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Electronic excited states of a molecular aggregate coupled to Morse vibrations are analysed by a nonperturbative 
time dependent variational approach. General equations of motion for an electronically excited state are derived 
for electronic amplitudes, nuclear displacements and squeezing of the nuclear wave packets. Numerical simulations 
demonstrate that anharmonicities of vibrations lead to short-term irreversible dynamics, extra localization and 
transformation of stationary lowest-energy states.
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1. Introduction

Functional molecular aggregates have been exten-
sively studied as possible candidates to replace in-
organic atomic semiconductors that have relatively 
high production costs  [1, 2]. Molecular organic 
light emitters and organic solar cells are now suc-
cessfully employed in industry. Organic molecular 
aggregates are also the main building blocks in en-
ergy production in natural photosynthesis [3, 4].

Modelling of such systems usually relies on 
a  tight-binding or Frenkel exciton models addi-
tionally coupled to harmonic vibrations, represent-
ing molecular and phonon vibrations [5, 6]. Such 
formulation allows recovery of exciton relaxation 
dynamics, charge separation and polaron forma-
tion as well as charge transport in a  broad range 
of problems. Apart from dynamics, it should be 
noted that the bath of harmonic vibrations allows 
describing realistic spectral line shapes in molecu-
lar spectroscopy [7]. The fast bath fluctuations lead 
to homogeneous broadenings, slow or static devia-
tions cause inhomogeneous broadenings, specific 
peaks in phonon spectral densities show the vibra-

tional progressions observed in molecular systems 
especially at low temperatures [8].

However, the unexpected outcome of the model 
is an infinitely narrow lowest-energy zero-phonon 
electronic band. It has no contribution to spectral 
broadening at low temperature when realistic phon-
on spectral density (C''(ω) ∝ ω3 at ω → 0) is taken into 
account [9]. Even at higher temperatures the spec-
tral broadening of the zero phonon line (ZPL) comes 
only from the ‘finite lifetime’ broadening effects. Ad-
ditionally, the  linear models lead to resistance to 
thermal conduction in the  bath and essentially to 
blocking of thermal equilibration [10].

It has been shown that the ZPL line width be-
comes finite when a nonlinear electron-vibrational 
coupling is included in the model [11]. This prop-
erty is primarily due to different vibrational fre-
quency in electronic ground and excited states. 
However, the quadratic coupling is only the second 
term in the series expansion in the electron–pho-
non coupling potential. The realistic potentials are 
neither harmonic nor the interaction functions are 
simple power functions [12–14], and that may lead 
to novel physics and spectroscopy.
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In this paper we take a  more realistic Morse 
type molecular vibrational potential into account 
and derive equations of motion of the electronic 
system coupled to such vibrations by using a non-
perturbative approach developed earlier [15]. We 
find that interaction potentials are essentially ex-
ponential functions of vibrational coordinates. 
The  net result is that the  anharmonicities cause 
an additional localization of electronic excitations 
and different symmetry of relaxed electronic ex-
citations.

2. Theory

2.1. Model

We start from the standard model of Frenkel exci-
ton coupled to molecular vibrations. The electron-
ic ground state is taken as a  reference, where all 
degrees of freedom are independent. In the elec-
tronic excited state the  equilibrium position 
of a  vibration becomes shifted, so the  energy of 
the excited state becomes dependent on the coor-
dinate of the vibration. Such a system is described 
by the following Hamiltonian:

 (1)

Here x̂i is the  coordinate operator of vibrational 
mode i, Vi(x) is its potential energy function. As-
suming a  unit mass case, the  kinetic energy op-
erator takes a  simple form K̂(x̂i)  =  ẋ̂2

i/2, ẋ̂i being 
equivalent to the momentum operator. The matrix 
Jmn is the electronic coupling matrix for orthogo-
nal excited states |m〉, |n〉; the  electronic ground 
state |0〉 forms a  separate manifold with zero 
electronic energy.

