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Optical parametric amplification of an input narrowband signal beam in the field of a spatially incoherent conical pump is 
investigated. Two amplification regimes – onset and exponential – are distinguished. The possibility to amplify the signal beam 
significantly and obtain a smooth intensity profile at the output is revealed. It is shown that the incoherent conical beam may act 
on the signal beam as a plane wave. Good agreement of theoretical and experimental data is obtained.
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1. Introduction

The generation and amplification of coherent radia-
tion by an uncorrelated pump source is an interesting 
field of research. In the active laser medium pumped 
by incoherent light, only a narrow part of the  spec-
trum is utilised. By parametric frequency down- and 
up-conversions, all spectral components of the broad-
band incoherent pump can be depleted [1].

Successful generation of coherent light in three-
wave interaction needs fulfilment of a  specific con-
dition. In the  time domain, it is the  group veloc-
ity matching between two incoherent waves while 
the group velocity of the coherent wave must differ [2, 
3]. In the space domain, the group velocity is substi-
tuted by spatial walk-off. Instead of choosing par-
ticular crystals at particular wavelengths, the appro-
priate angular dispersion of signal and pump waves 
can be used [1]. An effective parametric amplification 
of a narrowband signal in the field of an incoherent 
pump can be achieved even in the case of no group 
velocity matching when the background of the ampli-
fied spectrum is filtered out [4].

Instead of incoherent waves, spatially incoherent 
beams that obey a broadband angular spectrum are 
often discussed  [5]. In contrast to the  plane wave, 

transverse spatial structures are two-dimensional. 
This also allows composing the  conical structures. 
The Bessel beam [6, 7] refers to the coherent conical 
beam that is composed of a  set of beams with cor-
related phases. The incoherent conical beam may be 
regarded as a  set of mutually uncorrelated beams. 
Each of them may also be incoherent. The up- [8] and 
down- [9] conversions of incoherent conical beams 
allow the  generation of a  beam with a  narrowband 
angular spectrum. The  motivation of studying such 
interactions is also provided by parametric combin-
ing. Indeed, beams that compose a conical beam may 
be seen as pump beams in the parametric combining 
process. Their energy may be transferred to a single 
beam that should be coherent.

Here we focus on an optical parametric amplifier 
(OPA) of an input narrowband seed which is am-
plified by a spatially incoherent conical pump. Note 
that the research of pumping by the Bessel beam re-
vealed new possibilities to control the angular profile 
of an amplified signal  [10]. Here, we reveal new in-
teresting features, namely, that the  incoherent coni-
cal beam may act on the  amplified signal beam as 
a plane wave giving rise to exponential amplification. 
Moreover, the amplification is dictated by the pump 
intensity that ‘forgets’ the random phases of the pump 
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field. A detailed study shows the possibility to reduce 
the generated noise in the angular and intensity pro-
files of the amplified signal.

The rest of the paper is organized as follows. In 
Section 2, we first investigate the properties of the in-
coherent conical beams that are used in the follow-
ing sections. Here, we distinguish two amplification 
regimes: onset of amplification and exponential am-
plification. Both regimes are studied theoretically as 
well as numerically. In Section 3, the experimental 
results are presented that qualitatively agree with 
the  theoretical ones. In Section 4, conclusions are 
drawn.

2. Theoretical results

2.1. Properties of incoherent conical beam

Let us find the correlation function of the incoherent 
conical beam. We assume the homogeneous, isotropic 
pump field A30 that obeys the Gaussian statistics and 
has an angular spectrum of the following form:

. (1)

Here β0  =  k3θ0, k3 is the  pump wave number, 2θ0 is 
the cone angle. 2∆β3 is the cone width and it was as-
sumed that ∆β3 <<  β0. The correlation function is given 
by

.   (2)

Here J0 is the Bessel function. We obtain

, (3)

where  is the  mean intensity of 

the pump field. As we can see, the correlation radius 
of the incoherent conical beam at β0 >> ∆β3 is mainly 
determined by β0.

