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CLIFFORD ALGEBRA APPROACH TO GRAPHENE FLATLAND
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Quantum properties of a monolayer graphene are studied in terms of the Clifford algebras. The simplest of algebras suitable 
for this purpose appears to be Cl3,0 algebra, the basis vectors of which represent 3D rather than 2D Euclidean space. If electron 
spin is included, higher dimensional algebras should be used. It is shown that Cl3,1 algebra which describes Minkowski’s spacetime 
is suitable for this purpose. It is shown that in both algebras, Cl3,0 and Cl3,1, the conduction and valence band spinors are rotors of 
3D Euclidean space. Properties of electron spin and Berry phase when exchange and spin-orbit interactions are taken into account 
are illustrated within Clifford algebra formalism.
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1. Introduction

The standard quantum mechanics is formulated in 
the Hilbert space, where quantum states of objects 
are described by complex wave functions or spinors. 
The transitions between the states are defined by ap-
propriate operators (complex matrices). However, a 
different approach to quantum mechanics is possible 
which is not connected with the Hilbert space. The 
new approach relies on noncommutative Clifford al-
gebra Clp,q, also called geometric algebra (GA), where 
the indices p and q represent the metric of space [1]. 
For example, Cl3,0 describes Euclidean 3D space, 
while Cl3,1 and Cl1,3 describe Minkowski’s spacetime. 
Therefore, selection of a particular GA automatically 
defines the geometry of space. This allows one to solve 
the quantum mechanical, electrodynamics and gravi-
tational problems in a more efficient coordinate-free 
way [1–3]. In this report we consider the prospects of 
application of the Clifford algebra to graphene which, 
as known, incorporates a number of relativistic prop-
erties, such as Dirac spectrum and Klein tunnelling. 
In particular, we shall consider the Hamiltonian of a 
monolayer graphene when electron spin is neglected 
and included.

2. Spinless graphene in terms of Cl3,0 algebra

Cl3,0 algebra consists of scalar, three vectors σ1, σ2, σ3, 
three bivectors Iσ1, Iσ2, Iσ3, and pseudoscalar I = σ1σ2σ3. 
The time-dependent Schrodinger-Pauli equation for a 
monolayer graphene in terms of Cl3,0 reads [4]:
∂tψIσ3 =  kψσ3.    (1)

Here k  =  kxσ1  +  kyσ2 is the electron wave vector and 
ψ = a0 + a1Iσ1 + a2Iσ2 + a3Iσ3 is the spinor, where ai s 
are the real numbers. Note that σiσj + σjσi = 2δij. The 
role of the imaginary unit here is played by the bivector 
Iσ3 =σ1σ2.

The right-hand side of (1), H 30(ψ)   = kψσ3, repre-
sents the Hamiltonian function which can be rewrit-
ten as a sum of two projectors P +(ψ)  and P–(ψ)  in 
the following way:

  (2)

where  is the unit wave vector, 
and h ±  =   ±1 represents the helicity quantum num-
ber. The projectors 

 
select the parts 

of the multivector ψ that are parallel (+) or antiparal-
lel (–) to k. Thus, we have two good quantum num-
bers, the wave vector k  >  0 and helicity h =  ±1.

From the projective representation, Eq. (2), follows 
that ψ can be written a sum of two parts having opposite 
helicities: ψ = ψ+ + ψ–. Then, the respective eigenener-
gies E+ and E– can be found from two independent mul-
tivector eigenequations, H30(ψ±) = E±ψ±, or in a full form

   (3)

This equation can be rewritten in a form of rotor 
equation, , where â and b̂ are two unit 
vectors in 3D space and R is the rotor which satisfies 
RR~= ~RR = 1. The tilde denotes the reversion operation 
[1]. Thus, Eq. (3) in rotor form is
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     (4)

where ψ should be normalized .1~~ == ψψψψ  The 
property that ψ represents the rotor allows one to ex-
press ψ± as a rotation of σ3 in the bivector plane that is 
made up of vectors k^ and σ3, Fig. 1,

   (5)

where the wedge (or outer) product    
 represents the bivector. If the obtained spinors 

are inserted back into Hamiltonian (2), the conduction 
and valence band eigenenergies are satisfied: 

Since the helicity is a good quantum number, one 
can make a superposition of two states having opposite 
helicities:

  (6)

where β is a mixing, angle. Then the energy of this 
state is found to be 

    (7)

This formula shows that the electron energy can be 
varied in two ways, either by changing the wave vector 
magnitude, or by making an appropriate superposition 
with opposite helicities.

