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Thus far, in spite of many interesting developments, the overall progress towards a systematic study and classification of vari-
ous ‘strange’ metallic states of matter has been rather limited. To that end, it was argued that a recent proliferation of the ideas of 
holographic correspondence originating from string theory might offer a possible way out of the stalemate. However, after almost 
a decade of intensive studies into the proposed extensions of the holographic conjecture to a variety of condensed matter prob-
lems, the validity of this intriguing approach remains largely unknown. This discussion aims at ascertaining its true status and 
elucidating the conditions under which some of its predictions may indeed be right (albeit, possibly, for a wrong reason).
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1. Condensed matter holography: the promise

Among the  outstanding grand problems in con-
densed matter physics is that of a deeper understand-
ing and classification of the so-called ‘strange metals’ 
or compressible non-Fermi liquid (NFL) states of 
the strongly interacting systems. However, despite all 
the effort and a plethora of the  important and non-
trivial results obtained with the use of the traditional 
techniques, this program still remains far from com-
pletion.

As an alternate approach, over the  past decade 
there have been numerous attempts inspired by 
the hypothetical idea of holographic correspondence 
which originated from string/gravity/high energy 
theory (where it is known under the acronym AdS/
CFT) to adapt its main concepts to various condensed 
matter (or, even more generally, quantum many-
body) systems at finite densities and temperatures 
[1–7].

In its original context, the bona fide holographic 
principle postulates that certain d + 1-dimensional 
(‘boundary’) quantum field theories (e. g. the maxi-
mally supersymmetric SU(N) gauge theory) may al-
low for a dual description in terms of a string theory 
which, upon a  proper compactification, amounts 

to a  certain d + 2-dimensional (‘bulk’) supergravity. 
Moreover, in the strong coupling limit (characterized 
in terms of the t’Hooft coupling constant λ = g2N >> 1) 
and for a  large rank N  >>  1 of the  gauge symmetry 
group, the  bulk description can be further reduced 
down to a  weakly fluctuating gravity model which 
can even be treated semiclassically at the lowest (0th) 
order of the underlying 1/N-expansion.

In the  practical applications of the  holographic 
conjecture, the partition function of a strongly inter-
acting boundary theory with the  Lagrangian L(ϕa) 
would then be approximated by a saddle-point (clas-
sical) value of the  bulk action described by the  La-
grangian L(gμν,…) which includes gravity and other 
fields dual to their boundary counterparts [1–8]

 
(1)

evaluated with the use of a fixed background metric

, (2)

while any quantum corrections would usually be ne-
glected by invoking the small parameter 1/N.
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Thus, considering that the task of solving a system 
of coupled Einstein-type differential equations can be 
fairly straightforward conceptually (albeit not neces-
sarily technically), the  holographic approach could 
indeed become a  novel powerful tool for studying 
the strongly correlated systems and a viable alterna-
tive to the  practically impossible problem of sum-
ming the  entire perturbation series. Specifically, if 
proved valid, some of the broad ‘bottom-up’ generali-
zations of the original holographic conjecture known 
as ‘AdS/CMT’ (which, in many instances, should have 
been more appropriately called ‘non-AdS/non-CFT’) 
could indeed provide an advanced phenomenological 
framework for discovering new and classifying the al-
ready known types of the NFL behaviour.

Thus far, however, a flurry of the traditionally de-
tailed (hence, rarely concise) publications on the top-
ic have generated not only a good deal of enthusiasm 
but some reservations as well. Indeed, the proposed ad 
hoc generalizations of the original string-theoretical 
construction involve some of its most radical altera-
tions, whereby most of its stringent constraints would 
have been abandoned in the  hope of still capturing 
some key aspects of the underlying correspondence. 
This is because the target (condensed matter) systems 
generically tend to be neither conformally nor Lor-
entz (or even translationally and/or rotationally) in-
variant and lack any supersymmetric (or even an or-
dinary) gauge symmetry with some (let alone, large) 
rank-N non-abelian group.

Moreover, while sporting a truly impressive level 
of technical progress, the exploratory ‘bottom-up’ ho-
lographic studies have not yet helped to resolve such 
crucially important issues as:

• Are the conditions of a large N, (super)gauge sym-
metry, Lorentz/translational/rotational invariance of 
the  boundary (quantum) theory indeed necessary for 
establishing a  holographic correspondence with some 
weakly coupled (classical) gravity in the bulk?

• Are all the strongly correlated systems (or only 
a precious few) supposed to have gravity duals?

• What are the gravity duals of the already docu-
mented NFLs?

• Given all the differences between the typical con-
densed matter and string theory problems, what (other 
than the lack of a better alternative) justifies the adap-
tation ad verbum of the  original (string-theoretical) 
holographic ‘dictionary’? and, most importantly:

• If the broadly defined holographic conjecture is 
indeed valid, then why is it so?

Considering that by now the field of CMT holog-
raphy has grown almost a decade old, it would seem 
that answering such outstanding questions should 
have been considered more important than continu-

ing to apply the formal holographic recipes to an ever 
increasing number of model geometries and then seek-
ing some resemblance to the real world systems with-
out a good understanding as to why it would have to 
be there in the first place. In contrast, the overly prag-
matic ‘shut up and calculate’ approach prioritizes com-
putational tractability over physical relevance, thus 
making it more about the method (which readily pro-
vides a plethora of answers but may struggle to specify 
the pertinent questions) itself, rather than the underly-
ing physics.

On the  other hand, there exist, of course, impor-
tant ongoing efforts towards, both, constructing vari-
ous ‘top-down’ holographic models [9–13] as well as 
trying to derive holography from the  already known 
concepts such as a  renormalization procedure on 
the  information-related tensor networks [14–24]. 
However, the  former approach formulated in terms 
of such objects as D-branes remains to be rather ex-
otic and somewhat hard to connect to from the CMT 
perspective, whereas the latter one (which, in practice, 
amounts to a massive use of the Stratonovich and Trot-
ter transformations combined with numerical solu-
tions of the resulting flow equations of the functional 
RG-type) has yet to deliver a well-defined bulk geom-
etry, other than the basic AdS with the dynamical z = 1 
(or its Lifshitz modification with z = 2), that would be 
reminiscent of those metrics which are extensively uti-
lized in the ’bottom-up’ studies (see below).

2. Condensed matter holography: the evidence

The circumstantial evidence that would be typically 
invoked in support of the general idea of holography 
includes such diverse topics as thermodynamics of 
black holes, hydrodynamics of quark–gluon plasma 
and unitary ultracold Fermi-gases, geometrization of 
quantum entanglement entropy, etc. However, while 
possibly attesting to the  validity of some aspects of 
the holographic concept in general, those arguments 
may not be immediately pertinent to the specific con-
densed matter systems.

Therefore, for the broadly generalized holographic 
conjecture to prove relevant and gain a predictive pow-
er in the latter context its predictions would have to be 
systematically contrasted against experimental data as 
well as the  results of other, more conventional, tech-
niques providing a preliminary insight. Also, the ho-
lographic calculations would have to be carried out for 
(and allow for a cross-check between) a whole range of 
the  thermodynamic and transport quantities, includ-
ing specific heat, DOS, charge and spin susceptibilities, 
electrical, thermal, and spin conductivities, electron 
spectral function, etc.
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By some (admittedly, risky) analogy with any evi-
dence claimed to support, e. g. the ‘science’ of UFO and 
other paranormal phenomena  –  most (but not all) of 
which can be readily dismissed – in order to ascertain 
the true status of the CMT holography one would need 
to focus on (and identify the physical origin(s) of) those 
cases of factual agreement that can be deemed reliable 
and reproducible. It especially concerns those instanc-
es where the holographic predictions were reported to 
agree quantitatively with the results of some exact ana-
lytic [25–29] or almost exact (e. g. Monte Carlo) [30–34] 
calculations (see below).

At the ad hoc level the holographic approach has al-
ready been opportunistically applied to a great variety of 
condensed matter systems which includes the ‘strange’ 
Fermi and Bose metals describing quantum-critical 
spin liquids, supersolids, quantum smectics and nemat-
ics, Mott insulators, (in)coherent conductors, itinerant 
(anti)ferromagnets, Quantum Hall effect, graphene and 
other Dirac/Weyl metals, multi-channel Kondo and 
other quantum impurity models, etc.