Further, we will need the  intensity correlation 
function BI3

(r) = 〈I3(r1)I3(r2)〉, where r =  |r1–r2|. One 
can obtain

 (4)

Now, let us find the  correlation function BIe
 as 

well as the  spectrum of the product Ie = A10(r)I3(r) 
that appears in the governing equations in the case 
of the  onset of parametric amplification. Here A10 
denotes the axial input signal beam,

, (5)

where a0 is the amplitude, d1 is the input beam radi-
us, and 22= yx +ρ , (x, y, z) are the Cartesian coor-
dinates. The correlation function of the  input signal 
beam is given by

 (6)

where . We assume that at the  input 
the signal and pump beams are uncorrelated. Then

BIe
 = BA10

BI3
. (7)

By the use of Eqs. (4) and (6) we obtain

, (8)

where 2
3

2
1

2
02

4
= 〉〈〉〈 IdaIe , 2

32
1

2 1= ββ ∆+∆
dn . So, the angular 

spectrum of the product Ie is composed of two parts:

SIe
 = Sp(β) + Sb(β) (9)

where

,               (10)

and

.  (11)

The first part Sp is an axial coherent peak and 
the second term Sb is the background which gives rise 
to noise in the amplified signal. Besides the axial part, 
the spectral amplitude Sb has a ring part at β = 2β0, see 
Fig. 1. As we can see, the axial part of Sp is much larger 
than the axial part of Sb. We note that at z = 0 the inte-
gral powers of Sp and Sb are the same. Here and further 
the  calculations were performed for the  type II KTP 
crystal, and the refractive indices were taken from [11]: 
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n1 = 1.830 (signal, o-wave), n2 = 1.747 (idler, e-wave), 
and n3 = 1.788 (pump, e-wave). The degenerate inter-
action at the pump wavelength λ3 = 0.532 μm was as-
sumed. The interaction takes place in the xy plane and 
is nearly noncritical.

2.2. Governing equations

The nonlinear parametric interaction of the  conical 
pump (index 3), axial signal (1) and conical idler (2) 
beams is described by the  following equations for 
the fields:

 (12)

Here  is the  phase mismatch, σ  is 

the  nonlinear coupling coefficient, σ  ∝ ωj, ωj is 
the  cyclic frequency of the  jth wave, k is the  wave-

number, and 2

2

2

2

=
yx ∂
∂

+
∂
∂

∆⊥ . As mentioned earlier, 

the nearly noncritical interaction in the type II KTP 
crystal is studied. Therefore the walk-off terms are not 
included in the equations.

Further a theoretical consideration is performed 
under the assumption that the pump beam is not de-
pleted. Moreover, we assume that the diffraction of 
the pump ring could be neglected. Then, the follow-
ing condition should be fulfilled:

. (13)

In this case the field of the pump beam is described 
by

 (14)

The boundary condition for the  signal beam is 
given by Eq. (5). The field of the input idler beam is 
given by

A20(x, y) = 0, (15)

and the  input pump beam was simulated according 
to Ref. [8]:

,       (16)

where φn  =  2π(n  –1)/N is the  propagation angle of 
the nth intersecting beam and d3 is the beam radius. 
Amplitudes Un were simulated according to Ref. [12] 
where the simulation of the Gaussian-Gaussian noise 
is described:

.      (17)

Here Kxs and Kys are the random numbers with normal 
distribution and variance 2/3β∆ . ξs is the uniform-
ly distributed phase. Ns has to be sufficiently large. 
Amplitude  and a2

30 = 〈|A30(0,0)|2〉.
We note that the pump field (16) is not homogene-

ous due to the Gaussian aperture. It obeys a conical 
angular spectrum [8]. In Fig. 2, we depict the numeri-
cally simulated pump beam profile (left) and the an-
gular spectrum (center). Here, we used a rather large 
value of the ratio ∆β3/β0 to make the ring in the an-
gular spectrum visible. From the right figure one can 
see that the averaged profile (curve 2) coincides with 
the theoretical function (curve 3) given by the Gauss-
ian exponent in Eq. (16):

. (18)

Further we distinguish two cases: (i) the onset of 
amplification and (ii) exponential amplification.

