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Correct use of the photoelastic effect for the description of thermally induced refractive index change is discussed and the an-
alytical relations between thermo-optic coefficients at zero stresses and zero strains are found for all classes of cubic crystals. These 
relations may be useful for the investigation of thermal effects in very promising sesquioxide class m3 laser crystals. An accepted 
set of elasto-optical coefficients of the YAG crystal and an alternative one found in the literature were used in numerical simula-
tions. Significant differences in the calculated thermo-optic coefficients and induced birefringence are found using different sets 
of these coefficients. Misunderstandings related with the so-called photoelastic coefficients are resolved and new expressions for 
these coefficients are found. It is shown that the incorrect use of these coefficients for different pump beam distributions can lead 
to significant discrepancies for thermally induced birefringence. It is also shown that common use of the generalized thermo-optic 
coefficients significantly overestimates the values of optical power of thermal lenses when they are applied to the laser rods with 
lengths several times longer than their diameter.
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1. Introduction

The non-uniform temperature distribution in the active 
element (AE) of solid-state lasers (SSL) under the op-
tical pumping causes undesirable thermal stresses, 
deformations and end-face bulging of the  AE. Then 
the refractive index of AE is changing due to the joint 
action of linear thermo-optic (TO) and photoelas-
tic (PE) effects. Different aspects of thermal effects in 
SSL are studied in many laser monographs and re-
views [1–13]. The thermal lensing (TL) problem was 
first investigated for glass lasers [1, 5, 9, 10] when flash 
lamps were used for pumping of a long AE. Therefore, 
the  plane strain (PSn) approximation for cylindrical 
rods [14] was used for the  description of thermally 
induced stresses and deformations. In this approxima-
tion the  initially plane faces of the  AE remain plane 
for axisymmetrical pumping. In the  description of 
the refractive index change with temperature the TO 
coefficient βσ ≡  (∂n/∂T)σ=0 is commonly referenced in 
the literature [1, 2], because it may be easily measured 
experimentally using the free expansion of the speci-
men at zero stress. The TO coefficient βε ≡ (∂n/∂T)ε=0 at 
zero strain is used less often [5, 8]. Unfortunately, TO 
coefficients are used more often without the specifica-

tion and are simply denoted as dn/dT [6, 7, 9–10, 12, 13], 
∂n/∂T [3, 4, 11] or dn/dT [15].

Koechner (see [2] and references therein to the origi-
nal papers) and Foster with Osterink [16] were the first 
ones who developed a theoretical model for the ther-
mal lensing and birefringence in the Nd:YAG crystal 
grown in the crystallographic direction [111]. The me-
chanically isotropic properties of YAG allowed the use 
of the standard PSn approximation for the stress dis-
tributions with the  general axisymmetrical tempera-
ture distribution. However, the investigations of these 
authors were restricted to the  uniform pumping. It 
was shown that under the  uniform thermal loading 
of the  cylindrical AE with temperature independent 
thermal conductivity the quadratic radial dependence 
of the temperature distribution is achieved and that ra-
dial dependences of stresses and deformations are also 
quadratic for this case. The TO part of index change 
was described using the coefficient βσ and the fact that 
Nd:YAG is a  cubic crystal of symmetry class m3m 
was used in deriving the expressions for the PE part 
of index change. Nondimensional PE coefficients Cr,θ 
(in front of radially parabolic temperature terms) 
were introduced in [16] for the description of the PE 
part of the thermally induced refractive index change. 
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Afterwards they were accepted in the  first edition 
of Koechner’s monograph [2] and have been widely 
used till now, even in the graduate texts for students 
[17, 18]. It should be noted that in the practically un-
known paper [11] both grown directions [001] and 
[111] were considered for rod and disk shapes of AE 
made from YAG and Al2O3. The results of [19] were 
partly reproduced later in the monograph [1].

Around that time the  studies of the  TL in heat-
ed windows of a  high-power laser have started [20, 
21]. The  plane stress (PSs) approximation was used 
for the description of optical distortion in thin disk 
shape crystal windows neglecting their mechanical 
and photoelastic anisotropy. A  new generalized pa-
rameter χ = χ1 + χ2 + χ3 was introduced [22] for the de-
scription of the optical distortion effect in windows, 
where χ1  =  dn/dT is the  temperature derivative of 
the refractive index at zero stress, χ2 = (n0–1) αT (1+ν) 
is the  thermal expansion (bulging) term in the  PSs 
approximation, and χ3 is the  stress-optic term (n0 is 
the initial refractive index, αT is the linear expansion 
coefficient, and ν is the Poisson’s ratio). This approach 
was further developed by Klein [23, 24]. As will be 
shown later, the expression for the polarization aver-
aged PE part of the refractive index change obtained 
in [24] is not correct for the case of a long rod.

The generalized TO coefficients χr,θ were proposed 
in [25]. These coefficients incorporated the TO coef-
ficient dn/dT, the bulging term χ2 and the PE part of 
the  refractive index expressed through the  Cr,θ with 
reference to [2]. Several inaccuracies were made in 
this original proposal (see a detailed discussion later). 
It was properly indicated in the review paper [8] that 
the “PE constants” Cr,θ are different when using PSn 
or PSs approximations. However, it was also claimed 
in this review that “W. Koechner published incorrect 
values of these coefficients in his reference book [2] 
because the  temperature term in the  Hook law has 
been omitted”. In spite of the above remarks, the co-
efficients Cr,θ and χr,θ were widely used in the previ-
ous form, see as examples [9–13, 18]. It may be due to 
the impression which has arisen from the widely refer-
enced works of Cousins et al. [25, 26] that end-pump-
ing of SSL requires the obligatory use of the PSs ap-
proximation with the generalized TO coefficients χr,θ, 
incorporating the bulging term χ2 and the unspecified 
∂n/∂T and Cr,θ. The main goal of a recent paper [27] 
was to verify the existing analytical expressions due to 
Koechner and Foster & Osterink using finite-element 
simulations. The conclusion “that the Koechner and 
Foster  &  Osterink treatments are correct, and that 
Chenais et al. made mistakes in their derivation of 
the thermally-induced strain” was made in this paper. 
This confusion was resolved in papers [28, 29] though 

paper [27] was not known to us during the writing 
of these papers. It was shown that different, but in 
principle correct, expressions for the PE coefficients 
Cr,θ using the same PSn approximation were obtained 
due to the use of different TO coefficients (TOC) and 
different descriptions of the PE effect: (∂n/∂T)σ=0 (and 
the piezo-optic variant of the PE effect) was used in 
[2, 16], just when (∂n/∂T)ε=0 and the elasto-optic vari-
ant of the PE effect was used in [8].

In this paper, the  correct use of linear thermo-
optic and photoelastic effects for the  description of 
thermally induced refractive index change is briefly 
discussed and the analytical relations between TOC 
at zero stresses and zero strains are found for all 
classes of cubic crystals. It is shown that the use of PE 
coefficients Cr,θ for different (not only for parabolic) 
temperature distributions is invalid and leads to sig-
nificant discrepancies for thermally induced birefrin-
gence. The examples of inconsistent usage of the gen-
eralized TO coefficients χr,θ are discussed. It is shown 
that the  direct use of these coefficients significantly 
overestimates the values of optical power of the ther-
mal lens when the  PSs approximation is applied to 
the laser rods with lengths several times longer than 
their diameter.

