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Some generalizations of the Sachdev–Ye–Kitaev (SYK) model and different patterns of their reparametrization 
symmetry breaking are discussed. The analysis of such (pseudo)holographic systems relates their generalized one-
dimensional Schwarzian dynamics to (quasi) two-dimensional Liouvillian quantum mechanics. As compared to 
the original SYK case, the latter might be dissipative or have discrete states in its spectrum, either of which properties 
alters thermodynamics and correlations while preserving the underlying SL(2, R) symmetry.
Keywords: Sachdev–Ye–Kitaev (SYK) model, holographic systems, Schwarzian dynamics

The 1+0-dimensional (quantum mechanical) SYK 
model of a  large number N of the  Dirac (com-
plex) [1–3] or Majorana (real) [4–7] fermions with 
all-to-all random couplings and its various general-
izations (including non-random ones) [8–12] have 
attracted much attention lately. Those models are 
often cited as much-needed controllable examples 
of holographic correspondence which are expected 
to be dual to some 1+1-dimensional gravity (plus, 
possibly, extra fields).

Apart from remaining one of the  central driv-
ing forces of modern string and high energy theory, 
the highly non-trivial and intriguing idea of (pos-
sibly, generalized beyond the original case of AdS5/
CFT4) holography has already permeated other 
fields, including condensed matter physics. Over 
the past decade, a staggering number of holograph-
ic calculations alleged to be relevant to the realistic 
‘strange metals’ and other complex (‘non-Fermi-
liquid’) systems has emerged [13–15].

However, despite the  invariably upbeat claims 
of some of its enthusiastic practitioners, the use of 
the  holographic technique outside of the  original 
(subjected to a  number of stringent constraints) 
string-theoretical context still remains to be justified 
and the true status of the cornucopia of look-alike 
and customarily verbose exercises in (generalized) 

classical relativity known under the acronym AdS/
CMT is yet to be ascertained.

In a  sharp contrast with such ‘per analogiam’ 
(a.k.a. ‘bottom up’) approach, the  SYK model 
seemed to offer an example of fully controllable ho-
lographic correspondence between two theories of 
different dimensionalities that might both be ame-
nable to the (asymptotically) exact analytical treat-
ments. Also, despite its solubility, the  SYK model 
was shown to be maximally chaotic, akin to black 
holes  [4–7, 16–24], thus potentially providing in-
sight into the inner workings of the generalized ho-
lographic conjecture and contributing towards its 
ultimate verification.

It is known, though, that the  (nominally 2d) 
Jackiw–Teitelboim (JT) dilaton gravity that was 
conjectured as the  SYK’s bulk dual  [4–7, 16–24] 
lacks any dynamical bulk degrees of freedom and, 
in fact, reduces to the  theory of a fluctuating 1d 
boundary. Indeed, the  only available solution 
with constant (negative) curvature R = –2 implies 
the  rigid AdS2 metric. Correspondingly, the  JT 
spectrum turns out to be quite different from 
the  ‘dimension gap-free’ SYK’s one and in order 
to reconcile between the two an infinite tower of 
additional massive bulk scalar fields needs to be 
introduced [16–24].
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Thus, while important and insightful, the SYK–JT 
relationship may not quite rise to the same level as 
a would-be ‘bona fide’ holographic correspondence 
between two theories operating irreducibly (yet, in 
both cases, locally) in different dimensions  [13–
15]. Instead, the  SYK–JT correspondence where 
the  gravitational background metric appears to 
be essentially non-dynamical could be viewed as 
a case of ‘holography light’ – a less ambitious sce-
nario [25, 26] that so far has been largely ignored.

As a  matter of fact, nearly all of the  previous 
‘bottom up’ holographic calculations [13–15] have 
been performed for certain fixed (usually, well-
studied) background metrics while neglecting any 
potential O(1/N) (here N stands for the rank of an 
internal symmetry group, if any) corrections – ei-
ther matter’s backreaction upon gravity or quan-
tum fluctuations of the latter.

Notably, though, the  thus-obtained results 
would then be used to seek (and often claimed 
to have found) a  good (including quantitative) 
agreement with some pre-selected sets of data 
on the physical systems with N ~ 1. Conceivably, 
if indeed present, such a  fortuitous agreement 
would seem to indicate that no metric fluctuations 
should have been allowed in the first place.