Fig. 1. Integrals Sp and Sb, Eqs. (10) and (11). KTP type II 
crystal, θ0 = 0.5°, d1 = 500 μm, ∆β3 = β0/50.
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2.3. Onset of amplification

In the  case of a  weak amplification the  signal beam 
does not change considerably, so in the second equa-
tion of Eqs. (12) we can assume that A1 ≈ A10, where A10 
is given by Eq. (5). Then, for the idler beam we obtain

. (19)

The idler beam is conical. Further we assume that 
the Rayleigh length of the input signal beam exceeds 
the length of a nonlinear crystal. In this case the dif-
fraction of an idler ring can also be neglected. Then, 

we can write  and

, (20)

. 

Then, for the signal beam we obtain

, (21)

where I3  =  |A30|
2. So, the  onset of amplification is 

mainly caused by pump beam intensity.
We have already studied the correlation properties 

of the  right-hand expression in Subsect.  2.1. Its an-
gular spectrum obeys both coherent and noise parts 
(Sp and Sb). Here, we will show that the noise part is 
filtered out during the  propagation in a  nonlinear 
crystal. Further, we perform the Hankel transform of 
Eq. (21) and obtain

, (22)

where S1 is the spectral amplitude of the signal beam, 
lp1 = 4k1/β0

2 ≈ lp, p = β/β0 and

. (23)

The solution of Eq. (22) reads

. (24)

Here, S10 = S1(z = 0). Further we involve into con-
sideration the nonlinear interaction length Ln: L

2
n = 1/

σ1σ2〈I3〉. We assume that z/Ln is small at the onset of 
the  amplification and ignore small terms z4/Ln

4 in 
the  expression of |S1|

2. After averaging, 〈f(p)〉  =  〈I3〉
S10(p), and for the parametric gain η we obtain

.           (25)

At p  =  0 we find 2

2

=
nL

zη . From the  condition 

2

2

2
1=

nL
zη  we find the FWHM bandwidth of the OPA 

(at z <<  Ln):

. (26)

Therefore, the bandwidth decreases with a propa-
gation in the nonlinear crystal. If lp < z <<  Ln, one can 

Fig. 2. Numerical simulation. Typical pump beam intensity distribution (left), profile (right) and angular spectrum 
(center). Right: intensity profile at y = 0. One realization (1, black), average of 200 realizations (2, red online), theo-
retical function (3, blue online). Parameters: d3 = 500 μm, θ0 = 0.5° (inside the crystal), ∆β3/β0 = 0.2, N = 32.
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observe the filtering of noise in the signal beam. That 
is caused by a specific angular spectrum of pump beam 
intensity (Sb in Fig. 1). At z >>  lp the influence of pump 
beam incoherence on the angular spectrum of the sig-
nal beam should be negligible. In this case, a coherent 
parametric amplification in the field of an incoherent 
pump beam becomes possible. We note that at β0 >>  ∆β3 
the parameter lp denotes an influence of conical pump 
beam incoherence in parametric amplification.

Further, we simulated numerically nonlinear cou-
pling equations (12) by the use of the Fourier split-step 
method [13]. In order to investigate the onset of sig-
nal amplification we have chosen the parameters given 
in the caption of Fig. 3. In this case the condition of 
Eq. (13) is satisfied: 2∆β3z/β0lp = 0.23 (at z = 18 mm) 
and according to Eq. (26) ∆βOPA/β0 = 0.12. Therefore, 
the  diffraction of the  pump beam can be neglect-
ed and the  filtering of noise should be observed, see 
Fig.  1. Indeed, as we can see from Fig.  3, the  noisy 
structure is added to the signal beam due to amplifi-
cation (center graph). The correlation radius increases 
when the propagation distance z is much larger than 
lp = 318 μm (right graph). Note that here z <  Ln and 
the amplification is weak. Therefore, we depict the dif-
ference of the intensities of amplified and input beams 
(center and right graphs).