Routinely, the holographic calculations would be 
performed in the ‘mean-field’ approximation (i. e. at 
the  0th order of the  would-be 1/N-expansion) and 
then compared to some selected sets of experimental 
data on the systems that tend to lack any supersymme-
try, are characterized by the number of species N ~ 1 
(such as spin, orbital, and/or valley components) and 
have only moderate (as opposed to very strong) in-
teractions. The above caveats notwithstanding, how-
ever, such studies would often seek nothing short of 
(and occasionally claim to have found) a quantitative 
agreement with the data.

Also, many of the early CMT holographic calcula-
tions were carried out by ‘seeking where the lights are’ 
and utilizing just a handful of the historic black-hole 
solutions, the central among which is the Reissner–
Nordstrom (RN) one that asymptotically approaches 
the AdSd+2 (anti-de-Sitter) and AdS2 × Rd geometries 
in the UV and IR limits, respectively [1–8],

gtt = –f(r)/r2, grr = 1/r2 f(r), gij(r) = δij/r
2, (3)

and is accompanied by the scalar potential A0 = μ(1 – r/
rh). The emblackening factor f(r) = 1 – (1 + μ2) (r/rh)

d+1 + 
μ2  (r/rh)

2d incorporates the  chemical potential μ and 
vanishes at the  horizon of radius 1/rh proportional 
to the  Hawking temperature T which is shared by 
the bulk and boundary degrees of freedom. Notably, 
this radius remains finite even when the temperature 
T = (d + 1 – (d – 1) μ2)/4πrh vanishes, thereby giving 
rise to the non-vanishing entropy S (T → 0) ≠ 0 and 
suggesting that the  corresponding boundary theory 
could provide a  description of some isolated ‘quan-

tum impurity’, rather than a  correlated many-body 
state with a non-trivial spatial dispersion.

Accordingly, the  boundary fermion propaga-
tor G(ω,  k) demonstrates the  behaviour dubbed as 
‘semi-locally critical’ [35–44] which is characterized 
by a non-trivial frequency, yet a rather mundane mo-
mentum, dependence

G(ω, k) = 1/(ak + bkω
2νk),  (4)

where ak, bk, and νk are smooth functions of the mo-
mentum k. In the  space-time domain, the  corre-
sponding behaviour

G(τ, x) ~ exp(–S(τ, x)) (5)

is governed by the  (semi)classical action 

 
and is consistent with that 

of the  spatially (almost) uncorrelated ‘impurities’, 
each of which exhibits a characteristic d = 0 quantum-
critical scaling. Such NFL behaviour indeed bears 
some superficial resemblance to that found in a cer-
tain class of the heavy-fermion compounds [45] and 
DMFT calculations [46]. However, it is also plagued 
with such spurious features as potentially multiple 
Fermi surfaces, dispersionless peaks, and log-oscillat-
ing ω-dependence [35–44].

Given the multitude of the experimentally discov-
ered NFLs, the ‘locally-critical’ scenario would seem 
to be much too limited to encompass more general 
types of the real-life NFL scenaria where, both, the x- 
and τ- (or, correspondingly, ω- and k-) dependences 
of the  propagator would be distinctly non-trivial. 
In light of that realization, the  focus of the  early 
holographic studies has gradually shifted towards 
a broader class of geometries, including such intrin-
sically non-Lorentz-invariant metrics as the Lifshitz, 
Schrödinger, helical Bianchi, etc. A particular atten-
tion has been paid to the  static, diagonal, and iso-
tropic ‘hyperscaling-violating’ (HV) metrics with 
the radial dependence of the form (up to a conformal 
equivalence),

gtt ~ –r2θ/d–2z, grr = gii ~ r2θ/d–2, (6)

its finite-T version featuring the  additional factor 
f = 1 – (r/rh)

d+z–θ. The dynamical exponent z controls 
the boundary excitation spectrum ω ∝ qz, while θ quan-
tifies a non-trivial scaling of the interval ds → λθ/dds, 
the  scaling-(albeit not Lorentz-) invariant case of 
the Lifshitz metric corresponding to θ = 0. The physi-
cally sensible values of z and θ must satisfy the ‘null 
energy conditions’
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(d – θ) (d(z – 1) – θ) ≥ 0, (z – 1) (d + z – θ) ≥ 0  (7)

signifying a  thermodynamic stability of the  corre-
sponding geometry.

A proper choice of θ determining the  ‘effective 
dimension’ deff = d – θ was discussed in the context 
of fermionic entanglement entropy which singles 
out the value θ = d – 1, consistent with the notion of 
the Fermi surface as a d – 1-dimensional membrane 
in the reciprocal (momentum) space [47–54].

The HV metrics arise among the  solutions of 
various generalized gravity theories, including those 
with massive vector (Proca) fields, Horava gravity, as 
well as the Einstein–Maxwell-dilaton (EMD) theory 
which includes an additional neutral scalar (‘dilaton’) 
field [55–61],

, (8)

where the  dilaton potential U(ϕ) and the  effective 
gauge coupling V(ϕ) are given by some (typically, 
exponential) functions of ϕ. This model is believed 
to be dual to a strongly interacting boundary theory 
at finite density and temperature which is deformed 
away from the hyperscaling limit by a relevant neutral 
scalar operator dual to the dilaton. The HV solutions 
of the coupled Einstein–Maxwell equations have also 
been obtained by taking into account a back-reaction 
of the fermionic matter fields on the background ge-
ometry [62, 63]. It should be noted, though, that apart 
from a few exceptions [64] such analyses were limited 
to the hydrodynamic (Thomas–Fermi) description of 
the fermions, while leaving out their more subtle (ex-
change and correlation) effects.

One purported success of the  theory (8) (with 
U(ϕ) ~ ϕ2 and V(ϕ) = const) was a numerical fit to 
the experimentally observed power-law behaviour of 
the mid-infrared optical conductivity [65–68]

σ(ω) ~ ω–2/3 (9)

in the normal state of the superconducting cuprates 
such as BSCYCO [69]. Notably, though, such an 
agreement was found over less than half of a decade 
(2 < ωτ < 8) while the later studies did not confirm it 
[70–72]. Besides, it was also argued to be intermittent 
with the alternate ‘universal’, ~ω–1, behaviour.

Another notable example is the holographic calcu-
lation [73, 74] of the numerical prefactor C in the em-
pirical Homes relation between the superfluid density, 

critical temperature, and normal state conductivity 
[75]:

ρs = CTcσ(Tc
0+). (10)

This relation is obeyed by a large variety of super-
conductors, including the  weakly coupled (yet, suf-
ficiently disordered) conventional ones where a  jus-
tification for the use of holography would be rather 
hard to come by and where the Homes’ relation can 
be shown to hold within the scope of the traditional 
theory [76]. The holographic theory of Refs. [73, 74] 
claimed its success with finding the prefactor C ≈ 6.2 
to be close to the experimental values in the cuprates 
which happen to be C ≈ 8.1 and 4.4 for the ab- and 
c-axes transport, respectively. Somewhat ironically, 
though, this would seem like a case where, in the ab-
sence of a  compelling underlying reason, a  perfect 
quantitative agreement could do more harm than 
good to the cause.

Arguably, a  stronger case could have been made 
if the range of the possible values of C were unusu-
ally narrow, thus potentially hinting at some univer-
sality of the  result. This, however, does not seem to 
be the case. Moreover, the holographic calculation of 
Refs. [73, 74] does not readily reproduce any other 
empirical relations such as the Schneider’s one [77]:

. (11)

Interestingly, the later work claimed a compliance 
of the  holographic results with yet another, Uemu-
ra – but not the Homes’ – law [78], thereby suggesting 
that the agreement with the experiment reported in 
Refs. [73, 74] may have been largely fortuitous.

Also, to further strengthen the case for holography, 
some works tend to use increasingly more and more 
complicated models with a  larger number of fields 
while operating under the  assumption that the  IR 
physics should be fairly universal and insensitive to 
such details. The results, on the contrary, indicate that 
there is little universality, as by varying the contents of 
the bulk theory one can dramatically alter the IR be-
haviour – e. g. reproducing on demand the entire phase 
diagram of the cuprates with all the four main phases 
as well as the domains of their coexistence in the ex-
tended EM model with the additional vector and scalar 
fields which represent the competing orders [79, 80].