The traditional harmonic model is defined by 
Vi(xi) = ω2

i x
2
i/2 for all modes [16]. ωi is the harmonic 

frequency. It leads to the linear coupling scenario, 
Vi(xi–dni) – Vi(xi) = Λni – gnixi, where Λni = ω2

i d
 2
ni /2 

is the  reorganization energy with the  electronic-
vibrational coupling constant gni= ω2

i dni.
In the  present paper we assume that all vibra-

tional modes are characterized by the anharmonic 
Morse potential defined by

Vi(xi) = Di(1 – exp(–αixi))2. (2)

Here Di is the classical dissociation energy and αi 
defines the  width of the  potential. The  potential 
minimum is at xi = 0 while the curvature at the min-
imum corresponds to the frequency .

The Morse potential yields an exponential type 
of the electron-vibrational interaction

Vi(xi – dni) – Vi(xi) = Di((2 + sni)e–2αixi – 2e–αixi), (3)

where sni = exp(αidni) – 1. The corresponding reor-
ganization energy Λni = Dis

2
ni: Notice that for a nar-

row potential when αixi <<  1, we obtain sin ≈ αidin and 
the Morse model reduces to the harmonic model 
with the leading linear coupling term.

2.2. Wave packet Ansatz

It is possible to model the explicit quantum me-
chanical propagation of a  system wave vector 
according to the  Schrödinger equation for such 
system numerically, however, that is computa-
tionally inefficient as the  number of degrees of 
freedom grows up exponentially with the number 
of vibrational modes. Instead, for a  manifold of 
singly excited electronic states we choose to use 
the  time dependent variational approach based 
on the  Ansatz of squeezed coherent states  [17, 
18, 15]:

. (4)

Here the parameterized system wave packet is con-
structed from a superposition of electronic ampli-
tudes of all relevant excitations. The  vibrational 
manifold is constructed from the  vibrational ze-
ro-quanta state, |0v〉, by acting with the  squeeze, 

, and displacement,  
 operators. The  main properties of 

the operators are described in Appendix A. an, ζi, 
λi are the time-dependent parameters of the wave 
packet, while b̂i and b̂†

i are the  standard bosonic 
ladder operators related to the coordinate and mo-
mentum by standard relations:

, (5)

. (6)
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All parameters are complex-valued, however, 
squeezing will be more convenient to represent 
in terms of the  real-valued amplitude and phase 
ζi = ri exp(iθi).

The time evolution of the wavefunction will be 
completely defined when we get equations of mo-
tion for the  parameters. For this purpose we use 
the Dirac–Frenkel variational procedure. It is based 
on search for the extremum of the system quantum 
mechanical Lagrangian defined by

. (7)

The equations of motion are derived from the La-
grangian extreme condition

, (8)

where z is an arbitrary independent system param-
eter.

It should be noted that not all parameters of 
the Ansatz are independent. In particular, the time 
evolution of the wavefunction keeps the total am-
plitude of the wavefunction constant:

. (9)

So the norm of a single an becomes dependent 
on all others. However, we treat all parameters as 
independent, while keep the normalization condi-
tion in mind for additional simplifications.

2.3. Total energy and Lagrangian of the system

Dynamical equations of motion according to 
the extreme of the Lagrangian yield the equations 
of motion that conserve the  wavefunction norm 
and the total energy of the system. The total energy 
enters the Lagrangian, also, it is an important addi-
tional parameter to inspect if we search for the low-
est energy state. As the  wavefunction is defined, 
the energy can be easily calculated as the expecta-
tion value of the Hamiltonian

 

(10)

where we separate λi = λ i
(r)+iλ i

(i). Functions f1 and 
f2 are defined in Appendix B. The remaining, ki-
netic, part of the  Lagrangian is essentially most 
complicated requiring normal ordering of all op-
erators. Its calculation is also described in Appen-
dix B. The full Lagrangian in terms of variables ai, 
λi, ri and θi is finally given by

. (11)

3. Equations of motion of the parameters

3.1. Electronic excited state

Equations of motion are obtained by a  variational 
procedure and reffect the  extremal condition of 
the Lagrangian. Using Appendices B and C the final 
set of equations can be derived in the following form:

 (12)

 
(13)

 (14)

 (15)
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These equations can be used to construct, e.g. 
a molecular system coupled to the dissipative an-
harmonic environment.

