Parametrization of conductance matrix

We may define a 2 × 2 matrix of conductances
Gjk relating the current Ij in lead j (flowing towards
the junction) to the electrical potential Vk in lead k :
Ij =

∑
kGjkVk. It follows from the conservation of

charge that
∑

j Gjk = 0 and from invariance under a
shift of the zero of energy that

∑
kGjk = 0. There-

fore, the conductance matrix has only one independent
element G = (1 − a)/2, which relates the net current
I = 1

2(I1 − I2) to the bias voltage V = (V1 − V2),
I = GV . We note the relation G = 1

2(RTGR)11 ,
while all other elements of RTGR are zero.

In the linear response regime the conductances are
related to the S-matrix by Gjk = δjk − Tr(ρ̃rjρk) =
δjk−|Srjk|2, where the label r indicates that the quantity
is fully renormalized by interactions. Defining Yjk =
Tr(ρ̃rjρk) and using the above relation of ρ̃rj and s̃rµ, we
see that the conductance components may be expressed
in terms of Y µν = 1

2Tr(s̃
r
µsν) as Yjk = (RYRT )jk.

Here and in the following bold faced quantities marked
with overbar are matrices in the transformed space (in-
dices µ, ν ). It follows from the analysis of the trans-
formed matrix RTGR given above that the matrix Y
has block structure, the nonzero elements being given
by the conductance parameter introduced above and by
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Fig. 1. Feynman diagrams depicting the corrections to conductance. Two first diagrams, (a) and (b), correspond to Eq. (8), the third diagram
(“vertex correction”) vanishes in the static limit, external Ω→ 0.

unity, Y 11 = a, Y 22 = 1, Y 12 = Y 21 = 0. From
the above relations we see that the parameter a may be
expressed by the angle θ in the above parametrization
of the S-matrix as a = − cos 2θ. We find therefore that
a is confined within the region a ∈ [−1, 1].

4. Perturbation theory

We now calculate the conductance in perturbation
theory in the interaction. In first order we have to
evaluate the diagrams depicted in Fig. 1. Here solid
lines denote Green’s functions in position-energy rep-
resentation (ωn are fermionic Matsubara frequencies),
G(x;ωn) = −isign(ωn)θ(xωn)e−xωn . The double
wavy lines denote the interaction operator, which in the
lowest order is given by the matrix gµν = (RTgR)µν ,
with gjk = δjkgj , in the transformed or initial represen-
tations, respectively. At the ends of the interaction lines
operators σ3 and σ̃3 are attached depending on whether
x < 0 or x > 0. As a result, one finds in lowest order
in the interaction

Y
(1)
µν =−1

2Tr
(
ŴµνŴµ′ν′

)
gν′µ′Λ

=−1
2δµ1δν1(a2 − 1)(g1 + g2)Λ . (7)

Here the Ŵµν = (RTŴR)µν = 1
2 [sµ, s̃ν ], and

Ŵjk = [ρj , ρ̃k] , are 2×2 matrices for each pair
of µν (or jk) and the trace operation Tr is defined
with respect to that matrix space, whereas the gµν =
(RTgR)µν , with gjk = δjkgj are scalars. Notice that

only one matrix element, Ŵ 11, is nonzero.
We may extend this analysis into the strong cou-

pling regime by summing up infinite classes of con-
tributions in perturbation theory. It has been found
in [9] that the diagrams shown in Figs. 1 and 2 pro-
vide the leading terms in the neighborhood of the fixed
points. Their contribution is universal in contrast to
other higher order terms (see below). These may be

interpreted as a renormalization of the bare interaction,
2πgklδ(x − y) → Lkl(x, y;ωn). The contribution to
conductance stemming from the first two diagrams (a)
and (b) in Fig. 1 in this ladder approximation is given
by

G(a+b) = −1
4
T 2
∑
ε,ω

L∫
a

dx1dx2

∞∫
L

dy

× L11(x1, x2;ω)G(y + x; ε+ Ω)
[
G(x1 − x; ε)

× G(−x1 − x2; ε− ω)G(x2 − y; ε) + cos 4θ

× G(−x2 − x; ε)G(x1 + x2; ε+ ω)G(−x1 − y; ε)
]
,

(8)