Apart from the continuing exploration of such 
salient features of the  original SYK model as its 
maximally chaotic behaviour [4–7, 16–24], some 
of the recent work has been challenging the vari-
ous popular simplifying assumptions, such as rep-
lica symmetry of the SYK solutions [27–30]. Also, 
a technically related issue of the possibility of spa-
tially dispersive solutions has been raised [31, 32] 
in the  context of the  various multi-dimensional 
‘SYK-lattice’ generalizations which would be rou-
tinely assumed to remain spatially ultralocal due 
to the (presumed to always remain intact) local Z2 
symmetry [33–36].

The work on the  SYK generalizations targets 
those behaviours that could survive departures 
from the  original model, thus manifesting po-
tentially generic, rather than unique to the  SYK 
model, properties. In the present note, this quest 
is further pursued towards the different patterns 
of such central to the  SYK issue as reparametri-
zation symmetry breaking and the associated se-
quence of SYK-like models.

By analogy with the  original SYK treat-
ment  [1–7, 16–24] a  convenient starting point 

can be chosen in the  form of a 1+0-dimensional 
path integral over a pair of bi-local field variables 
G(τ1, τ2) and Σ(τ1, τ2)

( )
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where F and A are some functionals of their (oper-
ator-valued) arguments and the  thermodynamics 
time varies within the interval 0 ≤ τ ≤ 1/β. Depend-
ing on the  nature of the  underlying fundamental 
fields  –  e.g. complex vs real fermions  – the  vari-
ables G and Σ may have certain symmetrical prop-
erties as well. In what follows they will be treated 
as real-valued, consistent with the Majorana case. 
A generic functional

1

2
1 1 2 –1,...

( ,... ) ( , )... ( , )
k

q
k k k k

k
A N J Gq G

τ τ
τ τ τ τ τ τ

∞

= ∑∫
 
(2)

reproduces the  ‘2q-interacting’ SYK model for 
J2

k  ~  δk2 (in contrast to its original formula-
tion [1–7], here q is an arbitrary – not necessarily 
even – integer). In fact, the action (2) is not unique 
to the original SYK model but can also describe its 
non-random cousins [8–12].

From the  general standpoint, the  applicabil-
ity of Eq.  (2) requires asymptotic dominance of 
the  ‘chain-melonic’ diagrams. For a  prospective 
microscopic system such behaviour (or a  lack 
thereof) could, in principle, be established by ex-
tending the analysis [37, 38] of the SYK diagram-
matics which is dominated by the ordinary ‘mel-
onic’ (k = 2) graphs. The standard renormalization 
argument suggests, however, that in the absence of 
a special fine tuning of the parameters Jk the infra-
red (IR) dynamics of the theory (1, 2) is still likely 
to be governed by the lowest dimension term (i.e. 
k = 2).

Varying Eq. (1) with respect to G and Σ one ob-
tains the mean-field equations

1 1 2 1 2( ( ) ( , ) ( , )) ( , ) ( – ),F Gττ
δ τ τ τ τ τ τ δ τ τ∂ + Σ =∫

1 2
1 2

1( , ) .
( , )

A
N G

δτ τ
δ τ τ

Σ =  (3)

Neglecting the  time derivatives completely, 
one finds that the saddle points of (1) are given by 
the solutions of the integral equation
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which appears to be manifestly invariant under 
the infinite group Diff(S1) of reparametrizations of 
the thermal circle τ → f(τ) with the periodicity con-
dition f(τ  +  β)  =  f(τ)  +  β, provided that G and Σ 
transform as

G(τ1, τ2) → Gf = [f '(τ1)f '(τ2)]∆G(f(τ1), f(τ2)),

Σ(τ1, τ2) → Σf = [f '(τ1)f '(τ2)]1–∆Σ(f(τ1), f(τ2)), (5)

where ∆ = 1/2q.
In the SYK case Eq. (4) permits a translationally-

invariant ‘conformal’ solution (here δτ12 = τ1–τ2) [1–7]
2
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 (6)

which spontaneously breaks the full reparametriza-
tion symmetry down to its three-dimensional sub-
group SL(2,R) implemented through the  Möbius 
transformations

( )tan
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π τ
π τ β

π τβ
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+
→

+
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with ad  –  bc  =  1, under which the  function (6) 
(hence, the  entire action given by Eqs.  (1, 2)) re-
mains invariant.