3. Graphene in Cl3,1 algebra with spin included

Cl3,1 consists of 16 basis elements: scalar, a set of four 
vectors {e1, e2, e3, e4}, two sets of bivectors {e12, e23, e31} 
and {e14, e24, e34}, four trivectors {Ie1, Ie2, Ie3, Ie34}, and 
finally of pseudoscalar I ≡ e1234, where abbreviation 
e1e2 ≡ e12 etc. was used. The signature is determined by 
squares of vectors: ei

2 = 1 for i = 1, 2, 3 and e4
2 = –1.

With electron spin included, the Hamiltonian ma-
trix of a monolayer graphene is usually described in the 

basis {A↑, A↓, B↑, B↓}, where A and B are inequivalent 
carbon atoms in an elementary cell, and up and down 
arrows indicate electron spin states. The equivalent 
Hamiltonian function in GA that describes such Ham-
iltonian is [5]

H31 (ψ) = (ηk x e1 + k y e2)ψIe3,    (8)

where η  =  1 for K-valley, and η  =  –1 for K’-valley. 
ψ is the spinor which consists of sum of even grade 
elements (scalar + pseudoscalar + bivectors). In the 
following we shall take into account two interaction 
mechanisms related with spin, namely, spin-orbit 
(SO) Rashba and exchange interactions characterized 
by parameters λR and M. The respective interaction 
Hamiltonian in GA reads [5]:

 (9)

where λR and M are measured in units of the nearest 
neighbour hopping parameter. The time-dependence 
of ψ is described by

∂tψe12 = H31(ψ) + Hi(ψ) ≡ H(ψ).  (10)

It should be noted that Eq.  (10) is not of Dirac-
type. In the relativistic equation instead of the bivec-
tor e12 there appears the spacelike vector e4 the square 
of which gives –1 [1]. Figure 2 shows the spectrum of 
considered Hamiltonian H(ψ).

To solve (10) and respective eigen-multivector 
equation H (ψ i)   =   E iψ i, where i  is the band index, 
we introduce the spatial inversion operation denoted 
by a bar over the multivector M,

—M = –e4Me4.    (11)

It satisfies the following properties: –ei = –ei if i = 1, 2, 3; 
–e4 = e4;  . The spatial inversion allows to 
divide the general bispinor into two parts: ψ = ψ+ + ψ–, 

Fig. 1. Cl3,0 basis vectors σk and wave vector k with re-
spect to graphene plane. Rotation of σ3 towards ±k gives 
the eigenspinors of the problem.

Fig. 2. Spectrum of monolayer graphene with Rashba 
and exchange interactions included (λR = 0.3 M  = 0.2). 
The wave vector axis is normalized to kc = 2π/a (a is the 
graphene lattice constant).



A. Dargys / Lith. J. Phys. 54, 33–36 (2014)35

where 

ψ + =  a 0 + a1e23 + a2e13 + a3e12,

ψ – =I (–b 0 + b1e23 + b2e13 + b3e12), (12)

and where ai and bi are real. If applied to ψ, the spatial 
inversion gives –ψ = ψ+ – ψ–. The division of even and 
odd parts allows to introduce respective rotors in the 
subspace spanned by spatial basis vectors e1, e2, and e3, 
i. e. although full ψ does not represent the rotor in Cl3,1, 
nonetheless, its parts ψ+ and Iψ– do. Their normalization 
is ~ψ+ψ+  =  a2

0  +  a2
1  +  a2

2  +  a2
3 and ( ~Iψ–) (Iψ–)  = 

b2
0 + b2

1 + b2
2 + b2

3. As we shall see, the knowledge of 
rotors, as in Cl3,0 algebra, allows one to construct the 
eigenmultivectors.

Using the eigenequation H(ψ) = Eψ and its inverse —H(ψ)  =  E –ψ one can construct, for example, the 
following rotor equation for even spinor ψ+,

, (13)

as shown in Fig. 3, where the vector a(i) is related with 
the i-th band eigenenergy E(i),

 

(14)

Now ψ+
(i) / |ψ+

(i)| = R+
(i) are rotors that satisfy R+

(i)   ~R+
(i) = 1. 

   
(15)

where the brackets indicate the scalar part. The true 
values should be multiplied by ħ/2. Figure 4 illustrates 
a spin field calculated with (15) and band parameters 
M = 0.05, λR = 0.2.