Here only the (1, 1) element of L enters, corresponding
to the fact that operators σ3 and σ̃3 are attached to the
ends of the renormalized interaction line. The factor
cos 4θ appears as Tr(σ3σ̃3σ3σ̃3)/2. In the limit of zero
temperature we may convert the summation over Mat-
subara frequencies to an integration along the imagi-
nary axis. Another contribution to G is obtained by
reverting the arrows on the fermion lines in Fig. 1(a),
Fig. 1(b), and doubles the above result. Performing the
integrations on ε and on y from L to∞ and taking the
limit Ω→ 0 we find

G(L) = (1− a2)

×
∫
dx1dx2

dω

2π
L̄11(x1, x2;ω)θ(ω)e−ω(x1+x2) ,

It is useful to first calculate L in the initial representa-
tion, where the interaction matrix g is diagonal, but the
matrix Y is nondiagonal. Then L is found to satisfy the
following linear integral equation for ω > 0 (Ref. [9],
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note that the definitions of Y and for the strength of
interaction there are different):(

L(x, y;ω)
L2(x, y;ω)

)
= 2πgδ(x− y)

(
1
0

)
− 2π

L∫
a

dz

×
(
gYΠ(x+ z, ω), gΠ(x− z, ω)
gΠ(z − x, ω), 0

)(
L(z, y;ω)
L2(z, y;ω)

)
with the fermionic loop Π(x, ωn) = (2π)−1(δ(x) −
|ωn|θ(xωn)e−xωn). Expressing L2(x, y;ω) via
L(x, y;ω) we have

L(x, y;ω) = 2πg̃δ(x− y) + ωg̃

L∫
a

dz

×
[
(Y − 1

2g)e−ω(x+z) − 1
2ge

−ω|x−z|
]
L(z, y;ω) ,

with g̃j = gj/d
2
j and dj =

√
1− g2

j . In order to solve
this integral equation we first calculate a partial sum-
mation, defined by C(x, y;ω) = limY→0 L(x, y;ω).

Then L(x, y;ω) will be the solution of

L(x, y;ω) = C(x, y;ω) +
ω

2π

L∫
a

dz1dz2

×C(x, z1;ω)Ye−ω(z1+z2)L(z2, y;ω) , (9)

and C(x, y;ω) satisfies the integral equation

C(x, y;ω) = 2πg̃δ(x− y)− 1
2ωg̃g

L∫
a

dz

×
[
e−ω(x+z) + e−ω|x−z|

]
C(z, y;ω) . (10)

These integral equations are shown diagrammatically
in Fig. 2.

We now define C(x, y;ω) = 2πg̃δ(x − y) −
C1(x, y;ω), so that the inhomogeneity in the integral
equation for C1(x, y;ω) is differentiable

C1(x, y;ω) = πωg̃2g
[
e−ω(x+y) + e−ω|x−y|

]
− 1

2ωg̃g

L∫
a

dz
[
e−ω(x+z) + e−ω|x−z|

]
C1(z, y;ω) ,

The integral equation for C1(x, y;ω) may be converted
into a second order differential equation

L

−y

x

=

−y

x

+

−y −z1

z2 x

C

−y

x

=

−y

x

+

−y −x

z x

Fig. 2. Feynman diagrams depicting the integral equations for the
renormalized interaction, Eqs. (9) and (10).

[
∂2

∂x2
1− ω2(1 + g̃g)

]
C1(x, y;ω) =

−2πω2g̃2gδ(x− y) ,

Since the matrix g is diagonal, C1 is diagonal and
we have two uncoupled differential equations for the
components C1,j , j = 1, 2 . Taking into account the
boundedness of C1,j , the general solution is given by
C1,j(x, y;ω) = πωj g̃jg

2
j (Aj(y)e−ωjx + e−ωj |x−y|) ,

where ωj = ω/dj . It follows from the boundary condi-
tions at x = 0 that Aj(y) = e−ωjy. The quantity C is
thus a diagonal matrix given by

C(x, y;ω) = 2πd−2gδ(x− y)

− πωd−3g3
[
e−ω(x+y)/d + e−ω|x−y|/d

]
We now return to the integral equation for L(x, y;ω).
Since the kernel is separable it is easily solved. We
define the auxiliary matrix functions U(y;ω) =