There has also been some effort on the experimen-
tal side, such as the  report of measuring the  shear 
viscosity-to-entropy density ratio in the cuprates [81] 
which was found to be close to its celebrated holo-
graphic lower bound value [82, 83]:
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η/S = 1/4π. (12)

It should be noted, though, that instead of such 
genuine two-particle characteristic as the  correla-
tion function of the stress tensor’s component Txy in 
Ref. [81] the viscosity η was deduced from the single-
particle electron spectral function. Furthermore, even 
the bound (12) itself is known not to be totally uni-
versal, its value becoming lower, e. g. in the absence 
of the spatial rotational invariance [84, 85]:

ηxzxz/S = (1/4π)(gxx/gzz).  (13)

Yet another example of a successful application of 
the holographic approach was presented in Refs. [30–
34] where an impressive agreement was found be-
tween the  holographically computed frequency-de-
pendent (finite-temperature) conductivity σ(ω) and 
the Monte Carlo results for the Bose–Hubbard model 
whose critical behaviour belongs to the  universality 
class of the O(2)-symmetrical Wilson–Fisher critical 
point. Upon analytically continuing to the  real fre-
quencies this agreement gets progressively worse for 
ω < 2πT, though [86]. Most intriguingly, the original 
work of Refs. [30–34] utilized the  EM holographic 
model with a rather special higher-derivative term

∆L = CabcdF abF cd, (14)

where Cabcd is the Weyl tensor, thus making one won-
der as to the reasons behind a seemingly unique role 
of this model as the potential Bose–Hubbard’s dual. 
However, in the  later Ref. [86] nearly identical re-
sults were obtained with the use of a much less exotic 
EMD model with U(ϕ) = ϕ2 and V(ϕ) = 1 + αϕ. Thus, 
the  previously reported agreement with the  MC re-
sults (limited to ω > 2πT) appears to be rather com-
mon  –  an  observation which takes away much of 
the  intrigue surrounding the  holographic model 
equipped with the term (14) and makes less pressing 
the need for understanding its otherwise inexplicably 
serendipitous success.

3. Emergent geometry and ’holography light’

Regardless of those practices in the  field of CMT 
holography that make it prone to criticism, its gen-
eral idea is undeniably appealing. Indeed, it falls very 
much in line with some of the most profound para-
digms in quantum many-body physics, including 
those of the  bulk-edge correspondence and the  no-
tion of running couplings in the process of renormali-
zation alongside the changing scale of energy/length/
information. The former has recently received a lot of 

attention with the  advent of topological insulators/
superconductors and Dirac/Weyl (semi)metals, while 
the latter provides a standard framework for relating 
the bare (UV) to the effective (IR) physics.

Arguably, of all the holographic studies the most 
important is the  quest into its possible underlying 
physical cause(s). This concerns, first and foremost, 
those situations where some precise – analytic or nu-
merical – agreement has been found between the re-
sults of the  holographic and some conventional ap-
proaches. One such recent example is provided by 
the  random infinite-range fermion-hopping models 
that were studied in Refs. [25–29], drawing from 
the  previous analyses of the  random infinite-range 
spin-coupling systems [87].

These models also share a  number of common 
features with the  Kondo lattice [88, 89] and matrix 
[90–94] ones, their unifying physical theme being 
that of a  single ‘quantum impurity’ interacting self-
consistently with a local bath. This behaviour makes 
them potentially amenable to the  description based 
on the holographic ‘semi-locally critical’ scenario of 
Refs. [35–44].

Indeed, in Refs. [25–29] an emergent invariance 
under the  group of reparametrizations was discov-
ered and its relation to the ‘semi-local’ AdS2 × Rd ge-
ometry was demonstrated by establishing an exact 
agreement between the  holographically computed 
single-particle propagators in this (non-fluctuating) 
geometry [35–44] and the  two- and four-point cor-
relation functions of certain exactly solvable random 
fermion-hopping models.

Notably, such a  perfect agreement was achieved 
without invoking a small 1/N parameter, thereby sug-
gesting that the  1/N-corrections (that would have 
been present in the  original string-theoretical AdS/
CFT correspondence) may, in fact, be absent alto-
gether. More precisely, although the  large-N limit 
indeed had to be taken in the random spin-coupling 
model of Ref. [87] (after taking the  limit of a  large 
number N of the lattice sites), the ’semi-local’ behav-
iour of its random fermion-hopping counterparts sets 
in already at N = 1 (but still for N >>  1) [25–29].

Generalizing the results of Refs. [25–29], one can 
construct a whole family of ‘semi-local’ NFL regimes 
described by the propagator G(τ) which obeys the in-
tegral equations (n = 2 in Refs. [25–29])

∫G(τ1, τ)Σ(τ, τ2)dτ = δ(τ1–τ2),

Σ(τ1, τ2) = λGn(τ1, τ2) Gn–1(τ2,τ1),  (15)

that are manifestly invariant under an arbitrary 
change of variables τ = f(σ):
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G(τ1, τ2) = [f΄(σ1)f΄(σ2)]–1/2nG(σ1,σ2). (16)

To derive these equations from the  (disorder-
averaged) Hamiltonian of a  random infinite-range 
fermion-hopping model

kbbkaa

ibia
k

n

k

cH ψψψψ 
1

††
1

,1=

= ∑∑ , (17)

the parameters ck need to be fine-tuned [95], while for 
their arbitrary values the system conforms to the ge-
neric behaviour described by the  n  =  2 case. This is 
somewhat reminiscent of the situation with the exact-
ly soluble 1d spin-S chain model whose behaviour is 
markedly non-generic for all S > 1/2 [96–98].

Specifically, the solution of Eqs. (15) demonstrates 
an expressly NFL behaviour

G(τ) ~ τ–1/n (18)

or, equivalently, Σ(ω)  ~  ω1–1/n which can also be re-
produced holographically with the  use of a  massive 
bulk fermion subject to the AdS2 × Rd geometry and 
described by the action Lf = i–ψγ μ∂μψ – m–ψψ provided 
that the fermion mass  m is chosen as follows:

. (19)

Here R is the AdS radius, q is the fermion charge, and 
E measures the  particle-hole asymmetry [25–29]. 
Thus, regardless of whether or not the  ‘semi-locally 
critical’ scenario of Refs. [35–44] is immediately 
applicable to any real-life materials, its predictions 
might still prove quite useful, as far as the properties 
of some properly crafted random spin-coupling and 
fermion-hopping models are concerned.

Notably, though, the  dimension (19) arises in 
the so-called ‘unstable’ boundary CFT which is dual 
to AdS2 [35–44], while in the  ‘stable’ one (to which 
the former is supposed to flow under a double-trace 
deformation) the  operator dimension would be 

, thus making the value (19) 
unattainable for any integer n > 1.

It is also worth noting that the behaviour similar 
to Eq. (18) can be envisioned in the context of, e. g. 
sub-Ohmic spin-bath models which, incidentally, can 
be formulated in terms of the localized Majorana fer-
mions. Among other things, it gives rise to the ubiq-
uitous Lorentzian (‘Drude-like’) frequency depend-
ences of the  various observables, their width being 
given by the inelastic phase relaxation rate [99–102]. 
It might be interesting to explore such a possible con-
nection further [95], as well as to reproduce Eq. (18) 
in the  holographic models aspiring to describe 
the Kondo physics [103–107].

Also, while being characteristic of the  purely 
classical (non-fluctuating) asymptotic near-horizon 
geometry [35–44] the  emergent reparametrization 
symmetry (15) does not rise to the same level as that 
in the elaborate constructs of the original (string-the-
oretical) holographic correspondence where the bulk 
supports a full-fledged quantum (super)gravity theory 
that only becomes classical in the large-N limit [1–6]. 
Nevertheless, it is quite remarkable that the quantum 
systems in question allow for some of their properties 
to be expressed in purely geometrical terms.

