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Photoexcited kinetics of electrons and holes in two-band dielectric including phonon-assisted generation of the electron-hole 
pair is modelled by combining the quantum field and solid-state band theory. These methods create an explicit time-domain rep-
resentation of photoinduced processes without resorting to the perturbation theory for the electromagnetic field. Input entities 
for the two-band model are dispersion relations for the electron and hole, the band-gap, and the phonon frequencies computed 
by nonrelativistic methods or found experimentally. The phonon-assisted electron-hole pair kinetics is initiated by the Baker-
Campbell-Hausdorff canonical transformation accounting for the back reaction of phonons to the electron-hole subsystem. The 
output is a unifying phonon-assisted description of the distribution function of electron and hole quasiparticles.
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1. Introduction

The electron-hole (e-h) pairs are structures with a 
unique combination of solid-state and atom-like 
properties. The atomic view emphasizes electron and 
hole properties at short distances obeying relativistic 
conditions and formalism of the quantum field the-
ory (QFT) according to which the concept of a single 
point-like particle breaks down completely [1]. The 
solid-state view emphasizes particle properties of elec-
trons and holes.

The impact of phonons is a long standing problem 
distinguished by the type of particle-phonon interac-
tion elaborated in pioneering models of Fröhlich [2, 
3] and Holstein [4, 5] for optical phonons with a polar 
long-range interaction and non-polar short-range in-
teraction, correspondingly. In modern approaches [6] 
the electromagnetic radiation and electron-phonon 
interaction are central and play a crucial role in mod-
elling polymers, ferroelectrics, and several important 
classes of perovskites. Contemporary techniques to 
describe phonon-assisted photoexcited dynamics of 
electrons and holes range from ab initio time-depend-
ent density functional theory [7] and non-adiabatic 
molecular dynamics [8] to the advanced semicon-
ductor (SC) approach [9]. Nevertheless, restrictions 
of the SC approach appear in a strong field and non-

adiabatic effects that cannot be eliminated within the 
existing rotating wave and perturbation approaches. 
Although the SC approach is a quantum field ap-
proach, it has a perspective for joint application with 
the quantum electrodynamics (QED) considered in 
this work.

On the other hand, quantum physics of classical 
particles in the relativistic limit of the QFT is a funda-
mentally new approach to solid state [1]. The simplest 
result one can expect from the QFT is the birth and 
annihilation of non-interacting particles. It is defi-
nitely the problem of the phonon-assisted kinetics of 
e-h pairs.

In this work we are employing a rich experience of 
the QFT and QED in describing the nonperturbative 
kinetics of e-h excitations [10], strong field generaliza-
tion of the interband transitions [11], interband tun-
nelling [12], and also using some concepts of solid-state 
band theory [13]. The QED approach [10–12] starts 
with the dispersion relations for electron and hole, and 
band-gap value as input parameters are computed by 
nonrelativistic methods or found experimentally. Le-
vels of description range from a direct band-gap, effect 
of electromagnetic radiation, and the phonon-assisted 
e-h interaction.

A mathematical tool used here to describe e-h 
pairs, without resorting to the perturbation theory for 
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the electromagnetic field, is a complex scalar Klein-
Gordon (KG) type oscillator equation for a joint KG 
field function for the non-interacting electron and 
hole [11]. The solution of the oscillator equation 
obeys the general dispersion law and formally is giv-
en by integrals over the 4-dimensional space, second 
quantized Hamiltonian, canonical momentum opera-
tors, and finally by the distribution function for elec-
trons and holes.

This paper concentrates on some elements of gen-
eralization of the known case [11] where the electron 
and hole remain non-interacting unless electromag-
netic field is switched on. In the other case the inter-
action with the phonon subsystem is based on the 
electron-phonon interaction Hamiltonian [13–15] 
structured by mixed electronic and phonon operators. 
We turn to the Baker-Campbell-Hausdorff (BCH) ca-
nonical transformation of the interaction Hamilto-
nian [16] that disconnects the electron-phonon and 
hole-phonon interaction to a purely electronic and 
hole problem, so capturing both the effect of strong 
field electromagnetic interaction and the back reac-
tion of phonons. Our initial objective is not to make 
quantitative predictions for a specific experimental 
realization but to contribute to understanding the 
role phonons play in the kinetics of e-h excitation.