∫
dx

×e−ωxL(x, y;ω), V(y;ω) =
∫
dxe−ωxC(x, y;ω) =

2πd−1ge−ωy/d as well as the matrix Q−1 = ω
2π

∫
dxdy

×e−ω(x+y)C(x, y;ω) = g(1 + d)−1 . Multiplying
the above integral equation (9) by e−ωx and integrating
over xwe find U = V+Q−1YU = (1−Q−1Y)−1V
and we finally get

L(x, y;ω) = C(x, y;ω)

+
ω

2π
V(x;ω)Y(1−Q−1Y)−1V(y;ω) .
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This result is now substituted into the expression for
the conductance. Performing the integration over y
first we get

∫
dye−ωyL(x, y;ω) = V(x;ω)[1+Y(1−

Q−1Y)−1Q−1] = V(x;ω)[1−YQ−1]−1 . Next inte-
grating over positive ω yields

∫
(dω/2π)e−ωxV(x;ω)

×[1−YQ−1]−1 = (1/x)g(1+d)−1[1−YQ−1]−1 =
(1/x)[Q − Y]−1. Finally, the integration over x pro-
duces the scale dependent logarithm Λ = ln(L/a) .
The conductance in the ladder approximation is found
after transforming to the rotated basis (quantities with
overbar) and taking the (1, 1)-element of the matrix,

G(L) = 1
2(1− a)− (1− a2)

[
(Q−Y)−1

]
11

Λ .

Renormalization group equations. The renormaliza-
tion of the conductances by the interaction is deter-
mined from the scale dependent contributions in pertur-
bation theory. Differentiating these results with respect
to Λ (and then putting Λ = 0) we find the RG equation
for the quantity a = 1−2G in the ladder approximation

da

dΛ
= 2(1− a2)

[
(Q−Y)−1

]
11
. (11)

Here Y = diag(a, 1) and Q = RTQR , such that
Q11 = Q22 = Q+ = (q1 + q2)/2 and Q12 = Q21 =

Q− = (q1 − q2)/2 where qj = (1 +
√

1− g2
j )/gj =

(1 + Kj)/(1 − Kj), and Kj =
√

(1− gj)/(1 + gj)
is the usual Luttinger liquid parameter for wire j. We
define

γ = Q+ −Q
2
−/(Q+ − 1) =

K−1
1 +K−1

2 + 2
K−1

1 +K−1
2 − 2

, (12)

(note that |γ| > 1 for any K1,2 > 0 ), then the RG-
equation takes the explicit form

da

dΛ
= 2

a2 − 1
a− γ . (13)

RG flow and conductance. The fixed points of the
above RG equation are labelled N , at a = 1 , G = 0,
(complete separation of the wires) and A at a = −1
, G = 1 (ideal conductance through the junction). In
order to discuss the stability and to calculate the con-
ductance we rewrite the RG-equation in terms of the
conductance

dG

dΛ
= −4

G(1−G)
2G− 1 + γ

= β(G) . (14)

Stability of a fixed point requires that the derivative
of β(G) at the fixed point is negative. At fixed point
N this translates into γ − 1 > 0, or more explicitly,
q1 + q2 > 2, and in terms of the Luttinger parameters

0 1 2 3 4
0

1

2

3

4

K1

K
2

A

N

Fig. 3. Stability regions, labeled by the corresponding fixed point
are shown in K1-K2 plane. The hyperbola separating the regions
is shown by solid line, the non-interacting values K1,2 = 1 are

shown by dashed lines.

K−1
1 + K−1

2 > 2 i. e. either both interactions should
be repulsive, or one of them is attractive, but weak rel-
ative to the repulsive one. At fixed point A the con-
dition is γ + 1 < 0, or q1 + q2 < 2, and therefore
K−1

1 + K−1
2 < 2 , meaning that the interaction is pre-

dominantly attractive, but a weaker repulsive interac-
tion in one of the wires is possible. The line separating
the stability regions in the K1-K2-plane is the hyper-
bola, (K1 − 1

2)(K2 − 1
2) = 1

4 , passing through the (no
interaction) point K1 = K2 = 1. This hyperbola and
corresponding stability regions are shown in Fig. 3.