If SO interaction is switched off, λR = 0, the a spin 
field reduces to a very simple form SK

(i) = (S1
(i), S2

(i), S3
(i)) = 

(0,0, ±1) where the plus sign is for i = 1, 4 and the 
minus sign for i = 2, 3 bands, Fig. 2. Thus, now the 
lowest conduction E(4) and the highest valence E(1) 
bands have the same spin direction perpendicular to 
graphene plane.

When M = 0, the spin formulas simplify to

  (16)

i. e. in this case the average spin lies in the graphene 
plane and simultaneously is perpendicular to 
k = k(cos φ, sin φ, 0). At large k values, when E(i) ~ k, 
the spin magnitude approaches free-space value.

It can be shown that the scalar product of SK
(i) and 

k is always equal to zero, if λ ≠ 0 and M ≠ 0. There-
fore, the spin will always remain perpendicular to the 
wave vector. The additional degree of freedom which 
determines whether spin lies in or is perpendicular 
to graphene plane (or takes an intermediate position) 
depends on dispersion of a particular band.

Berry phase. In Cl3,1 the Berry phase is [5]

  (17)

We shall assume that points j lie on the circle 
around the energy valley and thus can be described 
by a single parameter, the azimuthal angle ϕj. The 
matrix element 1+jjψψ between adjacent points can 
be calculated by expanding the bispinor ψj in the vi-
cinity of ϕj. Then to the first order in δϕ we find that 

 and  so that
Fig. 3. Basis vectors e1, e2, and e3, wave wector k, and 
plane   B̂ that contains vectors e3 and a (or b). The line 
that connects K and K’ valleys in the first Brillouin zone 
is parallel to e1.

Fig. 4. Field of spins represented in kx–ky plane for upper 
E(1) valence band.

The vectors e3 and a(i) allow to construct the unit 
rotation plane (bivector  B̂(i) in Fig.  3) and rotation 
angle θ using the standard GA rules [5]. Similar 
calculations give the second rotor (Iψ–

(i)). The 
total bispinor of the i-th band then is equal to sum 
ψ(i) = ψ+

(i) + ψ–
(i). Below a few examples- are presented 

how bispinor ψ(i) can be applied to calculate electron 
spin and Berry phase.

Spin. The average spin components in Cl3,1 are
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   (18)

where β(i) is a function of k, λR and, M. Calculations 
show that β(1)  =  β(4) and β(2)  =  β(3), i.  e. we have the 
same Berry phase for conduction and valence bands 
having similar dispersion character. Insertion of (18) 
into (17) gives the Berry phase

  (19)

We find that Г(1)  =  Г(4) and Г(2)  =  Г(3). When one of 
interaction mechanisms is turned off, the expression 
for the Berry phase reduces to a simple form: Г = 3π if 
λR = 0, and Г = 2π if M = 0, which are independent of 
the band index. Figure 5 shows the dependence of Г(i) 
on k. The steps in Г(i) are related with energy minima/

maxima in the respective spectra, Fig. 2. Calculations 
show that Berry phases for K- and K'-valleys are the 
same.

In conclusion, the relativistic Minkowski’s space-
time algebra Cl3,1 and its subalgebra Cl3,0 can be used 
to analyse graphene properties. Earlier [4] it has been 
shown that the smaller Cl2,0 algebra which describes 
the true flatland is unsuitable for this purpose.
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CLIFFORDO ALGEBROS TAIKYMAS GRAFENO ANALIZEI
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Santrauka
Remiantis Cliffordo algebra išnagrinėtos vienasluoks-
nio grafeno savybės. Parodyta, kad mažiausia iš Clif-
fordo algebrų, su kuria dar galima analizuoti grafeną, 
yra Cl3,0 algebra, nusakanti trimatę Euklido erdvę. Kaip 
parodyta anksčiau [4], plokštumos algebra Cl2,0 yra per 
maža, kad galėtų aprašyti kvantines grafeno savybes. Jei 
papildomai reikia įskaityti elektrono sukinį, minėtos 

Cl3,0 algebros jau nepakanka. Darbe parodyta, kad tokiu 
atveju patogu naudotis didesne Cl3,1 algebra, kuri aprašo 
reliatyvistinę Minkowskio erdvę. Cl3,0 ir Cl3,1 algebrų at-
vejais nustatyta, kad elektrono banginę funkciją galima 
sukonstruoti su kiekvienos iš algebrų rotoriais. Gautos 
atitinkamos rotorių išraiškos. Pasitelkus Cl3,1 algebrą, 
išnagrinėtos elektrono sukinio ir Berry’io fazės savybės.