In that regard, emergent classical metrics and con-
comitant effective gravity-like descriptions are not 
that uncommon, the  most remarkable example be-
ing provided by the  intriguing relationship between 
quantum physics and classical geometry in the form 
of the famous extremal area law of entanglement en-
tropy [108, 109]. To a somewhat lesser extent, same 
can be said about such connections found in ther-
modynamics of phase transitions (‘Fisher–Ruppeiner 
metric’) [110–113], quantum information and ten-
sor network states [114–120], QHE hydrodynamics 
(‘Fubini–Study metric’) [121–123], Chern classes of 
the Bloch eigenstates of momentum [124–126], Berry 
phase of the adiabatic time evolution [127–129], etc. 
In all these different contexts, some underlying invar-
iance under pertinent diffeomorphisms facilitates an 
elegant and insightful gravitational description.

Importantly, the  emergent geometric structures 
such as effective metrics, curvatures, spin connec-
tions, etc. can indeed create the appearance of a lim-
ited form of some bulk-boundary correspondence 
(‘holography light’) that can be inadvertently mistak-
en for manifestations of the hypothetical full-fledged 
CMT holography.

4. Holographic phenomenology: the cuprates

Obtaining verifiable holographic predictions can be 
particularly instructive in those situations where ex-
perimental data exhibit robust scaling dependences, 
thus hinting at a  possible (near-)critical regime that 
might be amenable to a  holographic scaling analy-
sis [130]. One such example is provided by the  ho-
lography-inspired phenomenologies of the  cuprates 
which focused on the  robust power-law behaviours 
of the  longitudinal electrical conductivity, Hall angle, 
and magnetoresistivity that violates the  conventional 
Kohler’s law [131]:

σ ~ T–1,

tan θH ~ T–2,

∆ρ/ρ ~ ρ2. (20)
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In the previously proposed scenaria, Eqs. (20) were 
argued to indicate a possible existence of two distinct-
ly different scattering times: τtr ~ 1/T and τH ~ 1/T2 

which characterize the  longitudinal vs trans-
verse  [132] or charge-symmetric vs antisymmet-
ric [133] currents. Yet another insightful proposal was 
put forward in the framework of the marginal Fermi 
liquid phenomenology [134].

In contrast to the  anomalous transport proper-
ties of the  cuprates, their thermodynamic ones are 
more standard, including the  Fermi-liquid-like spe-
cific heat C  ~  T (except for a  possible logarithmic 
enhancement [135]). A recent attempt to rationalize 
such experimental findings was made in Refs. [136–
138]. Under the  assumption of an underlying one-
parameter scaling the dimensions of the observables 
were expressed in terms of the  minimal set which 
includes the dynamical critical exponent z alongside 
the dimensions of the (mass) density ∆n and effective 
charge ∆e, the two accounting for, roughly speaking, 
the wave function renormalization and vertex correc-
tions, respectively.

The linear thermoelectric response is then de-
scribed in terms of a trio of the fundamental kinetic 
coefficients

J = σ̂ E – α̂∇T,

Q = Tα̂E – κ̂ ∇T, (21)

where the Onsager’s symmetry is taken into account 
and the off-diagonal entries in the 2×2 matrices  σ̂, α̂, κ̂ 
represent the Hall components of the corresponding 
conductivities.

To set up the  scaling relations that reproduce 
Eqs.  (20) and other experimentally observed alge-
braic dependences one has to properly account for 
the time reversal and particle–hole symmetries. Also, 
one should be alerted to the  fact that the exponents 
governing the temperature dependences in the kinetic 
coefficients would be the same as those appearing in 
their frequency-dependent optical counterparts [130]. 
However, the previous analyses based on the semiclas-
sical kinetic equation show that such leading (minimal) 
powers of T may or may not actually survive, depend-
ing on whether or not the quasiparticle dispersion and 
Fermi surface topology conspire to yield comparable 
rates of the normal and umklapp inelastic scattering 
processes [139–141]. It would appear, though, that in 
the cuprates, both, the multi-pocketed (in the under- 
and optimally doped cases) as well as the  extended 
concave (in the overdoped case) hole Fermi surfaces 
comply with such necessary conditions.

As an additional consistency check, the kinetic co-
efficients are expected to be consistent with the Fermi 
liquid relations S ~ (T/eσ)dσ/dμ, νN ~ (T/eB)dθH/dμ, 
where the  r.h.s. are proportional to the  Fermi sur-
face curvature but do not contain such single-particle 
characteristics as scattering time or effective mass 
and, therefore, might be applicable beyond the coher-
ent quasiparticle regime.

It was found in Ref. [138] that, somewhat surpris-
ingly, most of the experimental data favour the rather 
mundane solution

z = 1, ∆e = 0, ∆n = 1 (22)

which imposes the following relation on the Seebeck 
(S), Hall Lorenz (LH), and Nernst (νN) coefficients 
(barring any Sondheimer-type cancellations):

[S] + [νN] – [LH] = 0. (23)

In the optimally doped cuprates, the experimentally 
measured thermopower, apart from a finite offset term, 
demonstrates a (negative) linear T-dependence [142]. 
As regards the  Hall Lorenz and Nernst coefficients, 
the  data on the  untwinned samples of the  optimally 
doped YBaCuO were fitted into a linear dependence, 
LH  ~  T, whereas νN was generally found to decrease 
with increasing T, thus suggesting [νN] < 0 [143, 144]. 
Moreover, the  Nernst signal increases dramatically 
with decreasing temperature – the effect that has been 
attributed to the superconducting fluctuations and/or 
fluctuating vortex pairs whose (positive) contribution 
dominates over the quasiparticle one (the latter can be 
of either sign, depending on the dominant type of car-
riers) upon approaching Tc. Besides, νN turns out to be 
strongly affected by a proximity to the pseudogap re-
gime and can even become anisotropic.

The ‘Fermi-surfaced’ solution (22) should be com-
pared with the significantly more exotic one obtained 
in Refs. [136, 137]

z = 4/3, ∆e = –2/3, ∆n = 2, (24)

where the thermoelectric coefficients S ~ T1/2, LH ~ T, 
νN ~ T–3/2 do not obey Eq. (23). Also, in this case an 
agreement with the  linear behaviour of LH reported 
in Refs. [143, 144] is guaranteed by imposing it as one 
of the  constitutive relations. In spite of this predes-
tined success, though, this scheme fails to reproduce 
the linear (up to a constant) thermopower, although 
it claimed the alternate S = a – bT1/2 dependence to 
provide an even better fit to the data [142].

Also, the solution (24) predicts C ~ T3/2 and, there-
fore, appears to be at obvious odds with the observed 
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thermodynamic properties as well [135]. Moreover, 
it predicts the linear in T (longitudinal) Lorenz ratio 
L = κ/Tσ similar to its Hall counterpart, contrary to 
a constant L, as suggested by the scenario (22).

Although an additional experimental effort is 
clearly called for in order to discriminate more de-
finitively between the above predictions, it should be 
mentioned that more recently a  slower-than-linear 
temperature behaviour of the (electronic) Lorenz ra-
tio has been reported [145–147].

Lastly, the solution (24) features θ = 0 and strong 
(infrared) charge renormalization (∆e  <  0). Since in 
the presence of a well-defined d-dimensional Fermi 
surface the  ‘hyperscaling-violation’ parameter is ex-
pected to coincide with its co-dimension, hence 
θ = d – 1 [47–54], the value θ = 0 hints at a point-like 
(‘Dirac’) Fermi surface (if any). In contrast, Eq. (22) 
suggests a  rather simple physical picture where nei-
ther the Fermi liquid-like dispersion nor the effective 
charge demonstrate any significant renormalization. 
Thus, to construct a  viable phenomenological de-
scription of the optimally doped cuprates one might 
be able to do away without introducing the additional 
charge exponent ∆e, contrary to the assertions made 
in Refs. [59, 136, 137, 148, 149].

It might also be worth mentioning that another 
long-time baffling, the underdoped, phase of the cu-
prates has recently been downgraded to a potentially 
simpler organized state of matter with some of its 
properties being Fermi-like [150–152].