The arrangement of this work is the following: 
Section  2 considers the basic framework of a com-
plex KG approach for a system defined by the e-h 
pair fixed to hypersurfaces in the energy-quasi-mo-
mentum space. Both direct and indirect conduction 
and valence bands are allowed with e-h states obeying 
arbitrary dispersion laws. Section 3 addresses the KG 
field functions derived in accord with the case specific 
dispersion laws. In Section 4, the amplitude of inter-
band transitions and the e-h distribution function are 
shown to be the starting point of phonon-assisted e-h 
kinetics. In Section 5, the e-h phonon interaction is 
included making use of the BCH canonical transfor-
mation constituting the back reaction to the e-h sub-
system. The last Section 6 contains a short summary 
of the work. Natural units, ħ = c = 1, are used.

2. Basic framework

The QFT framework we address combines ideas from 
special relativity and quantum mechanics. Applica-
tion of this framework to the condensed matter phys-
ics is motivated by a real physical situation where the 
number of particles is not constant and keeps chang-
ing as a result of interaction with the lattice environ-
ment and external electromagnetic radiation. A route 
to relativistic quantum mechanics starts with then 
classical nonrelativistic particle theory. In case of a 

non-interacting electron and hole, their states are dis-
tinguished exclusively by potential energy and quasi-
momenta. The joint e-h description is obtained by 
the product of electron and hole states and their first 
quantization.

The system is defined by an e-h pair fixed to hyper-
surfaces in the energy-quasi-momentum space with 
e-h states in the conduction and valence bands [11]:
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where dispersion laws of the kinetic energy εc(p) and 
εv(p) are either assumed on the phenomenological ba-
sis or calculated by methods of nonrelativistic quan-
tum mechanics. Here, the band-gap Δ and the band 
boundaries represented by dispersion laws εc,v(p) re-
main presumably invariable quantities. Electron and 
hole (below regarded as an antiparticle to the elec-
tron) states are correlated and allow joint description 
in terms of the general second order dispersion:

 .    (2)

For quadratic dispersion and in effective mass ap-
proximation Eq. (2) becomes

  (3)

In case of an indirect band-gap, the dispersion 
laws in Eq. (1) are written as εc(p–p0c) and εv(p+p0v), 
where the difference between the electron and hole 
momentum is (p0c–p0v). The first quantized free-field 
equation of motion of Eq. (3) is given by relation

 , (4)

where Ψ(x, t) is a total wave function and  . 

In this first quantization notation the kinetic Eq. (4) 
reads as follows:

   
(5)
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This first step toward relativistic description is simi-
lar to the deducing canonical KG equation for a free 
particle of the rest mass and 3-momentum. However, 
the difference is that the quantized kinetic equation for 
the e-h pair comprises extra dispersion specific terms 
managed in oscillator equation technique and reexam-
ined in this Section. With application to the two-band 
model the transition from Eq. (1) to Eq. (5) is very im-
portant for our aim and was motivated earlier in [12].

For subsequent application of the Lagrange-Ham-
ilton formalism the kinetic Eq. (5) is transformed to 
the uniform differential form of the second order with 
respect to time without the first order time derivative 
stipulated by the asymmetry of electron and hole en-
ergy states in the reference energy-quasi-momentum 
frame. Such equation is obtained if the auxiliary func-
tion Φ(x, t) is introduced:

 
, (6)

which turns Eq. (5) into the oscillator equation:

 (7)

The terms at auxiliary function are assigned to the 
effective frequency and constitute the oscillator-type 
equation [17]:

 ,   (8)

with the effective frequency operator

.   (9)

The oscillator equation technique allows trans-
forming the quantized kinetic equation in a uniform 
differential form for the auxiliary function applicable 
to the Lagrange-Hamilton formalism. The oscillator 
equation is restricted to the second order because of 
the mass-shell condition. The underlying physics is 
that particle creation is harmonized with the general 
dispersion law. In strong sense, the second order in 
the time oscillator (KG) equation is intermediate be-
tween the Schrödinger and Dirac equations. The level 
of approximation of the KG approach is the complex 
fields obeying relativistic requirements for e-h pairs 
with a zero spin. Development toward spin-½ par-
ticles within the framework of the Dirac equation is 
beyond the scope of this work.