Further, we consider an aggregate where we 
have only one intramolecular vibrational mode 
per site which is coupled only to its own site. 
Moreover, we assume that molecular oscilla-
tors have identical vibrational parameters so we 
take the  unit frequency case, i.e. ωi  =  1, and es-
sentially all parameters become with respect to 
this unit frequency dimensionless. In this case 
the parameter  directly relates to the an-
harmonicity and ionization energy. After some 
simplifications we then get a slightly simpler set of 
equations:

 (16)

 (17)

 
(18)

 

(19)

As in our previous study  [15], equations 
of motion contain a  problematic point ri  =  0, 
where coth(2ri)  →  ∞. To avoid this point we 
replace

, (20)

where a positive real η << 1. In this case the point 
ri  =  0 is avoided and the  equations behave 

properly. In numerical simulations we use 
η2 = 10–7.

It can be easily shown that the equations of mo-
tion conserve the  total probability. The  condition 
Σn|an|

2 = 1 implies that

. (21)

Then from the first equation we have

 (22)

The last term of the  equation is purely imagi-
nary so adding its complex conjugate the  whole 
term vanishes. What remains is

 .         (23)

The summation over n yields the required result 
provided Jmn = Jnm. The second, energy conservation, 
condition is cumbersome, however, we observe its 
presence in all numerical simulations.

3.2. Electronic ground state

In many spectroscopy applications [18] it is nec-
essary to propagate the  electronic ground state 
alongside the excited state. Notice that the nonlin-
earities are present in the ground state so the ana-
lytical solution is not possible. However, the equa-
tions of motion can be easily obtained by taking 
all an  =  0, and for a  specific oscillator (we drop 
indices) we get

, (24)

,         (25)

 (26)

These equations of motion are essentially for 
a  free Morse oscillator and can be used to study 
squeezing and displacements of nuclear wave 
packet in this system in general.
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4. Numerical demonstrations

For numerical analysis of the model we use the Ju-
lia programming language  [19]. We consider 
a simple model system of two sites characterized 
by Eqs. 16–19. The  free parameters that can be 
varied are the anharmonicity parameter α of os-
cillators and the coupling strength parameter that 
we define using the reorganization energy, which 
for this case is Λ = s2/(2α2). The last parameters are 
contained in the electronic system matrix J.

First, we consider an electronic system whose 
natural electronic frequency is higher than the vi-
brational frequency, i.e. Jmn > ω0 ≡ 1:

. (27)

We keep its sites strongly coupled so that the pure 
electronic system is characterized by delocalized 
eigenvectors (given in columns)

 (28)

for eigenvalues 2.562 and –1.562, respectively. 
Asymmetry between sites is included for stabil-
ity in the behaviour of the dynamics. Reorganiza-
tion energies for two sites are the same, Λn = 0.1. 
Initial conditions for the an parameters are taken 
to correspond to the higher energy electronic ei-
genstate obtained by, e.g. optical excitation. Then 
the  displacements λi  =  0, and squeezings θi  =  0, 
ri =  10–3 (for convergence). We label this system 
as system A.

Figure 1 demonstrates the evolution of system 
wavefunction parameters as a function of time in 
the short time scale: )r(2 iiq λ= is the expectation 
value of the  coordinate operator. We clearly ob-
serve that the electronic system is switched from 
the stationary exciton state at t = 0 by the vibra-
tional wave packet as qn deviates from zero. Since 
the  system is anharmonic, squeezings are gener-
ated with rn ≠ 0. The system moves from the sta-
tionary state in an oscillatory way, i.e. electronic 
population deviations become larger in the  sec-
ond vibrational period and this would continue at 
longer times. For comparison we also show the re-
sult of a  harmonic model, obtained by taking 
α → 0. Technically this is realized by using α = 10–4. 