2.4. Exponential amplification

We intend to amplify the  signal beam considerably. 
Let us assume that at z >>  Ln the exponential ampli-
fication of the signal beam starts. Therefore, we write 
for the signal angular spectrum at Γz >> 1

〈S1〉 = exp(Γz) 〈S10(β)〉, (27)

where the increment Γ has to be defined. We express 
the spectral amplitude of the idler beam as

S2 = exp(iβ0
2z/2k2)B2(β,z). (28)

Let us assume a narrow ring for the idler beam, so 
that S2 ≠ 0 at β ≈ β0. Then, we obtain the equation

, (29)

and the solution

. (30)

FT2(•) denotes the  two-dimensional Fourier 
transform. The field of the idler beam is given by

. (31)

We insert this result into the  first equation of 
Eqs. (12) and make use of Eqs. (14) and (27). We obtain

, (32)

where S13  =  FT2(〈A10(x,  y)〉〈f3(x,  y)), f3  =  |A30|
2  /  a2

30. 
Here, we assumed that FT2(〈A1〉〈f3〉) = exp(Γz)FT2(〈A10〉
〈f3〉), where A10 is the inverse two-dimensional Fourier 
transform of S10. We also assumed that signal and pump 
beams are uncorrelated: 〈A1f3〉 =〈A1〉〈f3〉. The second as-
sumption is correct in the case of a small nonlinearity 
with respect to the diffraction term [14, 15]. Note that 

Fig. 3. Numerical simulation of Eqs. (12). Signal beam intensity distributions at the onset of amplification. Left: in-
tensity distribution of the input signal beam |A10|

2. Difference |A1|
2 –  |A10|

2 at z = 1.8 mm (center) and z = 18 mm 
(right). One realization. Parameters: d1 = d3 = 500 μm, θ0 = 1° (inside the crystal), ∆β3/β0 = 0.002, N = 256, Ln = 20 mm, 
a0/a30 = 10–4.
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〈f3〉 is given by the Gaussian exponent 〈f3〉 =exp(–2ρ2/
d3

2) (Eq. (18) and Fig. 2, right).
First, we simulated Eqs.  (12) for the  same input 

pump beam as in Fig. 2. In order to examine the ex-
ponential amplification we set z/Ln  =  4. The  output 
signal and idler angular spectra are depicted in Fig. 4 
(top). As we can see, the idler beam obeys a conical 
angular spectrum. It is incoherent. The signal angular 
spectrum consists of a narrow central spot. Although 
the  angular spectrum of the  signal beam is narrow, 
the incoherent structure becomes visible in the inten-
sity distribution (Fig. 4, bottom).

As we can see from Eq. (32), at β = 0, 
. Therefore, the incre-

ment of the central part of the spectrum coincides 
with the increment which is obtained in the case of 
the plane wave pump (Γ = 1/Ln) if d3 >>  d1, and we can 
approximately write 〈S13〉 ≈ 〈S10〉. Then, the amplifica-
tion  of  the  narrowband  signal  beam  in  the  field  of 
the incoherent conical beam is the same as in the field 
of the plane wave. In order to check this result, we 
performed numerical simulations of Eqs. (12) in 
the case when the ratio of the radius of signal and 
pump beams is d1/d3 = 0.25. The numerically cal-
culated growth of the signal spectral amplitude was 
compared with the following formula:

. (33)

Here S10 is the  input spectral amplitude. We used 
the function cosh(•) instead of exp(•) since the incre-
ment Γ obeys both positive and negative values and 
∂S1/∂z = 0 at β = 0, z = 0. The results are presented in 
Fig. 5. We see that a good coincidence of the theoreti-
cal and numerical data is obtained (curves 1 and 2). 
Furthermore, as we can see from Fig. 6(a), the initial 
angular profile is preserved in this case. Curve  3 in 
Fig. 5 and curves 1, 2 in Fig. 6(b) correspond to an-
other case when the  beam radii of the  input pump 
and signal coincide. Then, the  increment is smaller, 
and the angular profile of the  signal beam becomes 
broader due to the amplification in the field of a non-
homogeneous pump beam envelope.