The Lagrangian density for the auxiliary function 
depends on its second order time and space deriva-
tives and the effective frequency operator comprising 
the parameters of band structure: 

 (10)

The Lagrangian density for the total field function 
Ψ(x, t) is found by inverse transformations:

              (11)

where the term-by-term transformation of the La-
grangian density, Eq. (10), in the field function rep-
resentation reads as

(12)

As a result, the Lagrangian density in the field 
function representation is given by

  (13)

Expansion of the Lagrangian density,

  (14)

gives the canonical moments and the Hamiltonian 
density as follows:

        (15)
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.               (16)

Equations (14), (15), and (16) complete the free-
field Lagrange-Hamilton formalism. For symmetric 
valence and conduction bands |εv(p)| = |εс(p)| the free-
field Lagrange-Hamilton formalism reduces to the 
classic KG equation with Δ/2 effective mass. In general, 
the operators )ˆ(c pε and )ˆ(v pε  generate higher order 
gradients related with possible soliton-type solutions. 
However, they are beyond the scope of this work.

The next step is to couple the KG oscillator field 
to the external electromagnetic field. An obstacle 
in the quantized theory appears because the KG 
oscillator field has 4 components while the mass-
less spin-1 photon associated with the external 
electromagnetic field has only two physical degrees 
of freedom. Additional conditions that explicitly 
restrict the number of degrees of freedom to two 
are introduced within the Coulomb gauge A0  =  0; 
∇  ∙ A = 0, which, introducing a spin-1 field, leads 
to the covariant derivative Dμ = ∂μ + ieAμ and then, 
for a charge with its sign included, the substitution

ApPp e+=→ ˆˆˆ  [12]. In accordance with the meth-
od of [17], substitution Pp ˆˆ →  will be made in the 
field function and canonical momenta as given ex-
plicitly in the next Section. 

3. Field functions

Due to higher order gradients in the effective fre-
quency operator, Eq.  (9), the construction of field 
functions deviates from the standard Euler-Lagrange 
equation technique and requires decomposition of 
the field function as a sum of plane waves harmo-
nized with the general dispersion law, Eq. (2). With-
in the decomposition approach the field function is 
searched as a sum of plane waves:

,                 (17)

where the expansion coefficients ~Ψ(p,  t) are harmo-

nized with the dispersion relation ~Ψ(E, p) by Fourier 

transformation . As a result, the 

field function, Eq. (17), reads as 

. (18)

Here the Fourier transformed expansion coeffi-
cients in Eq. (17) are equal to the delta function of 
dispersion relation  ~Ψ(E, p) = δ(g(E, P)) and the delta 
function inside the integral Eq.  (18) formally is de-
fined as a distribution function g(E, P).

Finally, the integral in Eq. (18) coincides with the in-
tegral form of the generalized scaling property written as

               (19)

Here E1 = Δ/2 + εc(Pc(t)) and E2 = –Δ/2 – εv(Pv(t)) 
are zeros of the dispersion laws for electrons and 
holes, correspondingly, and Pc = p + eA, Pv = p – eA, 
and the charge of the electron is set as e = |e|.