In this case, the  squeezing amplitudes do not 
evolve, the nuclear displacements are much small-
er, while the electronic state varies in a reversible 
way. Hence, the  anharmonicity introduces some 
kind of irreversibility on this short time scale.

Next we increase the  electronic-vibrational 
interaction by taking the reorganization energies 
Λ = 1 (we call this model model B). Figure 2 dem-
onstrates the  evolution of the  system B. In this 
case the excitation of sites leads to a very large de-
viation of vibrational coordinates from zero. Es-
pecially, the coordinate q1 signifies almost disso-
ciation, which is essentially allowed by the Morse 
potential. Squeezing also grows up dramati-
cally. So the  dissociation would lead to a  highly 
squeezed wavepacket in the  split wavefunction. 
The corresponding harmonic model (grey curves) 
does not allow dissociation, hence, the wave pack-
et oscillations are much weaker.

Fig. 1. Evolution of wavefunction parameters after ex-
citation into the higher excitonic band of the model A. 
Black and grey (sine) curves are for the correspond-
ing harmonic model (α → 0). Colours (online) show 
the highly anharmonic case with αn = 0.5.
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So far we demonstrated that the anharmonici-
ties lead to more complex irreversible dynamics 
on the  short time scale. However, the  more im-
portant question is how anharmonicities reshape 
the stationary states of the system. A whole set of 
eigenstates could be obtained by a  ‘brute force’ 
approach by taking a  specific set of orthogonal 
basis wavefunctions [14]. However, in this paper 
we rely on the  Ansatz to find the  lowest energy 
stationary state of the system. For this purpose we 
look for the minimum of the total energy, given by

. (29)

Search for the  minimum could be realized by 
a variational procedure, however, that would lead to 
a complicated nonlinear set of algebraic equations. 
Instead we use a  simple Monte-Carlo numerical 
global energy minimization procedure, often de-

noted by simulated annealing [20]. Starting from 
the  above-used initial condition we perturb all 
parameters by small deviations randomly (the de-
viations are distributed according to the  normal 
distribution) and at each iteration we choose 
a  configuration that has a  lower or equal energy 
compared to the  previous case. Additionally of 
course we impose restrictions that the  norm of 
the  electronic amplitudes should be a2

1  +  a2
2  =  1, 

squeezing parameters ri > 0. Additionally to the sys-
tems A and B, we also study the case of high vibra-
tional frequencies by using J → 0.1J(A). This gives us 
four types of systems. A: J = J(A), Λn = 0.1, B: J = J(A), 
Λn = 1, C: J = 0.1J(A), Λn = 0.1, D: J = 0.1J(A), Λn = 1.

Figure  3 demonstrates a  typical energy decay 
profile for the  simulated annealing procedure. 
Thus, the minimum is reached in roughly 10 000 
steps. The  same holds for all four systems A–D. 
The  final energies are shown in Fig.  4. It shows 

Fig. 4. Total energy after the  simulated annealing 
procedure as a  function of the anharmonicity para- 
meter αn. A system type is given in the inset.

Fig. 2. Evolution of wavefunction parameters after ex-
citation into the higher excitonic band of the model B. 
Black and grey (sine) curves are for the  harmonic 
model. Colours (online) show the highly anharmonic 
case with αn = 0.5.

Fig. 3. Convergence of the total energy in the simu-
lated annealing procedure for the system A depend-
ing on a different anharmonicity parameter αn given 
in the inset.
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that for the four system types larger anharmonic-
ity leads to the  decrease of the  total energy. Ap-
parently, the  system has more flexibility and can 
better adapt to the electronic excitation.