Fig. 5. Numerical simulation of Eqs. (12). Amplification 
of the spectrum radiance of the signal beam: theoreti-
cal (1) and numerical (2, 3) curves. d1/d3: 0.25 (2), 1 (3). 
Parameters: d3 = 500 μm, θ0 = 0.5° (inside the crystal), 
∆β3/β0 = 0.2, N = 32, Ln = 2.5 mm, a0/a30 = 10–4. Average 
of 50 simulations.

Fig. 4. Numerical simulation of Eqs.  (12). Top: output 
signal (axial) and idler (conical) angular spectra. Bot-
tom: output signal intensity distribution. Input para-
meters are the same as in Fig. 1. d1 = d3, Ln = 2.5 mm, 
z = 10 mm, a0/a30 = 10–4. One simulation.
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If we intend to amplify a  narrowband signal 
beam without distortions in the  intensity profile 
(see Fig.  4, bottom), the  parameters should be set 
that would provide the  noise filtering (see Fig.  3). 
The parameters given in the caption of Fig. 7 provide 
the combination of the filtering with the exponential 
amplification. In this case, the output signal intensity 
profile obeys less distortions and the  amplification 
of the spectral radiance is similar to the one depicted 
in Fig. 5, curve 2. The parameters yield a smaller val-
ue of lp (because of larger θ0), so that lp = Ln. In order 
to avoid pump beam diffraction, we set smaller ∆β3. 
Therefore, the coherent parametric amplification of 
the narrowband signal beam in the field of the coni-
cal incoherent beam is possible.

3. Experimental results

The experiment on parametric amplification 
pump ed by incoherent radiation was performed 
using a  diode-pumped Nd:YAG laser system (APL 
2210B, EKSPLA). The  laser produced 50  ps pulses 
at the  1  kHz repetition rate and a  near-Gaussian 
spatial beam profile. The  experimental set-up is 
presented in Fig. 8 (left). The OPA was pumped by 
the  second harmonic of the  Nd:YAG laser (wave-
length λ3 = 532 nm) and seeded by the fundamen-
tal harmonic of the  same laser. In order to obtain 

Fig.  6. Numerical simulations of Eqs.  (12). Intensity 
profiles of the input seed (1) and amplified signal (2) at 
z = 10 mm. d1/d3: 0.25 (a), 1 (b). Parameters the same as 
in Fig. 4. Average of 50 simulations.

Fig. 7. Numerical simulation of Eqs. (12). Intensity pro-
files of input (top) and amplified signal (bottom). Para-
meters: d3 = 500 μm, d1/d3 = 0.1, θ0 = 1.5° (inside the crys-
tal), ∆β3/β0 = 0.02, N = 256, Ln = 2.5 mm, z = 10 mm, 
a0/a30 = 10–4. One simulation.
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an incoherent conical pump radiation, a Bessel beam 
was formed initially using a high quality glass axicon 
with the cone angle equal to 0.067 rad (θ0 ≈ 1° inside 
the  crystal). The  beam radius before the  axicon was 
800 μm and the parameter defining quality of the Bes-
sel beam (ratio of ring radius to ring width) was ~170. 
The Bessel beam formed behind the axicon was im-
aged onto the OPA crystal by two plano-convex lenses 
L1 and L2 with equal focal lengths of f1  =  100  mm. 
Spatial incoherence of the conical beam was obtained 
by placing a phase-distorting film PDF (made of poly-
ethylene) in the focal plane of lens L1 and the angular 
spectrum of the incoherent conical beam is presented 
in Fig. 8 (right, inner ring). The energy of the pump 
pulse up to 800 μJ was adequate to amplify the seed 
in a  10  mm long KTP crystal. The  signal beam was 
injected into OPA and type II interaction close to 
the noncritical phase-matching (KTP crystal orienta-
tion θ = 0, φ = 23.2°) was realized. In this experiment, 
the generated incoherent conical pump beam can be 
viewed as a  set of intersecting beams with uncorre-
lated phases due to the fact that the PDF was placed 
at the far field (ring) of the conical beam. So, the inco-
herent conical beam was formed.