Also, the  recent attempt to match the  exponents 
(24) with the  predictions of the  semi-phenomeno-
logical ‘unparticles’ model showed that it can only be 
achieved at the expense of a further, multi-flavoured, 
extension of that scenario [153]. However, the sheer 
complexity of the proposed construction seems to in-
dicate rather clearly that the latter can hardly provide 
a natural (let alone, minimal) theory of the anoma-
lous transport in the cuprates.

Moreover, in the last of Refs. [153–155] the meth-
od of fractional derivatives was employed to general-
ize the Maxwell’s and continuity equations:

∂ αμ F μν = J ν,

∂ αi  J
i + ∂0 ρ = 0. (25)

However, it can be readily seen that Eqs. (25) are 
only consistent when the dimension of the vector po-
tential [Ai] = [∂ 

i
α] = α equals z (which was chosen as 

z = 1 in Refs. [153–155]), thus prohibiting it from tak-
ing any anomalous value.

In fact, a gradual realization of how strained can be 
the attempts to squeeze the holographic phenomenol-

ogy of the cuprates into the ‘Procrustes bed’ of the two-
parametric HV geometries may have already started 
making its way into the holographic community [156].

Another viable candidate for applications of 
the  holographically-inspired scaling theory is pro-
vided by the self-consistent strong-coupling solutions 
aimed at describing the properties of certain 2d and 
3d antiferromagnetic metals. Analyzed under the as-
sumption of a  momentum-independent NFL self-
energy, Σ(ω) ~ ω1–α, it yields the critical exponents as 
sole functions of the spatial dimension [157–159]

α = 1/2 – 1/zb, zb = 4d/3, zf = 1/(1–α),

ν = 1/(2 + zbα). (26)

Notably, the hyperscaling relations are still obeyed, 
resulting in the anomalous dependences:

C ~ T 1–α, σ ~ ω α–1, χs ~ T α–1. (27)

In the presence of disorder these results are likely 
to be modified, though [160–162].

Another recent work [163] utilized the  func-
tional RG technique, thus obtaining a  different solu-
tion which might be pertinent to the  AFM metals: 
zf = zb = 3/2, θ = 0, ν = γ = 1. Reproducing these so-
lutions and searching for the new ones [95] poses an 
interesting challenge and presents an important test 
for the holographically inspired scaling theory of these 
materials.

5. From AdS/CMT to holographic transport

A great many of the  early works on CMT hologra-
phy utilized the  standard holographic recipe for 
computing electrical conductivity and other kinetic 
coefficients as boundary limits of the ratios between 
the convergent (associated with a  response) and di-
vergent (associated with a  source) terms in the  so-
lutions of the  radial classical equations [1–6]. This 
prescription would result in, e. g. the expression for 
the electrical conductivity

, (28)

where the component of the field tensor Fri = A + Brd–1/ 
(d–1) is a bulk dual of the boundary electric current.

Moreover, in the absence of any dilaton accounting 
for the scale dependent couplings and bringing about 
a dependence on the  radial holographic coordinate, 
the  physical observables become anomaly-free and 
scale-invariant, hence unaffected by renormalization. 
In that case they can be cast in a purely algebraic form 



D.V. Khveshchenko / Lith. J. Phys. 56, 125–148 (2016)133

in terms of the horizon metric, as per the ‘membrane 
paradigm’ [164–169]. For instance, the electrical con-
ductivity and charge susceptibility read

,

 (29)

where g is the determinant of the metric. Per the Ein-
stein’s relation the two are related via the diffusion co-
efficient, σ = χcD.

However, while it might be possible to predict 
such general features as the exponents in the power-
law frequency dependences of the  optical electrical 
and thermal conductivities [130] by using the formal 
prescriptions similar to Eqs. (28, 29), the latter do not 
properly account for the  actual physical contents of 
the boundary theory and a potentially intricate inter-
play between its different scattering mechanisms.

A list of the  proposed sources of current and/or 
momentum relaxation (which is often confusingly 
referred to as ‘dissipation’) employed in holography 
includes random boundary and horizon potentials, 
helical (Bianchi VII0-type) and spatially periodic (‘Q-
lattice’) geometries, massive gravity, axion fields, etc. 
[13, 68, 170–185].

Common to all the different approaches, though, 
is the unifying fact that the conductivity and other ki-
netic coefficients would be typically given by a sum of 
two terms,

, (30)

although in the  ‘top-down’ constructions using 
the DBI action [9–13] Eq. (30) would be replaced by 

.
In Eq.  (30) the  momentum susceptibility 

χPP  =  E  +  P is equal to the  enthalpy density, and 
the first term corresponds to the (potentially, univer-
sal) diffusion-limited contribution to the conductivi-
ty that survives in the particle-hole symmetric limit of 
zero charge density (n → 0). It is often associated with 
the processes of ‘pair creation’ by which a neutral sys-
tem develops a non-vanishing (yet, finite) conductiv-
ity in the absence of momentum relaxation (γ → 0), 
while the DC (ω → 0) conductivity of a finite density 
system is governed by the  second term in (30), be-
coming infinite in the limit γ → 0.

Moreover, in the case of Q-lattices and 1d periodic 
potentials (but not those that break translational in-

variance in all the spatial dimensions) the conductiv-
ity can still be expressed in terms of the horizon data, 
thus generalizing the case of zero charge density and 
no momentum relaxation. Interestingly, though, even 
for generic (‘non-Q’) lattices which break translation-
al symmetry in all the  spatial dimensions the  con-
ductivity can be obtained by solving some linearized, 
time-independent, and forced Navier–Stokes-type 
equations of an effective (charged and incompress-
ible) fluid living on the horizon [186–189], thus ex-
tending the  ‘membrane paradigm’ along the  lines of 
the general concept of a fluid-gravity correspondence 
[190–193]. The  latter allows for a  dual description 
of the  bulk gravity theory in terms of the  hydrody-
namics of a certain boundary fluid whose stress-en-
ergy tensor acts as a source for the boundary metric. 
However, while unveiling yet another intrinsically 
geometric aspect of an underlying quantum dynam-
ics, the  fluid-gravity correspondence is clearly not 
identical to (albeit, possibly, far more general than) 
the original string-theoretical holography.

In certain axion models [194–200], the  elastic 
rate can be readily computed although the  result-
ing behaviour γ ~ max[T2, m2]/T can hardly remain 
physical in the  T  →  0 limit. Remarkably, though, at 

 the  linearized (classical gravi-
tational) equations of motion appear to be exactly 
solvable, yielding the frequency- and momentum-de-
pendent response functions G(ω, k) in a closed form 
and also signalling an emergent SL(2, R) × SL(2, R) 
symmetry [194–200].

In the  more general situation, momentum con-
servation would be broken by some operator O with 
the dimension ∆O and the corresponding elastic scat-
tering rate γ can be expressed in terms of the spectral 
density D(ω, k) =  Im  〈 O(ω, k) O(–ω,  –k) 〉 [13, 68, 
170–185]:

 
. (31)

In the EMD context, the following non-universal 
behaviour of the  DC conductivity was obtained by 
treating the  pertinent ‘random Ising magnetic field’ 
disorder perturbatively [201–203]:

σ(T) ~ T2(z–1–∆
O

)/z. (32)

Also, the generalized Harris criterion for the rel-
evance of disorder

∆ < (d – θ)/2 + z (33)

gets saturated for ∆
O

  =  (d  –  θ)/2  +  z, resulting in 
the universal, yet θ-dependent, dependence [201–203]
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σ(T) ~ T(θ–2–d)/z ~ ~ 1/(Sm2), (34)

where the concomitant scaling of the entropy density, 
S ~ T(d–θ)/z, has been taken into account. In Eq. (34) 
the second factor can be interpreted as the  ‘thermal 
graviton mass’, m ~ T1/z. Thus, it is only in the extreme 
‘locally-critical’ limit z → ∞ where the famous predic-
tion σ ~ 1/S of Refs. [204, 205] could be confirmed 
without any sleight of hands.

Moreover, should the relevant bosonic modes hap-
pen to be transverse and, therefore, protected from 
developing a mass on the grounds of unbroken gauge 
invariance (as it would be the case in any SU(2)- or 
U(1)-symmetric spin liquid state), the  problem of 
computing the conductivity would require a full non-
perturbative solution.