2. Photoelastic effect and relations between 
thermo-optic coefficients

The constitutive equations of the  linear theory of 
thermoelasticity for homogeneous crystals have 
very clear and short expressions if they are written 
in a  tensor form. The  Hooke’s law [30, 31] was ex-
tended by Duhamel and Neumann to include the first 
order linear effect of thermal loading. This general-
ized Duhamel–Neumann law states that the  total 
strain εij = (∂ui/∂xj + ∂uj/∂xi)/2 at the point of a solid 
consists of the stress-induced elastic strain εσ

ij = sijklσkl 
and the strain caused by the free thermal expansion 
εT

ij = αT
ij(T–Tr): εij = εσ

ij + εT
ij [32]. Here ui is the deforma-

tion displacements, sijkl is the components of the 4th-
rank compliance tensor, σkl is the  stress tensor and 
αT

ij is the  coefficients of linear thermal expansion, 
Tr is the temperature field at which the body is stress 
free and strain free. The  inverted form of the  Du-
hamel–Neumann law is given in an indicial form by 
σij  =  cijklε

σ
ij, where cijkl is the  components of the  4th-

rank stiffness tensor [32]. The  summation conven-
tion where repeated indexes indicate summation is 
implied throughout this paper.

The change of the  relative dielectric imperme-
ability tensor Bij is commonly used for the phenom-
enological description of the optical effects induced 
in crystals [30]. Unfortunately, the  contributions of 
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TO and PE effects to the  thermally induced change 
ΔBij are generally treated separately as independent 
actions (see, for example, recent papers [27, 33, 34]). 
The change of the refractive index due to the TO ef-
fect for the temperature change ΔT = T–Tr is calcu-
lated first [27, 33, 34] as 

Δn(TO) = (dn/dT)ΔT (1a)

without specifying dn/dT. Then, it is assumed in [27, 
33, 34] that the components of the optical indicatrix 
can be calculated using the “equivalent” expressions

ΔBij = πijlkσkl or ΔBij = pijklεkl , (1b)

where πijlk and pijkl are the components of the piezo-
optic and of the elasto-optic tensors with the follow-
ing comments: “Normally one chooses one or the oth-
er formulation for use in a particular problem but, if 
done properly, the results will be identical” [27].

As explained in [29], if one wants to use stress or 
total strains in the  description of the  thermally in-
duced photoelastic effect, the  following expressions 
should be used:

Bij(T, σkl) = Bij
(0) + (∂Bij/∂T)Tr,σ=0 ΔT

+ (∂Bij/∂σkl)Tr,σ=0 σkl+…, (2a)

Bij(T, εkl) = Bij
(0) + (∂Bij/∂T)Tr,ε=0 ΔT

+(∂Bij/∂εkl)Tr,ε=0 εkl+… . (2b)

Here Bij
(0) is an initial impermeability tensor of the crys-

tal at the reference temperature Tr and zero stresses 
and strains, the second (different, in principle) terms 
describe the change due to the  linear TO effect and 
the  last terms (generally, also different) describe 
the change due to the linear piezo-optic or elasto-op-
tics effects [31]. Thus, the final results will be identical 
only if these differences will be carefully taken into 
account.

In general, the piezo-optic πijkl = (∂Bij/∂σkl)Tr,σ=0 and 
the elasto-optic pijkl =  (∂Bij/∂εkl)Tr,ε=0 tensors are sym-
metric with respect to i and j, but not necessarily sym-
metric with respect to k and l [35], due to the con-
tribution of rotation of the  volume element in an 
optically anisotropic medium. This symmetry is valid 
for cubic crystals only. A  cubic crystal with an ini-
tial refractive index n0 does not change its symmetry 
during free expansion (σkl = 0) and remains optically 
isotropic. Therefore, the change of an impermeability 
tensor with temperature change due to the linear TO 
effect can be expressed in this case as

Bij
(T, σ=0) = δij / [n0 + βσΔT]2, (3a)

and the total impermeability tensor can be presented as

Bij(T, σkl) = Bij
(T, σ=0) + πijklσkl . (3b)

If the full strain tensor εij is used [8], then an elas-
to-optic form of the  impermeability tensor change 
should be used [29]:

Bij(T, εkl) = Bij
(T, ε=0) + pijklεkl . (3c)

Here

Bij
(T, ε=0) = δij/[n0 + βεΔT]2. (3d)

Finishing the discussion of backgrounds of TO and 
PE effects, it is now appropriate, first, to note that it is 
mistakenly assumed in papers [33, 34] that the total 
strains εkl are expressed as εkl = (∂uk/∂xl + ∂ul/∂xk)/2+εT

kl 
(Eq. (2) in [33, 34]) with the redundant free expan-
sion term. Therefore, the constitutive Eqs. (3) and (4) 
in [33] are only valid if this additional term is switched 
off. Second, it is especially strange that the authors of 
[27], despite explicitly indicating difference between 
elastic εσ

kl and total εkl strains, do not recognize that 
Eq. (1b) will be actually equivalent if εkl were changed 
to εσ

kl [29].
The cubic sesquioxide Sc2O3, Lu2O3, and Y2O3 crys-

tals and their ceramics were used in the past decade as 
host materials of SSL. These media have thermal con-
ductivity comparable with that of YAG, whereas a Yb-
doped gain bandwidth is significantly larger. This fea-
ture allows obtaining pulses with duration down to  
50 fs at the oscillator output in the mode-locking re-
gime. Thermally induced depolarization and thermo-
optic properties of sesquioxide class m3 single crystals 
and ceramics are studied in recent papers [36–38]. 
Therefore, finding relations between βσ and βe is very 
relevant for such sesquioxide class m3 single crystals.

It should be noted that the  elasto-optic and pie-
zo-optic matrices of m3 and class 23 crystals are not 
symmetric and have four independent components. 
Using the  method proposed in [29] and Eq.  (3), 
the required relation

βσ = βε – αTn0
3(p11 + p12 + p13)/2 (4a)

is easily found. Using the  relation pmn  =  πmkckn [30], 
Eq. (4a) may be written as

βσ = βε – (αTn0
3/2) (π11 + π12 + π13) (c11 + 2c12),     (4b)

where cij is the components of the stiffness tensor.
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The previous result [29] follows easily from Eq. (4) 
if the  equality p13  =  p12 is taken into account [30]. 
It is also seen that Eq. (4) does not depend on p44 or 
π44. It is due to the  fact that only principal strains 
and stresses exist during free expansion or hydro-
static pressure of a cubic crystal. Unfortunately, we 
could not find in the literature any data concerning 
the values of elasto-optic or piezo-optic components 
of such crystals.