The functions in numerators are f(Ei, p) = ψ(Ei p) 
e–iEit, or in an expanded form:

,               (20)

 .          (21)

The derivative of the dispersion relation reads as 
∂g(E,  p) / ∂E  =  2E  –  εc(Pc(t))  +  εv(Pv(t)) and deter-
mines denominators in the expansion, Eq. (19). Since 
|g'(E1)| = |g'(E2), it is convenient to introduce an effec-
tive frequency

 .               (22)

Putting this together one arrives at the field func-
tions harmonized with dispersion laws and represent-
ed by sums over the discrete momentum space. The 
direct field function reads as

  (23)

The complex conjugate field function of (23) reads as

    
(24)
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derived from relations [12]

, (30)

,   (31)

where ae(p, t) → ae(p)e–i(εc+Δ/2)t, ah(–p, t) → ah(–p)ei(εc+Δ/2)t 

and similarly for creation operators [11]. In contrast 
to Eqs. (23)–(28), the impact of the external field on 
the field operators is abandoned for simplicity. The 
total Hamiltonian Htot(t) comes from free Hamilto-
nian Eq. (16) [11] and Eqs. (30), (31) as

      
(32)

In Eq.  (32) the new time-dependent operators 
ae,h(p, t) obey the exact equations of motion and can 
be obtained from the principle of least action [11]:

 ,  (33)

or, explicitly, the action is

.(34)

Here the frequency of interband transitions is giv-
en by

 .                (35)

Kinetics for the electron and hole operators are 
obtained from Eq. (34) by minimum action principle 
that yields two pairs of differential equations. The first 
pair, Eq. (36), is for the electron/hole annihilation 
operators, the second pair is complex conjugate and 
describes kinetics for the electron/hole annihilation:

      (36)

The first term in the right hand side of Eq.  (36) 
describes intermixing of the electron and hole states. 
It is assumed here that the system is found in the 

For subsequent operator representation Eqs. (23), 
(24) are written as,

       (25)

          (26)

With designation accounting for arbitrary disper-
sion laws |Δ + εc(Pc(t)) + εv(Pv(t))| = 2Ω(P, t) and nor-
malization a(P, t) / (V 2Ω) ⇒ Δ1/2 / (V2Ω(P, t))–1/2 [11], 
the field functions in operator representation then read:

                
(27)

or after substitution of appropriate operators as

               (28)

Equations (27), (28) constitute the background for 
Lagrange-Hamilton formalism in quasiparticle repre-
sentation.

4. Kinetics of electron-hole pair

The basic object of the kinetic theory of e-h pairs is 
their distribution function connecting dominant 
physical features of the single e-h excitation with the 
many-body description. In a broad sense, the prob-
lem is in the description of observable effects of a 
large number of electrons and nuclei moving in a cor-
related way in the dielectric solid.

Formally, the kinetics of e-h pairs is distinguished 
by their distribution functions of electrons and holes 
[12]

fc,v(p, t) = 〈0|a+
c,v(p, t) ac,v (p, t)|0〉,               (29)
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vacuum state |0〉 of electrons and holes at the initial 
momenta t0 → –∞.

The general vacuum state found by differentiat-
ing the distribution function, Eq.  (29), with respect 
to time and using equations of motion, Eq. (36), [12] 
reads as

·
fc,v (p, t) = λ(p, t){fc,v(p, t) + fv,c (p, t)},              (37)

where the auxiliary correlation functions are intro-
duced:

fcv(p, t) = 〈0|ac
+ (p, t) av (p, t)|0〉,

fvc(p, t) = 〈0|av
+(p, t) ac (p, t)|0〉.                (38)

The equations of motion for auxiliary correlation 
functions (38) are obtained in the integral form:

 ,               (39)

where now fc = fe and fv = 1 – fh, fe and fh are the elec-
tron and hole distribution functions. In Eq. (39) the 
following initial condition has been introduced:

 
.                 (40)

Then the kinetic equation for the e-h quasiparticle 
distribution function [12] reads as

                (41)

where the dynamical phase is given by 
  

 
[11].

In Eq.  (41) we follow the notation of [11], and the 
change of variables p → P was not implemented explicitly.