Notably, even in the  HV model with z  =  3/2 and 
θ = 1 (which, for d = 2, satisfy the relation z = 1 + θ/d 
saturating the  first of Eqs.  (7)) proposed as a  viable 
candidate for the bulk dual of the theory of 2d fermi-
onic matter coupled to an overdampted bosonic (e. g. 
gauge) field [47–54, 206] the conductivity exponent in 
Eq. (34) ((θ – 2 – d)/z = –2) would be different from 
its target value (–1). This observation, too, might be 
pointing at some deeper problem with reproducing 
the ubiquitous linear normal state resistivity of the cu-
prates in the framework of the HV holographic models.

As far as the  optical conductivity is concerned, 
in the  last of Refs. [201–203] the  asymptotic 
σ(ω) ~ ω(2 – θ – d)/z was obtained which does reproduce 
the  desired behaviour (9) for the  above d,  z, and θ. 
Notably, though, this exponent is different from 
the  universal value, (2  –  d)(1  –  θ/d)/z, that was in-
dependently obtained in a  number of earlier works 
utilizing the HV geometries [130, 207–209].

More recently, the  main focus of the  CMT holo-
graphic phenomenology began to shift towards de-
veloping a general ‘holography-augmented’ transport 
theory [194–200, 210–222]. This commendable effort 
strives to establish general relations between the trans-
port coefficients and find their bounds (if any) that 
could remain valid regardless of the  (in)applicability 
of the generalized holographic conjecture itself. Such 
relations are expected to hold in the hydrodynamic re-
gime governed by strong inelastic interactions where 
the rates of momentum relaxation due to elastic disor-
der, lattice-assisted inelastic (Umklapp) electron–elec-
tron and electron–phonon (outside of the phonon drag 
regime) scattering are all much smaller than the uni-
versal inelastic rate Г ~ T of the normal collisions con-
trolling the formation of a thermalized hydrodynamic 
state itself [82, 83, 204, 205].

Notably, the onset of hydrodynamics is a distinct 
property of the  strongly correlated systems, as it 

is unattainable in the  standard FL regime where all 
the local (in the k-space) quasiparticle densities nk are 
nearly conserved. The hydrodynamic regime does not 
set in for d = 1 either due to the peculiar 1d kinemat-
ics which facilitates the emergence of infinitely many 
(almost) conserved densities.

In the  hydrodynamic regime, the  holographic re-
sults have also been systematically compared to those 
of the  hydrodynamic [210–217] and memory matrix 
[218–222] formalisms which do not rely on the exist-
ence of well-defined quasiparticles. The kinetic coeffi-
cients obtained by means of these alternate techniques 
appear to be similar to the holographic expressions (30), 
identifying the density n with the current-momentum 
susceptibility χJP = 〈 J|P 〉 = n which quantifies the contri-
bution to the current from ‘momentum drag’. Such for-
malism provides an elegant and physically transparent 
language for discussing, e. g. a decoupling of the elec-
tric current onto the coherent component parallel (in 
the functional sense) to the momentum P and the or-
thogonal, incoherent, one which has no overlap with 
P and is responsible for the universal conductivity of 
the neutral (particle-hole symmetric) system:

. (35)

Although under a closer inspection the hydrody-
namic results were found to be subtly different (be-
yond the leading order) from the earlier holographic 
ones, such differences have been reconciled by includ-
ing the corrections to σo and the residue of the pole in 
Eq. (30) at ω = – iγ (‘Drude weight’) [194–200, 210–
217]. This agreement between the  holographic and 
hydrodynamic/memory matrix analyses was argued 
to provide an additional evidence supporting (at least, 
the transport-related aspects of) the former.

It should be noted, though, that the  AC kinetic 
coefficients akin to Eq. (30) appear to have a strictly 
monotonic frequency dependence which is governed 
by the  coherent zero-frequency Drude peak whose 
presence reflects the existence of a (nearly) conserved 
momentum which overlaps with the  electrical cur-
rent for n ≠ 0.

On the  other hand, a  non-monotonic  –  or, else, 
strictly universal (frequency-independent)  –  behav-
iour would be necessary in order for the conductivity 
to comply with the holographic sum rules proposed 
in Refs. [30–34]:

,

. (36)
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These sum rules account for a transfer of the spec-
tral weight from the coherent Drude peak to the in-
coherent high-frequency tail. Such a non-monotonic 
behaviour develops at ω ~ Г and may or may not be 
detectable by the  hydrodynamic/memory matrix 
analyses, though.

One of the most striking predictions of the mem-
ory matrix calculations is that of the reported absence 
of (many-body) localization and diffusion-dominat-
ed metallic transport in strongly interacting ‘strange 
metals’ [223–226]. It would seem rather surpris-
ing, though, that while imposing robust conductiv-
ity bounds in d  =  1 and 2 (where in the  latter case 
the lower bound even seems comparable to the upper 
one), this approach fails to find such bounds in d > 2 
where, according to the general wisdom, localization 
would be even less likely to set in.

At a deeper level, a  fully quantum description of 
localization (or a  lack thereof) still seems to remain 
out of reach in all the existing holographic treatments 
of disorder. In fact, any ‘mean-field’ approximation is 
likely to be in principle incapable of taking into ac-
count not only the  localization-related phenomena 
(multiple acts of elastic scattering) but also the inter-
ference ones (multiple acts of consecutive elastic and 
inelastic scattering).

For one thing, the  former type of the  conductiv-
ity corrections would depend not only on the elastic 
scattering rate but also on some rather special inelastic 
ones (Cooperon/Diffuson phase-breaking), whereas 
the  latter would typically acquire its temperature de-
pendence via the fermion occupation factors. Neither 
source of the T-dependence can be readily envisioned 
in the variational approach of Refs. [223–226], though. 
While suitable for analyzing classical percolation, 
this approach operates in terms of the Kirchoff’s law 
for a  random network of classical resistors and em-
ploys the quadratic Thomson’s variational action akin 
to that for maximum entropy production. In light of 
such potential caveats it does not seem surprising that 
the results of Refs. [223–226] suggest the diffusive me-
tallic behaviour even at weak repulsive interactions 
strengths in 2d – which would then be in conflict even 
with the perturbative Altshuler–Aronov theory.

Leaving out the  remaining possibility of finding 
a  better variational ansatz that could yield a  lower 
conductivity than the simplest one of a constant cur-
rent/density employed in Refs. [223–226] and result-
ing in the above lower bound, it is worth noting that 
the scenario of Refs. [223–226] might also be limited 
to the  rather special class of models where no cou-
pling between the  translation symmetry-breaking 
(Stueckelberg) degrees of freedom and the  Maxwell 
field is allowed.

To that end, a  further investigation into the  is-
sue [224–227] showed that, in contrast, no finite 
(let alone, universal) lower bound seems to exist in 
the more general models which include generic cou-
plings between the axions with the expectation values 
Φi ~ xμδi

μ and vector and/or scalar fields:

 . (37)

Thus, conceivably, the  scenario of ‘many-body 
delocalization’ proposed in Refs. [223–226] is nei-
ther generic nor generalizable beyond the  scopes of 
the variational analysis. However, the results of Refs. 
[224–229], too, should be taken cautiously, as, e.  g. 
the  second reference finds the  conductivity to be 
potentially negative, depending on the  strength of 
the couplings an, bn. Also, in the last of Refs. [224–229] 
predicting a  seemingly realistic insulator–supercon-
ductor transition in the framework of the  ‘anti-DBI’ 
theory (whose generalized Maxwell action contains 
the (FμνF

μν)2 correction with a positive sign, opposite 
of that in the DBI action) the collective sound modes 
become super-luminal, as their speed exceeds the (ef-
fective) speed of light.

In that regard it should be mentioned that, al-
though these and other predictions would certainly 
benefit from clear disclaimers about the limited range 
of the  holographic parameters for which physically 
sensible predictions (e. g. positive conductivity) can 
be made, conspicuously, such limits do not readily 
follow from the  phenomenological ‘bottom-up’ ap-
proach itself. In particular, it would be rather prema-
ture to apply any of the aforementioned holographic 
scenaria to the  analysis of, e.  g. the  2DEG systems 
demonstrating the  apparent metal–insulator transi-
tion, complete with its peculiar scaling properties 
[230–233].