Finally we present the configuration of the op-
timal state for the  four systems A–D in Fig.  5. 
For the  systems A–C the  electronic populations 
|a1|

2 grow up steadily as anharmonicity in-
creases. At the  same time the  mean coordinate 
of the  wavepacket grows up and the  squeezing, 
while being small, grows up quadratically. Hence, 
the configuration (or the symmetry) of the optimal 
state does not change, while the localization grows 
up. We obtain a surprising result for the system D, 
where the symmetry of the wavefunction abrupt-
ly changes roughly at αn = 0.4. It is interesting to 
note that the  squeezing of the  wavepacket does 
not change much, while vibrational wavepackets 
follow electronic populations.

5. Discussion

Molecular vibrations are never harmonic on 
a  broad scale. Usually it is acceptable to follow 
a  normal mode analysis of a  molecule if we are 
interested in IR absorption, fluorescence or Ra-
man spectra. However, nowadays the  traditional 
two-dimensional infrared spectroscopy of mo-
lecular vibrations always demonstrates larger or 
smaller anharmonicities for all vibrations  [21, 
22]. Additionally, low temperature electronic hole 
burning or fluorescence line narrowing spectros-
copy demonstrate ZPL, that has a measurable line 
width [8, 9, 11]. Moreover, this line width depends 
on the  temperature. Such characteristics appear 
due to nonlinearities in the  electron-vibrational 
interaction. Even without that, the thermal con-
duction and chemical reactions take place. Thus 
the  Morse potential for molecular vibrations 

Fig. 5. Configuration of the optimized 
state as a  function of anharmonicity. 
The  models are indicated by letters 
A–D, while the  parameter indices 
n = 1, 2 are labelled by numbers.
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seems much more natural than a harmonic oscil-
lator model.

Our model formulation is very general. In 
principle all vibrational modes including phonons 
can be modelled in this way as Morse oscillators. 
In the  harmonic case a  convenient property is 
the spectral density of the vibrational manifold. It 
characterizes the spectral distribution of the elec-
tronic-vibrational couplings. With Morse oscilla-
tors, we can define the spectral density similar to 
the harmonic case as

, (30)

where corresponds to the  Huang–
Rhys parameter, describing the coupling strength. 
Additionally we can define the spectral density of 
anharmonicities

. (31)

Specific anharmonicity parameters αj can be ob-
tained for intra-molecular vibrations by quantum 
chemistry.

The four cases of parameters studied in this paper 
correspond to the typical situations: A, low frequency 
weakly coupled vibrational modes; B, low frequency 
strongly coupled vibrational modes; C, a  high fre-
quency weakly coupled mode; D, a high frequency 
strongly coupled mode. Surprisingly, the  high fre-
quency mode behaves slightly different compared to 
the low frequency case. The high frequency modes 
seem to have a larger effect on excitation, compared 
to the  low frequency modes. The most remarkable 
effect of this is the strong localization of the system 
and additional phase transition – like change of con-
figuration as nonlinearity α grows up.

A  very interesting property of the  model is 
the smooth tuning possibility of the anharmonic-
ity parameter. The  model interpolates between 
the harmonic modes and the modes prone to dis-
sociation, or chemical reaction. Notice that in 
Fig. 2 the coordinate of the first oscillator grows 
up to very large values. In experimental condi-
tions this would correspond to dissociation of 
an atomic entity or group. Consequently, van der 
Waals like interactions or specifically hydrogen 
bonding can be targeted using these equations of 
motion to reveal bistability, etc.

In addition to the dynamical approach given by 
time evolution of parameters, we presented an algo-
rithm to look for a minimal energy of the system. This 
essentially leads to stationary polaronic states  [23, 
18]. The system would not necessarily relax to these 
states in a specific experiment. It depends on the ex-
cited state lifetime. However, if the excited states live 
for a relatively long time so that the excited state re-
laxes to its minimum energy state, these states can be 
observed in, e. g. fluorescence spectroscopy.