The densities of observables follow from the qua-
siparticle distribution functions of electrons and 
holes by rewriting Eq. (41) in a gauge invariant form, 
changing variables p → P in the distribution functions 
f(p, t) →f(P, t), and averaging over the vacuum state of 
the corresponding operators [11].

The derived quantities of the kinetic theory of e-h 
pairs include densities of total energy, carrier (e-h pair) 
number, and total current [12] ([dp]  =  (2π)–3  d3 p): 

ω(t) = 2∫[dp] [2ε(p, t) + Δ] f (p, t),               (42)

n(t) = 4∫[dp] f (p, t),                 (43)

,  (44)

where u(p, t) may be found from solution of Eq. (41) 
as 

·
f = λu as a result of numerical analysis. Equations 

(42)–(44) are written in a thermodynamic limit 
V → ∞ [12].

It is important to observe that this form of KG for-
malism has been developed earlier in the study of ul-
trafast and strong field interband transitions [11, 12].

Complementary approaches to this KG formal-
ism include approximate solutions for Hamiltonian 
systems structured of a non-interacting and a driving 
term. Examples are an atom in the electromagnetic 
field (dipole approximation) and its simplification for 
light frequency presumably close to the energy differ-
ence between two states of the atom.

In another, rotating wave approximation (RWA), 
the radia tion field is formally split in a product of 
a slow-varying envelope and a fast-oscillating har-
monic function. RWA gives solutions of Schrödinger-
type problems in an appropriate analytic form. How-
ever, the conditions for the RWA to be valid are (i) 
limited by the spectral width of the light pulse much 
less than the light frequency, (ii) the light frequency 
is near-resonant with the transition frequency, and 
(iii) the Rabi frequency is much less than the transi-
tion frequency.

A successful example of RWA is elaborated in [9] 
for the dynamics of electrons and holes in a semicon-
ductor with their interaction described by the e-h pair 
dynamics similarly to that in Eq. (4). In spite of stand-
ard limitations of the perturbation technique, the SC 
approach [9] captures a rich scope of properties of 
the e-h pairs and excitons, including their deviation 
from the composite boson state. Otherwise, the KG 
formalism is nonperturbative in its nature, allows to 
calculate the non-equilibrium distribution and all rel-
evant derived quantities. Yet, to use its potential com-
pletely, the e-h interaction with other fields is highly 
motivated.

Our contribution is to employ the KG formalism 
in conjunction with the back reaction of the phonon 
subsystem to the formation of the electron-hole sub-
system. It is expected that this will allow more realis-
tic exploration of phonon-assisted kinetics of e-h pair 
creation in solids.

5. Electron-phonon and hole-phonon interaction

Many-particle models unavoidably lead to the problem 
of particle interaction. Examples include electron-nu-
cleus interaction described by a combination of Dirac 
and KG equations [18] and plasma oscillations making 
use of the quantum Vlasov equation [19]. In contrast, 
the mathematical technique addressed to the photoex-
cited kinetics of electrons and holes in lattice systems 
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is different and the effect of interaction is treated here 
making use of a supplementary interaction Hamiltoni-
an that modifies the total Hamiltonian Eq. (32) by the 
back reaction term. In this Section, the reduced Planck 
constant ħ is restored.

For the system consisting of e-h and phonons we 
redefine the total electron-hole Hamiltonian Eq.  (32) 
by adding the phonon and particle-phonon interaction 
terms:

                (45)

where ħωq is phonon energy with momentum q and 
{cq

+, cq} are respective phonon creation and annihila-
tion operators. The dispersion of electrons and holes 
are Ec(p) = Δ/2 + εc(p) and Ev(p) = –Δ/2 – εc(p), and 
V(e,h)q

 are matrix elements weighting the combina-
tions of creation and annihilation operators [13].