TO and expansion coefficients of YAG were mea-
sured many times and their values are widely ranged: 
βσ = (7.3–12.1) × 10–6 K–1 and αT = (5.8–9.9) × 10–6 K–1 
at 300 K. Meanwhile, paper [39] is the only one ref-
erenced in the  literature [1–13, 15–19] for the  val-
ues of measured elasto-optic coefficients (EOC): 
p11  =  –0.029, p12  =  0.0091, p44  =  –0.0615. However, 
different values p11 = 0.060 and p12 = 0.022 were mea-
sured in [40]. To the  best of our knowledge, there 
are no papers in which the results of [40] were dis-
cussed or refuted. Moreover, it was noted in the later 
work [41] that “Introduction of the  ions Er3+, Nd3+, 
Cr3+, Sc3+ into the garnet hosts significantly increas-
es the PE interaction parameter in comparison with 
the original crystals.” The following values were given 
for the  Er:YAG crystal: p*

11  =  –0.081, p*
12  =  –0.035, 

p*
44 =  –0.082. The  values of elasto-optic parameters 

for other garnets from this paper are referenced in 
[9], but for the YAG crystal the previous data from 
[39] is presented. It is seen that the values of EOC 
measured in these papers differ significantly not 
only in their magnitude but also in signs. We do not 
think that the doping can change so strongly the val-
ues of elasto-optic parameters, but if so, then new 
measurements of EOC for YAG crystals and first 
measurements for sesquioxide single crystals with 
different doping ion concentrations are needed. In 
a recent paper [42] the following values for polycrys-
talline YAG are obtained: ppc

11 = –0.0627, ppc
12 = 0.0260, 

ppc
44 = –0.0444. These values do not fulfill the equality 

p44 =  (p11–p12)/2 for isotropic solids [30]. We think 
that this situation may be possible for polycrystal-
line aggregates, but it is hardly probable for poly-
crystals the grains of which are much smaller than 
the wavelength at which pij is determined [43].

Thus, the difference βα = βε – βσ= αTn0
3(p11 + 2p12)/2 

changes not only the value but also its sign when dif-
ferent values of pij from [39–41] are used. The values of 
the ratio | βα |/βσ are equal to 0.04, 0.4, and 0.6 if data 
from [39–41] and the highest (for αT) and lowest (for 
βσ) values are used in calculations. However, the mi-
croscopic relation proposed in [8] between TOC for 
YAG gives a very high value of βε = 31.5 × 10–6 K–1 as 
compared with the value of βσ = 9 × 10–6 K–1 used in 
that paper.

3. Plane strain and plane stress approximations in 
thermal lensing

The PSn and PSs approximations of linear thermoe-
lasticity are widely used for the description of thermal 
refractive index changes in an elastically isotropic AE 
of SSL under axially symmetric pumping. In the po-
lar coordinate system the strain and stress tensors for 
both approximations have only the diagonal compo-
nents and are expressed [14] through the local tem-
perature ~T(r) = T(r) – Tr and average temperature T(r) 
changes in the circles with the radius r and R, the rod 
radius. PSn and PSs approximations are strictly valid 
for the temperature distributions which do not change 
along the  axial direction. The  expressions for stress 
tensors [14] can be written in a  particularly simple 
symmetrical form [29] if the following definitions are 
introduced:

, (5a)

 (5b)

Then, simple expressions for the refractive index 
in the plane strain (superscript j = 1) or plane stress 
(superscript j = 2) approximations may be found [29]:

.  (6)

Here upper (+) and lower (–) signs describe the radial 
and tangential components of index change and

, (7a)

, (7b)

, (7c)

, (7d)

where E is the Young’s modulus.
The above coefficients A1

(σ1,2) may be easily ex-
pressed through the  elasto-optic coefficients [29]. 
A superscript σ in these coefficients means that they 
should be used together with the TO coefficient βσ in 
Eq. (6). If Eqs. 3(c, d) with βε are used in the deriva-
tion of expressions for the refractive index, then for 
these coefficients A1

(ε1,2) a  superscript ε is used [29]. 
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As shown in [29], the equality βε + A1
(εj) = βσ + A1

(σj) is 
valid.

It is obvious that ceramic lasers [44] will be very 
widely used in the near future. Therefore, a short re-
view of the formulae used previously for the descrip-
tion of the PE effect in isotropic solid media is appro-
priate. Using Eqs. (6) and (7) it is easy to get explicit 
expressions for the constants B|| and B┴ used in [20, 21]:

 (8a)

Using the relations between πij and pij for isotropic 
solids [29], these constants can be expressed through 
the EOC:

B|| ≡ (n0
3/2E) (p11–2νp12),

B┴ ≡ (n0
3/2E) [(1–ν) p12–νp11]. 

(8b)

In Russian literature the  constants C1  =  –B|| and 
C2 = –B┴ with the opposite sign were used more often. 
So, the widely used [1, 3, 4] constants

W = βσ + (n0–1)αT, (9a)

 ,  (9b)

 (9c)

are simply expressed as 

P ≡ βσ + A1
(σ1), Q = – A2

(σ1). (9d)

Then the  thermally induced refractive index for 
isotropic solids in the  plane strain approximation 
may be presented as

n(1)
r,θ(r) = n0 + βσT

(R) 

+ P(~T–T(R)) ± Q(~T–T(r)). (10a)

Taking into account that the  longitudinal com-
ponent of the  strain tensor in this approximation is 
εzz

(1) = αTT(R) [45], the local change of the optical path 
(without taking into account the  end-face-bulging) 
may be expressed as [1, 3, 4, 46]

OPr,θ
(1)(r) = [(W–P)T(R) + P~T±Q(~T–T(r))]L.          (10b)

The authors of [46] incorrectly assumed that these 
expressions can be used for mechanically anisotropic 
cubic crystals (LiF, KCl, CaF2) if their anisotropic PE 
properties are taken into account. The details of ana-
lytical simulations of the TO characteristics of the cy-
lindrical and disk AE are absent in [5, 46]. Therefore, 
the validity of the presented expressions was checked 
by comparing the formulae in [5, 46] with our expres-
sions (6) and (7). It can be shown that for the rod type 
AE Q(1) ≡ A2

(σ1) and the TO coefficient β ≡ βσ should 
be changed to βε in the expressions for W and P(1). It 
should be also noted that the bulging term χbg

(2) = (n0–
1) (1 + ν)αT in the PSs approximation is introduced 
into P(2) [5, 46].

In a  long series of papers (see, for example, [23, 
24]) Klein promoted the idea that the (111) plane for 
all cubic crystals has isotropic elastic and PE prop-
erties. Therefore, it was assumed (by analogy with 
Eq. (8)) that optical path distortion may be described 
by introducing two new piezo-optic coefficients 
π|| ≡ (π11 + π12 + π44)/2 and π┴ ≡ (π11 + 5π12 – π44)/6 for 
stresses applied parallel and perpendicular to the po-
larization axis, respectively. Then, thermal lensing co-
efficients χ± for “thick” windows

,  (11a)

  (11b)

and for “thin” windows

χ+
(2) = βσ + χbg

(2) + (n0
3αTE/4)(π||+π┴), (12a)

χ–
(2) = (n0

3αTE/4)(π||–π┴) (12b)

were introduced. The coefficients χ+
(1,2) combine TO co-

effients (TOC), bulging terms (χbg
(1) = 0) plus the aver-

age PE effect for two polarizations. The  coefficients 
χ–

(1,2) characterize the  stress-induced birefringence. 
Comparing with our expressions it is easy to see that 
χ–

(1,2)  =  A2
(σ1,2) and χ+

(2)  =  A1
(σ2). Unfortunately, the  sec-

ond term in χ+
(1) does not equal A1

(σ1). The  reason of 
this mistake is the impossibility to present, in general, 
the  change of the  impermeability tensor for cubic 
crystals in the same form as for isotropic solids when 
π44 = π11 – π12 and π|| = π11, π┴ = π12. Therefore, Eq. (11) 
can only be used for isotropic solids, as in [47] for 
glasses.