6. Holographic transport: Dirac/weyl materials

An important example of the  systems whose trans-
port properties can be studied systematically and 
then compared to the holographic predictions is pro-
vided by the interacting Dirac/Weyl (semi)metals. In 
the past, the transport properties of (pseudo)relativ-
istic systems have already been addressed in the con-
text of, both, interacting 2d bosons and fermions 
[234–236]. Such studies utilized the standard method 
of quantum kinetic equation which offers a  viable 
insight that can be compared to the specific predic-
tions of the general theory of holographic transport. 
The  fermionic variant of this problem pertinent to 
the case of Coulomb-interacting graphene was stud-
ied in the so-called two-mode approximation where 
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the emphasis was made on the conservation of charge 
and energy densities, as well as momentum den-
sity which is equivalent to the energy current up to 
the  higher-order dissipative corrections (a  feature 
that is specific to the (pseudo)relativistic dispersion) 
[237–239].

In the  case of a  weak Coulomb coupling α  =  e2/
hυ  <<  1 the  equilibration rate of all other, non-con-
served, modes would be of order Гnon–cons ~ α2|lnα|T 
which is higher than that of the  conserved ones, 
Гcons ~ α2T, thanks to the 2d kinematic (logarithmic) 
divergence of the  Coulomb collision integral. Thus, 
the  conserved modes can be singled out, while ne-
glecting all those that undergo a  faster relaxation 
[237–239].

It turns out, however, that the  system possesses 
another (nearly) conserved density which is the ‘im-
balance’ mode corresponding to the total number of 
electrons and holes (as opposed to their difference 
related to the charge density) [240–247]. Away from 
the neutral (particle–hole symmetric) regime its re-
laxation takes place through the Auger-type processes 
with the still slower rate of order Гimb ~ T4/μ3. Close 
to the  neutrality point the  results of the  two- and 
three-mode analyses appear to differ somewhat, thus 
showing that the imbalance mode can indeed impact 
the low-energy hydrodynamic behaviour [240–247].

It would, therefore, be desirable to carry out 
the  three-mode calculations for the  SU(N)-sym-
metric fermions with N >> 1, focusing on the regime 
1/N  <<    α2  <<    1 where a  comparison with the  holo-
graphic predictions can be made [95].

Notably, the kinetic equation tends to yield the con-
ductivity which develops the Drude peak followed by 
a dip at ω ~ Г, while no other peaks (nor zeros) emerge, 
in contrast to the holographic/hydrodynamic/memory 
matrix result (30). Besides, it remains to be seen as to 
how the explicitly computed corrections to the optical 
conductivity of graphene [247–253]

 (38)

match with the general prediction [86]

, (39)

where the sum is taken over the operator expansion 
of the product of two current operators.

Another quantity of special interest would be 
the  Lorenz ratio (ordinary, as well as the  Hall one) 
as a function of frequency. In the DC limit and near 
the neutrality point this ratio is dramatically enhanced 

because the heat and charge currents are controlled 
by two different mechanisms: momentum relaxation 
vs electron–hole pair creation. This prediction was 
found to be in a good agreement with the recent data 
on graphene [254–256] showing a 20-fold enhance-
ment (although the ratio η/s ~ 10 estimated in Refs. 
[254–256] seems to indicate that even a free-standing 
graphene may not be that strongly coupled, after all).

It would also be interesting to generalize the anal-
ysis to d  =  2  +  ϵ dimensions where the  effects of 
the Coulomb interactions are expected to be less dra-
matic and the separation between the slowly vs rap-
idly decaying modes becomes less pronounced [95].

Besides, one would need to introduce yet another 
nearly conserved density describing an imbalance be-
tween the numbers of quasiparticles in the vicinity of 
the two different Weyl points. This ‘chiral’ density in-
corporating (for ϵ = 1) the effects of the 3d chiral anom-
aly gives rise to such concomitant transport phenom-
ena as a negative magnetoresistance [257–259]. Some 
of its underlying geometric aspects can be observed 
even at the semiclassical level where the phase-space 
dynamics is naturally described in terms of the Bloch 
curvature [124–126]  which en-

ters the semiclassical equations of motion as a dual of 
the physical magnetic field:

. (40)

The current relaxation is then described by 
the equations

∂νT
 iν = F iνJν – γT it,

∂ν J
 ν = αϵμνλρF

 μνF λρ. (41)

Reproducing these effects in their entirety would 
provide another check point for (and further ad-
vance) the holographic transport theory [260, 261].

In that regard, one should also mention a series of 
works aimed at connecting holography to the  more 
conventional field theoretical analysis [262–265]. It 
seems, though, that the actual graphene and 3d Weyl/
Dirac metals alike can hardly provide a viable play-
ground for the CMT holography, as the effects of in-
teractions in these materials are either mild or even 
outright weak. It would, therefore, be quite interest-
ing to find some realization of their counterparts ‘on 
steroids’ in the condensed matter realm.
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The extended multi-mode kinetic analysis of gra-
phene may also allow for a deeper understanding of 
the role of viscosity in electron transport. The viscous 
terms become relevant for η>(enw)2/σ where w is 
the width of the graphene sample and such analysis 
can even be performed in the framework of the Na-
vier–Stokes equation, this time in real space [266], 
with predictions consistent with the  data of Refs. 
[254–256]. Incidentally, this regime has recently been 
studied in the ultra-pure 2d metal PdCoO2 [267], al-
though the estimated ratio η/S ~ 106 would hardly al-
low one to view it as ideal fluid.

Also, the  problem of a  hot spot relaxation in 
graphene [240–247] presents a  specific example of 
the  general ‘quench’-type phenomena which, too, 
have been extensively addressed by the  CMT ho-
lography [268–274]. The  1d variant of this problem 
involves two reservoirs of different temperatures TL 
and TR which are brought into a thermal contact, its 
solution featuring a non-equilibrium stationary state 
characterized by a definite temperature (TLTR)1/2 and 
constant energy flux (this solution does not seem to 
readily extend to the  limit of either vanishing tem-
perature, though). Moreover, this stationary state 
was shown to spread outward in the  form of shock 
waves and was related to the Lorentz-boosted black-
hole metric in the bulk, thus suggesting yet another 
explicit holographic connection.

To that end, it was conjectured in Refs. [268–274] 
that a similar behaviour would occur in higher dimen-
sions as well. However, the recent analyses of the hot 
spot relaxation in 2d graphene [240–247] suggest that 
a  more involved scenario where, both, the  resistive 
and viscous effects interfere with one another might 
be realized. Notably, the recent holographic work of 
Refs. [275, 276], too, shows a more involved dynamics 
of the expanding stationary state.

Further studies of these topics are strongly war-
ranted, also in light of the possibility to test some of 
the proposed hallmarks of the hydrodynamics behav-
iour, such as the specific relations between linear and 
non-linear transport [224–229], new (NFL) hydrody-
namic modes [210–217], and sound-wave resonances 
in finite geometries [254–256].

7. Analogue holography demonstrators

The above examples of ‘emergent geometry’ prompt 
a systematic quest into the apparent holography-like 
relationships that would be governed by the already 
known, rather than some hypothetical, physics. To 
that end, the  general holographic concept can ben-
efit from the possibility of being simulated in various 
controlled ‘analogue’ environments.

One prospective design of a  ‘holography simula-
tor’ was proposed for implementation in flexible gra-
phene and other semi-metallic monolayers (silicene, 
germanene, stanene, etc.) [277]. Such stress-engi-
neered desktop realizations of the system of 2d Dirac 
fermions in a curved geometry [278–284] can also be 
grown on commensurate substrates (e. g. h–BN) in 
order to endow the bulk fermions with a finite mass 
via hybridization.

In Ref. [277] a number of situations were discussed 
where a  physical edge of the  curved graphene flake 
which supports (almost) non-interacting massive Dirac 
fermions propagating in a  curved 2d space exhibits 
a behaviour that would be typically attributed to the ef-
fects of some phantom 1d interactions. In contrast to 
the aforementioned ‘semi-local’ scenario of Refs. [35–
44], though, it is the momentum dependence of the 1d 
propagator G(ω, k) that tends to become non-trivial.