First, spectral features were investigated. A far field 
of the OPA output was imaged by lens L3 (f3 = 150 mm) 
onto the CCD camera and the angular spectra of prop-
agating beams were registered. Filter F was used to 
suppress the pump power. Angular spectra of output 
beams are presented in Fig. 8 (right) where the central 
spot and the  outer ring correspond to the  amplified 
signal and generated idler beams, respectively. An in-
tensity modulated inner ring is the angular spectrum 
of the  spatially incoherent conical pump beam. Note 
that an outer ring is also modulated. The asymmetry of 
rings with respect to the central spot is due to the spa-
tial walk-off of extraordinary polarized waves.

In Fig. 9(a) the dependence of parametric gain on 
the input pump energy is presented. Signal energy in-
creases exponentially and further scaling of pump en-
ergy was prevented by optical damage to the crystal. 
Intensity profiles of input and amplified signal beams 

Fig. 9. Experimental data. (a) Dependence of parametric 
gain of signal beam on pump energy. (b) Angular spec-
trum of input (1) and amplified (2) signal beam. Pump 
energy: 270 μJ (2).

Fig. 8. Experimental set-up (left): L1–L3, lenses; M, dielectric mirrors; F, filter; PDF, phase-distorting film. Output 
spectra (right) of signal (central spot), idler (outer ring) and pump (inner ring) beams.
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are presented in Fig. 9(b), and curves 1, 2 reveal that 
the  input narrowband angular spectrum becomes 
broader during the  amplification. This behaviour 
confirms the theoretical results presented in Fig. 6(b).

4. Conclusions

The optical parametric amplification of the  sig-
nal beam by the spatially incoherent conical pump 
beam is demonstrated. The acquired noise of the sig-
nal beam in the  onset of amplification in the  field 
of the  incoherent conical beam is filtered during 
the propagation in the nonlinear medium. At z >>  lp 
the influence of pump beam incoherence on the an-
gular spectrum of the signal becomes negligible but 
can be observed in the  intensity profile of the  sig-
nal beam. The  distortions of signal beam intensity 
gradually disappear when the  pump cone angle θ0 
increases (pump incoherence parameter lp ∝ θ0

–2 de-
creases).

When the radius of the signal beam is considerably 
smaller than the radius of the pump beam envelope 
(d1  <<  d3), an exponential parametric amplification 
takes place. In this case, the initial angular profile of 
the signal beam is preserved during amplification. If 
d1 ≥ d3, the angular profile of the signal beam becomes 
broader due to amplification in the field of the non-
homogeneous envelope of the pump beam.

A good qualitative agreement between theoretical 
and experimental data was obtained. The possibility 
to amplify significantly a  narrowband signal with-
out considerable distortions in the intensity profile is 
demonstrated by the use of numerical simulations.
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ŠVIESOS PARAMETRINIS STIPRINIMAS KAUPINANT NEKOHERENTINIU 
KŪGINIU PLUOŠTU

V. Tamulienė, V. Smilgevičius, D. Kudarauskas, R. Butkus, A. Stabinis, A. Piskarskas

Vilniaus universiteto Kvantinės elektronikos katedra, Vilnius, Lietuva

Santrauka
Pademonstruotas erdviškai koherentinio šviesos 

pluošto parametrinis stiprinimas kaupinant jį erdviškai 
nekoherentiniu kūginiu pluoštu. Nustatytos sąlygos, 
kada stiprinamo pluošto kampinis spektras lieka nepa-

kitęs. Tada stiprinimas vyksta pagal eksponentinį dėsnį 
ir kaupinimo pluoštas veikia kaip plokščia banga.

Gautas geras teorinių ir eksperimentinių rezultatų 
sutapimas.
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