It should be noted that the general expressions for 
thermal stresses and strains in the  plane strain ap-
proximation for hollow and bulk rods were described 
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in detail in the  little-known monograph [1] and pa - 
per [19]. The piezo-optic version (2a) of the PE effect 
and piezo-optical coefficients were used consistently 
in those works. Therefore, relations between βσ and βε 
were not needed for the accurate description of ther-
mal optical distortions in YAG crystals. It has also been 
understood for a long time that the use of the standard 
PSn approximation for isotropic solids for the descrip-
tion of thermoelastic stresses in mechanically aniso-
tropic crystals is incorrect and that search of new so-
lutions is required [48]. This hard task was solved in 
the  PSn approximation for cubic [49] and generally 
anisotropic [50] crystals for parabolic temperature dis-
tribution only. The  last solution was recently used in 
the series of papers (see, for example, [51]).

4. Refractive index change for special pump beam 
distributions

In the  previous section the  PSn and PSs approxima-
tions for general axisymmetrical temperature distribu-
tion were analyzed. However, the parabolic tempera-
ture distribution has been mainly used [2, 16]. For this 
case the PE coefficients Cr,θ were introduced [16] which 
were later attacked in review [8].

A particularly simple solution of the heat transfer 
equation can be found [28] for the polynomial radial 
heating distribution where the  normalized thermal 
loading on the rod axis is expressed through the full 
loading power Ph of a  cylindrical AE with radius R 
and length L. The known results for uniform and par-
abolic pump beam distributions follow from this so-
lution. The solutions for top-hat and Gaussian pump 
beam distributions can also be found [52].

The radial temperature distributions for these four 
pump distributions with the same Ph = 60 W for a cy-
lindrical YAG rod with R = 2 and L = 10 mm are pre-
sented in Fig. 1. The following parameters were used 
in numerical simulations: thermal conductivity coef-
ficient k0  =  0.105  W/(cmK), coefficient of the  New-
ton’s law of heat transfer h = 2 W/(cm2K), the radii of 
top-hat and Gaussian pump beams rp = wp = 1 mm. It 
is seen that the temperature at the rod edge does not 
depend on the pump beam distribution inside the rod; 
it depends on the full thermal load Ph and the coeffi-
cient h only. It is also obvious that transverse tempera-
ture distribution is parabolic for a uniform pump only. 
The  radial temperature gradients are very different. 
Therefore, the thermally induced stresses, strains and 
refractive index changes are also very different.

The refractive index distributions for radial and tan-
gential directions are presented in Fig. 2. They were cal-
culated using Eq. (6), EOC from [2, 8, 39] and the val-
ues βσ = 8.4 ppm/K and αT = 6.4 ppm/K at Tr = 300 K 

Fig. 1. Radial temperature distribution for uniform (up-
pointing triangle, blue online), parabolic (square), top-
hat (circle, red online) and Gaussian (down-pointing 
triangle, green online) thermal loading with the  same 
total power.

Fig. 2. Radial distribution of the radial (a) and the tan-
gential (b) refractive index for uniform (up-pointing 
triangle, blue online), parabolic (square), top-hat (cir-
cle, red online) and Gaussian (down-pointing triangle, 
green online) thermal loading with the same total power.

r (mm)

T(
r)

 (K
)

r (mm)

r (mm)

n θ (r
)

n r (r
)

(a)

(b)



D. Bričkus and A.S. Dement’ev / Lith. J. Phys. 56, 9–20 (2016)15

from [53]. It is seen that both induced indices are 
higher than the initial index n0 = 1.8147 used in the nu-
merical simulations. Therefore, the  standard presen-
tation of thermal index variation as n(r)  =  n0(1–γr2) 
(see, for example, [2, 16–18]) is not valid even for para-
bolic temperature distribution. It is necessary that at 
the  optical axis the  stresses and strains in radial and 
tangential directions would be equal as nr(0) = nθ(0). 
Sometimes, in the literature numerically obtained re-
sults do not satisfy these requirements for an axially 
symmetric case. It is also seen that, in general, index 
variation is not proportional to radial temperature 
variation as it is often assumed [2, 8] where the local 
change of temperature ΔT(r) = T(r)–Tr or the refrac-
tive index Δnr,θ

(1,2)(r) = nr,θ
(1,2)(r) – n0 is not clearly distin-

guished from the nonlocal temperature δT(r) = T(0)–
T(r) or the index difference

. 
(13)

It is also clear that the generalization of the simpli-
fied formula

, 
(14)

which is valid for parabolic temperature distribution 
to the  general temperature distribution, is incorrect 
in the general case, Cr,θ

(σ1,2) is the so-called photoelastic 
coefficients (PEC) in which a  superscript (1) desig-
nates the use of the PSn approximation, (2) is the use 
of the PSs approximation and a superscript σ means 
that this PEC should be used together with βσ. If the βε 
is used in calculations, then another set of PE coef-
ficients Cr,θ

(ε1,2) should be used in Eq. (14).
The difference between consistent and simplified 

approaches can be seen more clearly if instead of 
looking at Eqs. (13) and (14) overwhelmed by a high 
enough TO coefficient βσ, expressions δnr,θ

(–)
 (r) and 

δnr,θ
(–)

C(r) without it are used in the  PSn approxima-
tion (Fig. 3). It follows from these results that the use 
of a simplified formula for the Gaussian pump beam 
leads to significant differences with the  results ob-
tained when the PSn approximation is used consist-
ently. The  positive temperature difference δT(r)  >  0 
increases monotonically with r. Therefore, δnrC

(–)(r) 
and δnrC

(–)*(r) increase monotonically with r (Fig. 3(a), 
(b)) because Cr

(σ1)(r)  =  0.0176 for standard values of 
EO coefficients (EOC) [39] and Cr

(σ1)*(r) = 0.0086 for 
an alternative set of p*

ij [41]. Similarly, the tangential 
components of δnθC

(–)(r) and δnθC
(–)*(r) decrease mono-

tonically with r due to the negative values of PE coeffi-
cients Cθ

(σ1) = –0.0025 and Cθ
(σ1)* = –0.0179. At the same 

time, the  variation of δnθ
(–)(r) is non-monotonical 

with r, even the sign of its value is changed. This be-
haviour is caused by the nonlocal nature of T̆(r) which 
depends integrally on the temperature gradient.

The difference between consistent and simplified 
calculation of the  induced thermal index change af-
fects mainly the value and radial behaviour of the in-
duced birefringence δn(r)  =  nr

(1)(r)  –  nθ
(1)(r) (Fig.  4). 