Specifically, in graphene the  artificial gauge and 
metric fields represent the  elastic (phonon) degrees 
of freedom, their effective vector and scalar potentials

A0 ~ uxx + uyy, Ax ~ uxx - uyy, Ay ~ uxy (42)

being composed of the components of the strain ten-
sor [285–293], .

Here ui(x) and h(x) are the  local in- and out-of-
plane displacements of the  monolayer, respectively, 
while the valley-specific fields Aμ have opposite signs 
at the two different Dirac points. Computing the mas-
sive free Dirac fermion propagator in a curved space 
and taking its boundary limit one obtains the large-
scale asymptotic behaviour (4) governed by the geo-
desic action S(τ,  x) for the  background metric. For 
instance, in the  case of a  graphene flake shaped as 
a surface of rotation with the line element (here r and 
ϕ are the normal polar coordinates)

 (43)

with h(r) ~ (R/r)η for r ≥ a the ‘warp factor’ g(r) ~ 1/r2η+2 
diverges at small r. One then obtains the geodesic action

, (44)

which reveals an unconventional behaviour of 
the boundary propagator as a function of the distance 
along the edge, thus suggesting the ‘holographic’ dy-
namical critical exponent z = η/(η + 1).

It is instructive to compare the asymptotic (4) with 
the action given by (44) with the propagator of 1d fer-
mions interacting via a pairwise potential U(x) ~ 1/xζ 

where ζ  <  1. Using the  standard 1d bosonization 
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technique and matching the large-x asymptotics, one 
finds that (44) can mimic the spatial decay of the 1d 
propagator in the presence of such interactions, pro-
vided that η = (1 – ζ)/(1 + ζ).

Another instructive example is provided by 
the line element

dl2
log = dr2 + R2 exp(–2(r/R)λ)dϕ2, (45)

in which case the geodesic action reads

. (46)

For λ = 1 and at large x the propagator decays alge-
braically, G(0, x) ~ 1/xmR which is reminiscent of the be-
haviour found in the  1d Luttinger liquids, while for 
λ ≠ 1 Eq. (46) yields a variety of stretched/compressed 
exponential asymptotics which decay faster (for λ < 1) 
or slower (for λ > 1) than any power-law. For instance, 
by choosing λ  =  2/3 one can simulate a  faster-than-
algebraic spatial decay, G(0,  x)  ~  exp(–const  ln3/2x), 
in the 1d Coulomb gas (σ = 1) which is indicative of 
the incipient 1d charge density wave state.

For other values of λ Eq. (46) reproduces the be-
haviour in the boundary theory governed by the in-
teraction U(x) ~ (ln x)(2/λ)–3/x. Although the physical 
origin of such a bare potential would not be imme-
diately clear, multiplicative logarithmic factors do 
routinely emerge in those effective 1d interactions 
(‘double trace operators’) that are associated with 
various marginally (ir)relevant two-point operators. 
On the experimental side, the boundary correlations 
can be probed with such established techniques as 
time-of-flight, edge tunneling, and local capacitance 
measurements, thus potentially helping one to hone 
the proper analogue-holographic ‘dictionary’.

This holography-like correspondence once again 
suggests that some limited form of a bulk–boundary 
relationship might, in fact, be quite robust and hold 
regardless of whether or not the systems in question 
possess any particular symmetries, unlike in the orig-
inal AdS/CFT construction. Naively, this form of 
correspondence can even be related to the Einstein’s 
equivalence principle (i.  e. ‘curvature equals force’), 
according to which free motion in a  curved space 
should be indistinguishable from the effect of a physi-
cal interaction (only, this time around, in the tangen-
tial direction).

As an alternate platform for doing analogue ho-
lography, optical metamaterials have long been con-
sidered as candidates for simulating such effects of 
general relativity as event horizons, redshift, black, 
white, and worm holes, inflation, Hawking radiation, 
dark energy, multiverse, Big Bang and Rip, metric 

signatures transitions, ‘end-of-time’, and other cos-
mological scenaria.

However, the earlier proposals focused on the ef-
fective 3 + 1-dimensional metrics which requires 
some intricate engineering of the  locked permittiv-
ity (ϵ) and permeability (μ) tensors [294–302]:

. (47)

More recently, it was proposed to use extraordi-
nary (TM-polarized) monochromatic photons with 
the  dispersion ω2  =  k2

z/ϵxy  +  k2
xy/ϵzz for simulating 

the effective 2 + 1-dimensional metrics

gττ = – ϵxy,  grr = gϕϕ/r2 = –ϵzz (48)

in the media with μ = 1 [303–311].
In the hyperbolic regime, ϵxy > 0 and ϵzz < 0, the mo-

mentum component kz can then be thought of as an 
effective frequency, whereas ω plays the role of mass. 
In Ref. [312] it was shown that the experimentally at-
tainable two-component metamaterial configuration 
consisting of alternating metallic and insulating (flat 
or cylindrical) layers can simulate some of the HV ge-
ometries. The boundary propagator describing static 
spatial correlations of the optical field on the interface 
between the metamaterial and vacuum was found to 
behave as

〈Eω(x)E–ω(0)〉 ~ exp[–|ωx|θ/z], (49)

which should be contrasted to its counterpart in 
an isotropic medium with a  (negative) dielectric 
constant, 〈Eω(x)E–ω(0)〉  ~  exp(–ω|x|). Experimen-
tally, such correlations can be studied by analyzing 
the statistics of a non-local optical field distribution 
with the  use of holographic and speckle interfer-
ometry. Albeit still requiring a  careful engineering 
of the  dielectric media, some hallmark features of 
the analogue holography could, in principle, be de-
tected and then compared with, e. g. correlators of 
the vertex operators in the theory of a strongly self-
interacting 2d bosonic field, akin to that describing 
the  thermodynamics of a  fluctuating elastic mem-
brane.

Lastly, one could further elaborate on yet another 
(historically, far more extensively studied) potential 
playground for analogue holography which is pro-
vided by the acoustic realizations of ‘emergent grav-
ity’ [313–316]. By implementing such proposals one 
might also hope to establish a putative bulk–bound-
ary correspondence (alongside its own ‘dictionary’) 
for a broader variety of the combined (pseudo)gravi-
tational backgrounds, thereby gaining a better insight 
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into the physical origin(s) of the apparent holography-
like properties of various CMT and AMO systems.

8. Conclusions

This critical discussion demonstrates that, despite 
the  widespread expectations and reassuring declara-
tions on some part of the  holographic community, 
the  CMT holography still lacks a  true ‘smoking gun’ 
that could lend a firm support for this approach (albeit, 
possibly, in some reduced, rather than its most broad, 
overreaching, form). Therefore, it is perhaps not too 
surprising that there is still no consensus, neither on 
the exact implications of the reports of some apparent 
agreement between the  holographic predictions and 
the  results of other approaches and/or experimental 
data, nor the  general applicability and the  principal 
limitations of the holographic approach itself.

Together with the  systematic comparison be-
tween the  predictions of the  CMT holography and 
other, more traditional, approaches and/or experi-
mental data it would be a  necessary step towards 
vetting the  intriguing, yet speculative, holographic 
ideas before the latter can be rightfully called a novel 
technique for tackling the ‘strange metals’ and other 
strongly correlated materials. To prove genuinely use-
ful the  holographic theory needs to come up with 
detailed and unambiguous predictions that would be 
distinguishable from those of the  general hydrody-
namic approach which does not necessarily require 
any specific references to holography.

As to the general justification for the applied ho-
lography, it remains to be seen whether a viable holo-
graphic framework can finally emerge out of the RG 
procedure on the tensor network states, hydrodynam-
ic fluid/gravity duality, algebra of bi-linear boundary 
operators, or any combination thereof. The very mul-
titude of the currently available proposals may seem 
to attest to the potential existence of some rather gen-
eral, intrinsically geometrical, principles that govern 
a broad variety of the strongly-correlated many-body 
systems, albeit not necessarily copying ad verbum all 
the  machinery of the  very specific original string-
theoretical construction. Thus, in any event, it would 
seem rather unlikely that a  hands-on expertise in 
string theory should ever become a mandatory pre-
requisite for, e. g. understanding the cuprates.
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