To conclude, we developed a model where mo-
lecular vibrational degrees of freedom are rep-
resented by Morse oscillators. The  model shows 
more flexibility and stability of the  optimal low-
est energy state compared to the harmonic model. 
The  model also demonstrates the  phase transi-
tion  –  like behaviour as a  function of anharmo-
nicity, thus implying the significance of an anhar-
monic nature of the vibrations.

Appendix A
Main properties of displacement and squeezing 
operators

Action of the  displacement and squeezing opera-
tors on the ladder operators gives [24]

, (32)

, (33)

and

, (34)

, (35)

where we used ζ = r exp(iθ). Then we can show that

 (36)

 (37)

Here

ξ = cosh(r) – e–iθ sinh(r), (38)

ψ = cosh(r) + e–iθ sinh(r). (39)
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Consequently we can calculate

 
(40)

For this purpose we used the Baker–Campbell–
Hausdorff formula [25]

 (41)

Additional useful relations are the  expectation 
values for the potential energy of a harmonic oscil-
lator

 (42)

and the general kinetic energy

. 
(43)

The quantities that enter the expressions are

|ξ|2 = cosh(2r) – sinh(2r) cos(θ), (44)

|ψ|2 = cosh(2r) + sinh(2r) cos(θ). (45)

Appendix B
Normal ordered forms of operators, auxiliary 
functions and derivatives

For the squeezing operator we use the factorization 
expression [25]

 (46)

Here

y = eiθ tanh r. (47)

For the displacement operator we have

. (48)

Hence we have well defined time derivatives:

 (49)

.       (50)

To simplify the  final equations of motion 
(Eqs. 12–15) we define

, (51)

  (52)

Then derivatives with respect to parameters are 
as follows:

, (53)

, (54)

.  (55)

Additional important derivatives originate due 
to the  factorization of the  squeezing operator. As 
y = eiθ tanh r we have

, (56)

and the quantity entering the kinetic part of the La-
grangian yields

. (57)

Finally

, (58)

, (59)
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, (60)

. (61)

Appendix C
Different parts of the Lagrangian
The  potential energy term of a  single Morse 
oscillator

V (x̂) = D (1 – exp(–αx̂))2 =

D (1 – 2 exp(–αx̂) + exp(–2αx̂)). (62)

Using the appendix A, we can immediately write

〈ψ|Vi(x̂i)|ψ〉 = Di(1–2f1(λi) f2(ζi)

+ f 1
2(λi)f 2

4(ζi)), 
(63)

where auxiliary functions are defined according 
to Eqs. 51 and 52. Next, the kinetic energy term of 
the Morse oscillator

 (64)

and the electronic-vibrational interaction term

 (65)

The remaining kinetic part is essentially 
the most complicated requiring normal ordering of 
all operators:

 (66)
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SUŽADINIMO DINAMIKA DVIEJŲ LYGIŲ KVANTINĖJE SISTEMOJE, 
SĄVEIKAUJANČIOJE SU MORSO VIRPESIAIS

D. Abramavičius, T. Marčiulionis

Vilniaus universiteto Cheminės fizikos institutas, Vilnius, Lietuva

Santrauka
Molekulinio agregato, sąveikaujančio su Morso tipo 

virpesiais, sužadintų būsenų kvantinė dinamika mode-
liuojama naudojant nuo laiko priklausantį variacinį me-
todą. Gautos sužadintos būsenos elektroninių amplitu-
džių, virpesinių bangų paketų poslinkių ir susispaudimų 
bendros judėjimo lygtys.

Kompiuterinis modeliavimas parodo, kad virpesių 
anharmoniškumas įneša judėjimo negrįžtamumą labai 
trumpų laikų skalėje ir papildomą elektroninio sužadi-
nimo lokalizaciją. Be to, žemiausios energijos sužadin-
tos būsenos simetrija dėl anharmoniškumo gali pakisti 
iš esmės.
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