It is seen that for the standard set of pij the simplified 
calculation of the birefringence

 
(15)

gives higher values as compared with the consistent 
use of Eq. (6); here CB

(1) = (Cθ
(σ1)–Cr

(σ1))/2. The situation 
changes inversely when the alternative set of pij

* is used. 

Fig. 3. Radial distribution of the  radial (square) and 
the  tangential (circle) refractive index difference due to 
the  photoelastic effect calculated from the  simplified 
formula (hollow) and the  full formula (solid) using (a) 
standard elasto-optic coefficients and (b) alternative ones.
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It is seen that using different sets of EOC and different 
approaches to the calculation for the same Gaussian 
pump the obtained values of induced birefringence 
in the YAG rod can differ significantly (~3 times) at 
the  rod edge (Fig.  4). It should also be mentioned 
that due to Eq. (4) the CB

(1) = (Cθ
(σ,ε1)–Cr

(σ,ε1))/2 [29] 
is not “coincidentally the same formula obtained by 
Koechner from incorrect expressions” [8, p. 146].

5. On the use of generalized TO coefficients

As mentioned in the Introduction, the generalized TO 
coefficients χr,θ were first proposed in [25] for top-hat 
pumping of AE: “The optical path difference is given 
by OPD  =  ΔTLχ (2*) where ΔT is the  temperature 
difference from center to edge, and χ is the TO coef-
ficient. χ contain terms for refractive index changes, 
axial expansion, and stress-induced changes in refrac-
tive index χ = dn/dT + (n–1) (1+ν)αT + n3αTCr,θ (3*). 
Here dn/dT is the thermal coefficient of the index of 
refraction, ν is Poisson’s ratio, αT is the coefficient of 
thermal expansion, and Cr,θ is the photoelastic coef-
ficient [2].”

Several inaccuracies were made in this original 
proposal. First of all, two coefficients χr,θ (not one χ) 
need to be defined. Second, the OPD and ΔT are not 
clearly defined. Therefore, the  definition of the  opti-
cal path OP(r) should be clearly stated. Let z1 and z2 
be reference planes on the opposite sides of the  laser 
rod [26]. Then, the optical path is defined as the inte-
gral  at the constant r from 
plane z1 to plane z2 including intervals in the air and 
in the  thermally excited AE. There are several possi-

bilities to define the  optical path difference. We will 
use in this paper the definition OPD(r) ≡ OPD(+)(r) = 
OP(0) – OP(r). Often the opposite definition OPD(–)(r) = 
–OPD(+)(r) is used. It seems that in paper [25] 
the  temperature difference and optical path dif-
ference were defined as ΔT ≡ δ*T = T(r) – T(R) and 
OPD ≡ OPD*(r) = OP(r) – OP(R), respectively, that is 
OPD*(r) = –OPD(r) + OP(0) – OP(R). Further, the co-
efficient dn/dT was not specified, the expression for 
the bulging term was obtained using the PSs approx-
imation which is valid for very thin disks only, but 
the stress induced PE term with the Koechner’s PE 
coefficients Cr,θ valid for long rods (and missing factor 
of 2 before them) was used. Besides, as follows from 
the previous discussion, the generalized TOC can be 
introduced for only parabolic temperature distribu-
tions. For the  top-hat pump temperature distribu-
tion differs significantly from that of the  parabolic 
one (Fig. 1). Thus, it was assumed in [25] that the TO 
coefficient χ may be used for different temperature 
distributions.

The definition of χr,θ was updated in the  review 
paper ([8], p. 115): “We would like to point out two 
important clarifications... Only the  plane strain case 
was considered by Koechner. However, we saw that 
the plane stress case is closer to reality in end-pumped 
rods. Here we denote Cr and Cθ as the photoelastic con-
stants valid for long and thin rods (the “Koechner case”, 
that is when the plane strain approximation is valid), 
and Crʹ and Cθʹ as the  photoelastic constants derived 
within the framework of the plane stress approxima-
tion. Since we are only interested in end pumping, we 
only consider the Crʹ,θ constants in the following”.

Thus, the expression OPDr,θ(r) = χr,θ
(C)LδT(r), where  

χr,θ
(C) = βε + χbg

(2) + 2n0
3αTCrʹ,θ, was recommended by Ché-

nais et al. for the use in the end pumped case in spite 
of the  AE length ([8], p.  119). Taking into account 
the relation between βσ and βε, the equality  χr,θ

(C) ≡ χr,θ
(2) = 

βσ  +  χbg
(2)  +  χpe

(2σ) follows from this recommendation, 
where  χpe

(2σ)
 = 2n0

3αTCr,θ
(σ2)

 is the PE part. Thus, the opti-
cal path differences in the PSn (superscript 1) and PSs 
(superscript 2) approximations are given by

OPDr,θ
(1,2)(r) = χr,θ

(1,2)LδT(r), (16)

where the generalized TOC are introduced: χr,θ
(1,2) = βσ + 

Cbgχbg
(1,2)  +  χpe

(1,2). Using Eq.  (4) and the  definition 
Crʹ,θ

 = Cr,θ
(ε2), it is easy to get the new expressions

, (17a)

.            (17b)

Fig. 4. Radial distribution of induced birefringence 
calculated using the  simplified formula (hollow) and 
the  full formula (solid) with standard (circle) elasto-
optic coefficients and an alternative set (square).
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Now, using two sets of EOC [39, 41], the  fol-
lowing values of PEC are obtained: Cr

(σ2)  =  0.0033, 
Cθ

(σ2) =  –0.0116 and Cr
(σ2)* =  0.0329, Cθ

(σ2)* =  0.0133. It 
is easy to show that CB

(2) = (Cθ
(σ,ε2) – Cr

(σ,ε2))/2 = (1–ν)CB
(1), 

that is the birefringence parameter in the PSs approx-
imation, is 26% lower than that in the PSn approxi-
mation. It also follows that for the alternative set of 
EOC the induced birefringence is 30% higher (CB

(1,2)*/
CB

(1,2) = 1.32) keeping other parameters the same.
The value of the bulging coefficient Cbg in Eq. (16) 

depends on the approximation used: Cbg = C(1) = 0 in 
the PSn and Cbg = C(2) = 1.0 in the PSs approximations; 
Cbg = C(P) = 1/(1+ν) if the free longitudinal expansion of 
the whole rod is assumed [6]; Cbg = C(K) = 2R/[L(1+ν)] if 
the Koechner assumption is used [2]; Cbg = C(H) = 1/(1–ν) 
if the term ∇×∇×u  in a steady state equilibrium equa-
tion is neglected (u  is a displacement vector) [54].

To evaluate more precisely the  contribution of 
the  bulging term direct calculations of face bulg-
ing were performed using COMSOL Multiphysics 
for parabolic temperature distribution and different 
rod lengths with the rod radius R = 2 mm (Fig. 5(a)). 
The use of COMSOL Multiphysics software was vali-
dated [55] by reproducing the  known numerical re-
sults for the so-called cubic cylinder with L = 2R for 
the  case of parabolic temperature distribution (see 
[56], pp. 223–239).