For further application of BCH it is convenient to 
rewrite Eq. (45) in the sum of a bare Hamiltonian and 
particle-phonon interaction Hamiltonians:

H = H0 + H1
e + H1

h.                 (46)

Here, the bare Hamiltonian reads as

.    (47)

To focus on the e-h subsystem we decouple the 
electron-phonon and hole-phonon interaction by 
means of BCH canonical transformation

 ,          (48)

where S is a generator of the transformation (must 
not be confused with the action in Eq. (34)). Substitu-
tion of Eq. (46) into Eq. (48) redefines the H1 term of 
Hamiltonian Eq. (46) as

~H = H + [H, S] + … = H0 + H1
e + H1

h

+ [H0 + H1
e +H1

h, S] = H0 + [H1
e + H1

h, S].             (49)

The next step [16] is to eliminate linear electron-
hole-phonon interaction by condition

H1
e + H1

h + [H0, S] = 0.               (50)

Then, cancelling higher orders of S in Eq. (48), we 
obtain in the second order perturbation approach

 
.               (51)

Substitution of Eq.  (51) back into Eq.  (49) gives 
the expected BCH as

� � int0

h

1

e

10 ,
2

1~ HHHHHH ����� S
 
.               (52)

The BCH transformed Hamiltonian Eq.  (52) 
contains two new entities  –  the generator of trans-
formation S and the interaction Hamiltonian Hint. 
Calculation of the matrix elements of S in the basis 
of eigenfunctions of a nonperturbed Hamiltonian 
H0|n〉  =  En|n〉 (here En are eigenvalues of a nonper-
turbed (bare) Hamiltonian) and making use of 
Eq. (50) gives the relation

〈m |H1
e|n〉 + 〈m |H1

h|n〉  

+ 〈m |H0S|n〉 – 〈m |S H0|n〉 = 0.  (53)

The third and fourth terms of Eq.  (53) generate 
products of matrix elements 

               (54)

               (55)

Putting together Eqs. (54) and (55) gives the ma-
trix element of S as

               (56)

Similarly, the matrix elements of Hint follow from 
the relation in Eq. (52) as

, (57)

where the following notation was introduced:
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               (58)

Going back to the matrix of the interaction Ham-
iltonian Eq.  (57) we find the following constituents 
of the electron-phonon and hole-phonon interaction 
due to the exchange of virtual phonons:

                               59)

                (60)

                (61)

                (62)

Here, the sums run over momenta p, q and inter-
action factors V(e,h)q

, Eq.  (45), are temporarily omit-
ted. If there are no holes, then H1

h = 0, and only the 
electron-phonon interaction remains. The particle-
phonon interaction terms, Eq. (45), constituting the 
matrix elements in Eqs. (59)–(62) read as

 ,                  (63)

 ,              (64)

where a+
e,h and ae,h are operators that create/annihilate 

electrons and holes, correspondingly. These operators 
are known entities that can be obtained from Eq. (36). 
The operators c+ and c are assigned to phonons. Detailed 
calculations are addressed to interactions in Eqs. (59)–
(62) where the states 〈m| and |n〉 contain no phonons.

We shall illustrate the regular procedure by cal-
culating the electron-phonon interaction in Eq.  (59). 
Substitution of Eq. (63) in Eq. (59) and neglecting the 
interaction factor V(e)q

 and summing over p, q and g 
give two matrix elements:

                (65)

The first matrix element,

e11 = 〈m|a+
e, p+qae,p' cq + c+

qa
+
e, p'–qae, p'|g〉 =

〈m|a+
e, p'+qae, p' cq|g〉,                 (66)

creates an electron with momentum p' + q, destroys 
(annihilates) an electron with momentum p', and de-
stroys a phonon with momentum q. The difference 
between states is

Eel(p' + q) – Eel(p) – ħωq.                (67)

The second matrix element,

e12 = 〈g|a+
e,p+qae, pcq + c+

qa
+
e, p–qae, p|n〉 =

〈g|c+
qa

+
e, p–qae, p|n〉,               (68)

creates an electron with momentum p – q, destroys 
an electron with momentum p, and creates a phonon 
with momentum q. The difference between states is

–Eel (p – q) + Eel(p) – ħωq.                (69)