The RG-equation may be integrated to give

G1−γ(1−G)1+γ = c(L/a)4 . (15)

In the vicinity of fixed points N and A , respectively,
we then find the power laws

G= cN (a/L)4/(γ−1), at N , (16)

G= 1− cA(L/a)4/(γ+1), at A . (17)

Explicitly we have 4/(γ − 1) = (K−1
1 + K−1

2 − 2),
and 4/(γ + 1) = 2(K1 + K2 − 2K1K2)/(K1 + K2).
At K1 = K2 = K we recover the well-known [3, 4]
exponents 2(K−1 − 1), 2(1−K).

Of special interest is the case g1 = g, g2 = 0, when
we have γ = 2q − 1 = (1 + 3K)/(1 − K) and the
power laws are given by G = cN (L/a)−(K−1−1) at
N and 1 − G = cA(L/a)−2(K−1)/(K+1) at A. We
may compare these findings with results obtained in
Ref. [13] for a non-symmetric position of an impurity
in a TLL wire. When taking the impurity position suf-
ficiently close to the interface between the TLL wire
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and a non-interacting lead, scaling exponents identical
to the above ones were found in [13], as can be read off
from Eqs. (10) and (13) there.

Thus we recover the correct exponents in the scaling
law for the conductance. We obtained them by summa-
tion of the ladder sequence for the renormalized inter-
action in the presence of the junction. As was shown
in [9], the first contributions to conductance beyond
the ladder series appear in the third order of interaction
and are of three-loop type (the two-loop RG contribu-
tions are absent). These latter terms do not contribute
to above scaling exponents, but define the relation be-
tween the prefactors cN and cA. The Eq. (15) implies
that both cN and cA depend on the initial conditions,
encoded in the amplitude c. It is easily seen, that the
ladder approximation corresponds to the relation

c1−γN /c1+γ
A = 1 ,

It was shown [9] that the three-loop corrections change
this ratio to values, different from unity and depend-
ing on the strength of interaction and regularization
scheme, i. e. non-universal.

Our expression (12) shows that the boundary expo-
nents depend only on the sum K−1

1 + K−1
2 . This is

in precise agreement with Eq. (13) in Ref. [14], where
the scaling exponent of the point contact between two
chiral (Hall edge) states was derived. On the basis of
this observation it was suggested there, that the com-
bination of two chiral states, K1 = 1/3 and K2 = 1,
is equivalent to the well-known problem of an impu-
rity in a TLL wire with K1 = K2 = 1/2, which can
be fully solved [3]. We note here that the coincidence
of the scaling exponents at two fixed points N and A
might not necessarily mean the coincidence of the full
scaling form for the conductance. The non-universal
three-loop terms (which are not discussed in the stan-
dard bosonization approach) may be different in cases
K1 = 1/3, K2 = 1 and K1 = K2 = 1/2.

Conclusion. In this paper we employed a fermionic
description of a general two-wire junction of two TLL-
wires to derive the renormalization group equation for
the conductance, using the approach developed by us
earlier [9]. We used an infinite summation of per-
turbation theory in the form of a ladder approxima-
tion, allowing for an analytical solution for arbitrary
junction parameters and interactions in the wires. As
demonstrated earlier the approximation is asymptoti-
cally exact in the vicinity of the fixed points. As in the
well-studied case of a symmetric junction there exist
two fixed points of the RG flow. Fixed point N cor-
responds to a complete separation of the wires, i. e.

the conductance vanishes. It is stable in a region of
theK1-K2−coupling constant plane which is predomi-
nantly repulsive, meaning that a weakly attractive com-
ponent, say K2 > 1 is permitted. At fixed point A
the conductance assumes its maximum value. It is sta-
ble in the complementary part of the coupling constant
plane. The two stability regions in the K1-K2−plane
are separated by a hyperbolic boundary curve. The
representation chosen is maximally general and may
therefore be easily extended to junctions connecting
more than two wires. The 1-2-symmetric three wire
junction (“Y-junction”) has been considered by us in
Refs. [10–12, 15]. Work on the four-wire junction is in
progress.
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