The face bulging w(r) was normalized to the maxi-
mum sag w(2)(0) = (1 + ν)αT  |T2|/2 which is predict-
ed by the  PSs approximation [45]. The  calculations 
showed that the  bulging is close to the  PSs predic-
tion at L/R < 0.5 and saturates if L > 2R. Therefore, 
the ratio C(B) = w(0)/w(2)(0) is close to 1 for a thin disk 
only if L/R < 0.5 (Fig. 5(b)). Thus, the bulging coef-
ficient Cbg = C(B) obtained by direct numerical calcula-
tions diminishes very quickly with increasing the rod 
length, even faster than was proposed by Koechner. 
It is also seen that the value of Cbg = C(H) proposed in 
[54] is far from reality.

For the  parabolic temperature distribution ~T(r)  = 
T0 + T2(r/R)2 the optical path difference is also parabolic 
OPDr,θ

(1,2) (r) = r2/2fr,θ
(1,2), where fr,θ

(1,2) is the focal lengths 
for radial and tangential polarizations. Thus, the op-
tical power of a  thermal lens is given by Dr,θ

(1,2)  =  1/
fr,θ

(1,2) = (–2LT2/R
2)χr,θ

(1,2), that is proportional to the gen-
eralized TOC. In order to evaluate the value of optical 
power the numerical values of all other parameters of 
χr,θ

(1,2) should be known.
The ratio of the focal lengths for tangential and ra-

dial polarizations is given by

,          (18)

where the values of αβ = αT/βσ lie in the range 0.48–1.36 
as follows from the literature known to us. It is easy 
to see from Eq.  (18) that this ratio is maximal for 
the PSn approximation when the bulging term is ne-
glected (Cbg = 0) and it is minimal for the PSs (Cbg = 1). 
Obviously, for a  rod shape AE the  coefficients Cr,θ

(σ1)

should be used. The ratios (18) for AE with R = 2 and 
L = 10 mm (Cbg = 0.23) are presented in Fig. 6(a) and 
(b) when EOC from [39] or [41] were used, respec-
tively. It is seen that these ratios are slightly higher for 
the alternative set of p*

ij. It is seen (Fig. 6(a)) that for 
the standard set of pij this ratio does not exceed 1.34 
in the whole range of αβ.

It follows from Eq. (18) that a significant error may 
be made when the PSs approximation is used for the cal-
culation of values of the focal length of the TL instead 
of using a more correct formula with the correcting pa-
rameter Cbg

(B) derived in this paper. It is seen from Fig. 6 
that the  focal length determined in the PSs approxi-
mation (Cbg

(2) = 1.0) may be twice or even more shorter 
than the  length determined by using the appropriate 

Fig. 5. Normalized bulging of the end faces for various 
lengths of the AE with the same radius R = 2 mm (a) 
and dependence of bulging coefficients on the length of 
the AE according to various approximations (b).
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parameter Cbg
(B). There are many papers in the  lit-

erature (see, for example, [57]) where the  above 
discussed incorrect approach is used. With refer-
ence to [8] the generalized TO coefficient χr

(2) is used 
for the Nd:YAG crystal with the radius R = 1.5 mm 
and the length L = 8 mm. For these rod parameters 
the coefficient Cbg

(B) ≈ 0.2  is even lower than the one 
used in the numerical calculations (Fig.  6). The au-
thors of [57] neglected the  contribution of the  PE 
term χpe

(W) = 1.8 ppm/K to χr
(W) = (7.3 + 8.0 + 0) though 

the value Cr
(W) = 0.0195 was pointed out in the  text. 

Then, instead of (∂n/∂T)ε  =  31.5  ×  10–6  K–1 recom-
mended in [8] they used (without any comments) dn/
dT = 7.3 ppm/K and αT = 7.5 ppm/K. Thus, the value 
of χr

(W) used in [57] is equal to 15.3 ppm/K instead of 
χr

(C) = (31.5 + 8.0 + 0.3) ppm/K that follows from the rec-
ommendation of [8] and χr

(W*) = (7.3 + 8.0 + 1.6) ppm/K 
if the PSs approximation is consistently used. The value 

χr
(B) = (7.3 + 0.2 × 8.0 + 1.6) ppm/K follows from our 

calculations with Cbg
(B) ≈ 0.2 and Cr

(σ1) = 0.0176. There-
fore, the optical power used in [57] is 1.5 times higher 
and would be even 3.8 times stronger than the  one 
obtained in this paper if the recommendation of [8] 
were used.

6. Conclusions

Consistent application of the  photoelastic effect and 
the  plane strain or plane stress approximation for 
the description of a thermal change of the refractive in-
dex in the case of axisymmetric heat loading is analyzed 
in detail. The analytical relations between thermo-optic 
coefficients of the refractive index at zero stresses and 
zero strains are found for cubic crystals of all classes. 
These results may be interesting for researchers inves-
tigating thermal effects in very promising sesquioxide 
class m3 single laser crystals. It is shown that the ratio 
of the difference between thermo-optic coefficients at 
zero stress or zero strain to the  thermo-optic coeffi-
cient at zero stress is significantly larger for alternative 
sets of YAG elasto-optic coefficients known in the lit-
erature as compared with a standard set of elasto-optic 
coefficients which is the only one used in the descrip-
tion of thermal lensing.

A detailed analysis of the analytical expressions for 
thermal radial and tangential changes of the refractive 
index in the [111] cut YAG crystal for general axisym-
metric thermal loading is carried out. Misunderstand-
ings related with the so-called photoelastic coefficients 
are eliminated. It is shown that the use of these coef-
ficients for various pump beam distributions may lead 
to significant discrepancies for thermally induced bire-
fringence as compared with the consistent use of plane 
strain or plane stress approximations.

The contribution of the bulging term into the gen-
eralized coefficient is analyzed numerically. It is noted 
that the usage of photoelastic and generalized thermo-
optic coefficients is not as useful as it is widely assumed. 
It is also shown that the common use of generalized 
thermo-optic coefficients significantly overestimates 
the  value of optical power of thermal lenses when 
the plane stress approximation is applied to the  laser 
rods with lengths larger than their diameter.

References

 [1] B.R.  Belostotskii and A.S.  Rubanov, Thermal 
Regime of Solid-State Optical Quantum Generators 
(Energiya, Moscow, 1973) [in Russian].

 [2] W. Koechner, Solid-State Laser Engineering (Springer, 
Berlin, 1976); 6th rev. and updated ed. (Springer, 
Berlin, 2006).