Using Eqs. (66)–(68) and restoring the interaction 
factor V(e)q and sums over p, q the electron-phonon 
interaction in Eq. (59) reads as

.         (70)

Calculations similar to those in Eqs.  (65)–(70) 
yield

.            (71)

        (72)
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         (73)

The energy conservation law E(p' + q) – E(p') =   
–E(p) + E(p – q) substituted in Eqs. (70)–(73) repre-
sents the effective interaction in form [14]

              (74)

       (75)

        (76)

      (77)

Finally, the interaction Hamiltonian that specifies 
the back reaction of phonons is given by the sum of 
particular interactions in Eqs. (74)–(77) as

Hint = e + h + he + eh,               (78)
where the creation and annihilation operators of elec-
trons and holes ae

+, ae, ah
+, ah as well as the dispersions 

E(p) are known momentum- and time-dependent 
entities. The interaction Hamiltonian and the fre-
quencies of interband transitions can be obtained 
from Eqs. (34) and (35) as

Htot →Htot + Hint.                 (79)

As a result, the canonical approach to strong field 
interband transitions [11] is maintained both in its 
QFT and QED parts. An exception appears at the 
minimal action stage, Eq.  (34), in which the total 
Hamiltonian Eq. (32) is supplemented by the interac-
tion Hamiltonian Eq. (78). The operator equations of 
motion follow from Eqs. (34) and (79) by variation on 
the amplitudes and subsequent transition to the occu-
pation number representation with anticommutation 

relations [ae,h(p), a+
e,h  (q)]=dp,q and equations of mo-

tion, Eqs. (63) and (64) [11], calculations of distribu-
tion functions, Eqs. (41) and (42) as well as the derived 
quantities (densities of total energy, Eq. (42)), carrier 
(e-h pair) number, Eq. (43), and total current, Eq. (44).

General definitions for optical response start with 
the connection between polarization current and di-
pole momentum density as [12]

jpol(t) = ·P(t).                 (80)

For stationary processes Eq. (80) leads to the op-
tical susceptibility and the absorption coefficient de-
fined by its imaginary part. However, the quantum 
kinetic theory, which combines the dispersion prop-
erties of both electron and hole, Eq. (1), is addressed 
especially to the e-h states and relevant physical quan-
tities far from equilibrium.

The resulting kinetics contains two time scales: 
one associated with the external field and another 
with the phonon frequencies. Their coupling leads to 
a very complicated structure of the distribution func-
tion and is of interest for a more adequate descrip-
tion of a non-parabolic dispersion, observables under 
strong fields far from equilibrium, and for joint QED 
and SC approaches.

6. Conclusions

In this paper, we obtained a simple Baker-Campbell-
Hausdorf (BCH)-type solution to the phonon-assist-
ed kinetics of the electron-hole pair in a two-band 
model of dielectric solids. The mathematical back-
ground is focussed on the Klein-Gordon-type non-
perturbative kinetics in a strong electric field and 
electron-hole excitation. The results may be useful in 
describing the effect of femptosecond electromagnet-
ic radiation, impact of phonons, and consequences 
for observable effects.

The extension of a prototypic approach to strong 
field interband transitions is addressed to the back 
reaction of phonons within the BCH canonical trans-
formation that disconnects the electron-phonon and 
hole-phonon interaction to a purely electron-hole 
problem available for implementation in the quantum 
electrodynamics formalism. The output is a unifying 
description for the distribution function of electron 
and hole quasiparticles on the first, excitation, stage 
of their evolution. Extension of the present solution 
to the second, relaxation, stage after termination of 
radiation requires implementation of electrostatic in-
teraction and will be presented in a separate work.

The formalism described above is of interest for 
fine features of optical spectra under high-intensity 
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short-pulse laser radiation and for further develop-
ments to find a rationale from the joint quantum 
electrodynamics formalism and semiconductor ap-
proaches, namely, lift the limitations to the electro-
magnetic field in the semiconductor approach and 
introduce electrostatic interaction in the quantum 
electrodynamics formalism.
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