Fig. 6. Ratios of radial and tangential focal lengths 
for various approximations depending on the  ratio of 
the  thermal expansion coefficient to the  thermo-optic 
coefficient at zero stress for (a) a set of standard elasto-
optic coefficients and (b) an alternative one.

f θ 
/  f r

f θ* /  f* r

ab

ab(b)

(a)

fθ
*/ fr

*, Cbg = 0.23
fθ

*/ fr
*, Cbg = 1.0

fθ
*/ fr

*, Cbg = 0.0
fθ

*(Cbg = 1.0)/ fθ
* (Cbg = 0.23)

fr
* (Cbg = 1.0)/ fr

* (Cbg = 0.23)

fθ/ fr, Cbg = 0.23
fθ/ fr, Cbg = 1.0
fθ/ fr, Cbg = 0.0
fθ(Cbg = 1.0)/ fθ

 (Cbg = 0.23)
fr

 (Cbg = 1.0)/ fr
 (Cbg = 0.23)



D. Bričkus and A.S. Dement’ev / Lith. J. Phys. 56, 9–20 (2016)19

 [3] G.M.  Zverev, Yu.G.  Golyaev, E.A.  Shalaev, and 
A.A.  Shokin, Lasers on Nd:YAG (Radio i Svyaz, 
Moscow, 1985) [in Russian].

 [4] G.M. Zverev, Yu.G. Golyaev, Lasers on Crystals and 
Their Application (Radio i Svyaz, Moscow, 1994) [in 
Russian].

 [5] A.V. Mezenov, L.N. Soms, and A.I. Stepanov, Ther-
mo optics of Solid-State Lasers, J. Russ. Laser Res. 
8(5), 427–549 (1987). Translated from: Termooptika 
Tverdotel’nykh Lazerov (Mashinostroenie Press, 
Leningrad, 1986).

 [6] A. Penzkofer, Solid state lasers, Prog. Quant. Electr. 
12(4), 291–427 (1988).

 [7] Y. Kalisky, The Physics and Engineering of Solid State 
Lasers (SPIE Press, Bellingham, Washington, USA, 
2005).

 [8] S. Chénais, F. Druon, S. Forget, F. Balembois, and 
P.  Georges, On thermal effects in solid-state la-
sers: The case of ytterbium-doped materials, Prog. 
Quant. Electr. 30(4), 89–153 (2006).

 [9] R.  Iffländer, in: Landolt–Börnstein  –  Group VIII 
Advanced Materials and Technologies, Vol.  1 
(Springer, New York, 2008) pp. 3–96.

 [10] H.-F.  Hoffmann, in: Landolt–Börnstein  –  Group 
VIII Advanced Materials and Technologies, Vol.  1 
(Springer, New York, 2008) pp. 97–124.

 [11] G. Shayeganrad, in: Solid State Laser, ed. A.H. Al-
Khursan (Intech, Rijeka, 2012) pp. 3–26.

 [12] J.  Yao and Y.  Wang, Nonlinear Optics and Solid-
State Lasers (Springer, Berlin, 2012).

 [13] Y.  Kalisky, Solid State Lasers: Tunable Sources 
and Passive Q-Switching Elements (SPIE Press, 
Bellingham, Washington, USA, 2014).

 [14] S. Timoshenko and J.N. Goodier, Theory of Elasticity 
(McGraw-Hill Book Company, New York, 1951).

 [15] A.A. Kaminskii, Laser Crystals: Their Physics and 
Properties, 2nd ed. (Springer, Berlin, 1981).

 [16] J.D.  Foster and L.M.  Osterink, Thermal effects in 
a Nd:YAG laser, J. Appl. Phys. 41(9), 3656–3663 (1970).

 [17] W.  Koechner and M.  Bass, Solid-State Lasers: 
A Graduate Text (Springer, New York, 2003).

 [18] E. Gaižauskas and V. Sirutkaitis, Solid State Lasers 
(Vilnius University, Vilnius, 2008) [in Lithuanian].

 [19] G.I.  Zheltov, A.S.  Rubanov, and A.V.  Chaley, 
in: Quantum Electronics and Laser Spectroscopy 
(Institute of Physics, Minsk, 1971) pp. 445–478 [in 
Russian).

 [20] M.  Sparks, Optical distortion by heated windows 
in high-power laser systems, J. Appl. Phys. 42(12), 
5029–5046 (1971).

 [21] J.R. Jasperse and P.D. Gianino, Thermal lensing in 
infrared window materials, J. Appl. Phys. 43(4), 
1686–1693 (1972).

 [22] T.F.  Deutch, Laser window materials  –  An over-
view, J. Electron. Mater. 4(4), 663–719 (1975).

 [23] C.A. Klein, Concept of an effective optical distor-
tion parameter: application to KCl laser windows, 
Infrared Phys. 17(5), 343–357 (1977).

 [24] C.A. Klein, Optical distortion coefficients of high 
power laser windows, Opt. Eng. 29(4), 343–350 
(1990).

 [25] S.C. Tidwell, J.F. Seamans, M.S. Bower, and A.K. Cous-
ins, Scaling CW diode-end-pumped Nd:YAG lasers 
to high average powers, IEEE J. Quantum Electron. 
28(4), 997–1009 (1992).

 [26] A.K. Cousins, Temperature and thermal stress scal-
ing in finite-length end-pumped laser rods, IEEE J. 
Quantum Electron. 28(4), 1057–1069 (1992).

 [27] M.J. Davis and J.S. Hayden, Thermal lensing of la-
ser materials, Proc. SPIE 9237, 923710 (2014).

 [28] A.M. Rodin, A. Aleknavicius, A. Michailovas, and 
A.S.  Dementjev, Beam quality investigation in 
Nd:YAG crystal fiber amplifier pumped at >110 W, 
Proc. SPIE 9342, 934207 (2015).

 [29] A.S.  Dement’ev, Relationships between different 
expressions of thermo-optic and photoelastic co-
efficients of YAG crystal, Laser Phys. 29(9), 095004 
(2015).

 [30] J.F.  Nye, Physical Properties of Crystals: Their Re-
presentation by Tensors and Matrices (Oxford 
University Press, Oxford, 1985).

 [31] R.F.  Tinder, Tensor Properties of Solids: Pheno-
meno logical Development of the Tensor Properties of 
Crystals (Morgan & Clayton Publishers, San Rafael, 
CA, 2008).

 [32] M.P. Nemeth, An In-Depth Tutorial on Constitutive 
Equations for Elastic Anisotropic Materials (NASA 
Langley Research Center, Hampton, VA, United 
States, 2011).

 [33] T.  Graupeter and C.  Pflaum, Simulation of bire-
fringence in laser crystals, Proc. SPIE 8959, 89591S 
(2014).

 [34] T.  Graupeter, R.  Hartmann, and C.  Pflaum, 
Calculations of eigenpolarization in Nd:YAG laser 
rods due to thermally induced birefringence, IEEE 
J. Quantum Electron. 50(12), 1035–1043 (2014).

 [35] A.S. Dement’ev, E.K. Maldutis, and S.V. Sakalauskas, 
in: Quantum Electronics, Issue 15 (Naukova Dumka, 
Kiev, 1978) pp. 62–76 [in Russian].

 [36] A.G.  Vyatkin and E.A.  Khazanov, Thermally in-
duced depolarization in sesquioxide class m3 single 
crystals, J. Opt. Soc. Am. B 28(4), 805–811 (2011).

 [37] P.A. Loiko, K.V. Yumashev, R. Schödel, M. Peltz, 
C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, 
Thermo-optic properties of Yb:Lu2O3 single crys-
tals, Appl. Phys. B. 120(4), 601–607 (2015).

 [38] I.L. Snetkov, D.E. Silin, O.V. Palshov, E.A. Kha za-
nov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirikawa, 
K. Ueda, and A.A. Kaminski, Thermo-optic con-
stants of sesquioxide laser ceramics Yb3+:Ln2O3 
(Ln = Y, Lu, Sc), Phys. Status Solidi C 10(6), 907–
913 (2013).

 [39] R.W.  Dixon, Photoelastic properties of selected 
materials and their relevance for applications to 
acoustic light modulators and scanners, J. Appl. 
Phys. 38(13), 5149–5153 (1967).



D. Bričkus and A.S. Dement’ev / Lith. J. Phys. 56, 9–20 (2016)20

 [40] V.R. Johnson and F.A. Olson, Photoelastic proper-
ties of YAG, Proc. IEEE 55(5), 709–710 (1967).

 [41] V.F.  Kitaeva, E.V.  Zharikov, and I.L.  Chistyi, 
The  properties of crystals with garnet structure, 
Phys. Status Solidi A 92(2), 475–488 (1985).

 [42] C.C.C.  Willis, J.D.  Bradford, J.  Haussermann, 
E.  McKee, E.  Maddox, L.  Shah, R.  Gaume, and 
M. Richardson, Rapid thermo-optic quality assess-
ment of laser gain media, Opt. Mat. Express 5(6), 
1389–1398 (2015).

 [43] M.  Flannery and J.  Marburger, Theory of elasto-
optic coefficients in polycrystalline materials, 
Appl. Phys. Lett. 28(10), 600–601 (1976).

 [44] A. Ikesue, Y.L. Aung, and V. Lupei, Ceramic Lasers 
(Cambridge University Press, New York, 2014).

 [45] A.S. Dement’ev, A. Jovaiša, E. Stupak, and R. Ka-
čianauskas, Thermal stresses and end-bulging in 
cylindrical laser rods under longitudinal diode 
laser pumping, J. Therm. Stresses 37(1), 73–92 
(2014).

 [46] L.N. Soms and A.A. Tarasov, Thermal strains in ac-
tive elements of color-center lasers. I. Theory, Sov. 
J. Quantum Electron. 9(12), 1506–1509 (1979).

 [47] T.P. Rodrigues, V.S. Zanuto, R.A. Cruz, T. Catunda, 
M.L. Baesso, N.G.C. Asrath, and L.C. Malacarne, 
Discriminating the role of sample length in ther-
mal lensing of solids, Opt. Lett. 39(13), 4013–4016 
(2014).

 [48] E.K. Maldutis and S.V. Sakalauskas, Contribution 
of thermoelastic stresses to the  temperature co-
efficient of the  refractive index dn/dT of cubic 
crystals, Sov. J. Quant. Electron. 11(9), 1255–1256 
(1981).

 [49] B.N. Grechushnikov and D. Brodovskiy, Thermal 
stresses in cubic crystals, Kristallografiya 1(5), 
597–599 (1956) [in Russian].

 [50] Yu.I.  Sirotin, Temperature stresses, emergent 
during heating and cooling of single crystals, 
Kristallografiya 1(6), 708–717 (1956) [in Russian].

 [51] K.  Yumashev and P.  Loiko, Thermal stresses 
and end bulging in the  laser disc from a tetrago-
nal crystal: The  case of LiYF4, Laser Phys. 25(6), 
065004 (2015).

 [52] A.S. Dement’ev, A. Jovaiša, K. Račkaitis, F. Iva naus-
kas, and J.  Dabulytė-Bagdonavičienė, Numerical 
treatment of the temperature distribution in end-
pumped composite laser rods, Lith. J. Phys. 47(3), 
279–288 (2007).

 [53] H. Furuse, R. Yasuhara, and K. Hiraga, Thermo-
optic properties of ceramic YAG at high tempera-
tures, Opt. Mater. Express 4(9), 1794–1799 (2014).

 [54] Y.-S. Huang, H.-L. Tsai, and F.-L. Chang, Thermo-
optic effects affecting the  high pump power end 
pumped solid state lasers: Modeling and analysis, 
Opt. Commun. 273(2), 515–525 (2007).

 [55] D.  Bričkus, M.  Gabalis, and A.  Dementjev, in: 
Proceedings of 41st Lithuanian National Physics 
Conference, Programme and Abstracts (Vilnius, 
2015) p. 185 [in Lithuanian].

 [56] A.D. Kovalenko, Fundamentals of Thermoelasticity 
(Naukova Dumka, Kiev, 1970) [in Russian].

 [57] S. Wang, H.J. Eichler, X. Wang, F. Kallmeyer, J. Ge, 
T.  Riesbeck, and J.  Chen, Diode end pumped 
Nd:YAG laser at 946  nm with high pulse energy 
limited by thermal lensing, Appl. Phys. B  95(4), 
721–730 (2009).

FOTOELASTINIO EFEKTO, PLOKŠČIŲ ĮTEMPIŲ IR DEFORMACIJŲ ARTINIŲ 
NAUDOJIMAS APRAŠYTI ŠILUMINĮ FOKUSAVIMĄ

D. Bričkus, A.S. Dementjev

Fizinių ir technologijos mokslų centro Lazerinių technologijų skyrius, Vilnius, Lietuva

Santrauka
Naudojant tikslias išraiškas, aprašančias pjezo op-

tinius ir elasto optinius efektus visų klasių kubiniuose 
kristaluose, surasti analitiniai ryšiai tarp lūžio rodiklio 
temperatūrinių išvestinių esant nuliniam įtempiui ir 
nulinei deformacijai. Šie ryšiai gali būti naudingi tir-
ti šiluminius efektus perspektyviuose m3 klasės tipo 
lazerio kristaluose. Skaičiavimuose naudojami dažnai 
cituojami standartinis ir literatūroje rastas alternatyvus 
YAG elasto optinių koeficientų rinkiniai. Parodyta, kad 
termo optinių koeficientų vertės randamos naudojant 
šiuos rinkinius ženkliai skiriasi. Rastos radialinio ir 
tangentinio šiluminio lūžio rodiklio pokyčio analitinės 
išraiškos YAG tipo mechaniškai izotropiniams krista-

lams, naudojant plokščių įtempių bei plokščių deforma-
cijų artinius. Aptartos šiluminio lūžio rodiklio pokyčiui 
aprašyti literatūroje dažnai naudojamos vadinamosios 
termo optinės konstantos. Pašalinti nesusipratimai, su-
siję su fotoelastiniais koeficientais, ir rastos naujos jų 
išraiškos. Parodyta, kad šių koeficientų panaudojimas 
nėra toks naudingas, kaip dažnai manoma, ir kad esant 
skirtingiems kaupinimo pluoštams tai gali atvesti prie 
didelių šiluma indukuoto dvejopo lūžio skirtumų, pa-
lyginti su nuosekliai naudojamu plokščių deformacijų 
artiniu. Taip pat parodyta, kad šiluminio lęšio optinio 
stiprio vertės gali būti labai pervertinamos, kai plokščių 
įtempių formulės yra taikomos lazerio strypams su ilgiu, 
kelis kartus didesniu nei jų diametras.