The rest of the  group Dif f(S1)/SL(2,R) then 
extends Eq.  (6) onto the  coadjoint Virasoro or-
bit where the  dynamics of the  field variable f(τ) 
is governed by the  (sub-dominant) non-repara-
metrization invariant action (1, 2).

In the original SYK model (F(x) = x, Jk = δk2) 
the leading (albeit IR-irrelevant in the RG sense) 
term of order O(N/βJ) stems from the  first time 
derivative in the (Pfaffian) determinant

0 ln(1– ) – tan ,f
fA Tr G M Schτ τ

π τ
β

 
= ∂ =  

 
∫  (8)

and is controlled by the  characteristic time scale 
M = αsN/J proportional to the numerically computed 
(q-dependent) prefactor αs  [4–7, 16–24]. The  inte-
grand readily identifies with the manifestly geomet-
rical and SL(2,R)-invariant Schwarzian derivative
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τ
′′′ ′′ =  ′ ′ 

  (9)

which satisfies the  differential ‘chain rule’, 
Sch{F(f), τ} = Sch{F, f}f '2 + Sch{f, τ}, when applied to 
a composite function, such as F(f(τ)) = tan πf(τ)/β 
(alternatively, the thermal circle can also be para-
metrized in terms of the function eiπf/β) [4–7].

The emergence of the  Schwarzian is to be ex-
pected as it controls the  short-time expansion of 
the transformed solution (6) (here τ = (τ1 + τ2)/2)
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The  standard mean-field (‘large-N’) SYK sce-
nario  [1–7] sets in for 1/J ¿  β ¿  M where 
the fluctuations δG about the solution (6) are negli-
gible. In contrast, for M ≲ β these fluctuations grow 
strong, thereby modifying the  mean-field behav-
iour [39, 40].

Notably, the next, O(N/(βJ)2), order correction 
to Eq. (8) is no longer local [4–7],
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so the holographic postulate of locality holds only 
in the leading approximation.

Moreover, in addition to the  ‘gradient’ terms, 
such as Eq.  (8), the  reparametrization symmetry 
can also be broken by choosing more generic time-
dependent couplings Jk in Eq. (2). Furthermore, for 
certain couplings the SL(2,R)-invariant Eq. (6) still 
remains a solution as, e.g. in the case of

2–2
2

,2 2( ) ,
( )k k
JJ

γ

γδτ δ
δτ

=   (12)

although γ > 0 alters the anomalous field dimen-
sion to

1– .
2q
γ

∆ =  (13)

The  low-energy soft-mode action then gets 
modified by a  non-local term which for γ ¿ 1 
can be approximated as a  quadratic one (here 
Γ = 2qγNJ∆/3)
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and is reminiscent of the  ohmic dissipation in 
the Caldeira–Leggett model.

Among other things, the  underlying SL(2,R) 
algebraic structure suggests a  systematic way of 
extending the  conjectured (pseudo)holographic 
SYK–JT connection from the pure Schwarzian (8) to 
a broader class of the 1d boundary theories the ac-
tion of which may include Eqs. (11, 14), etc. They can 
be conveniently formulated in terms of the  Ham-
iltonian dynamics on the  4d phase space spanned 
by two pairs of canonically conjugated variables, 
(f, πf) and (ϕ, πϕ), the  former one being the afore-
mentioned boundary ‘conformal’ time [41–45].

A  pertinent Hamiltonian then conforms to 
the SL(2, R)-invariant quadratic Casimir operator

2
0 1 –1 –1 1

1 1– ( ),
2 4

H L L L L L= +  (15)

where the SL(2, R) generators L0,±1 obey the Poisson 
brackets algebra

{L0, L±1} = ± L±1, {L–1, L1} = 2L0. (16)

The various realizations of this algebra allow one to 
construct a host of dual boundary systems.

For instance, the general Hamiltonian (15) con-
structed with the use of the ansatz
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describes a  charged non-relativistic particle of 
unit mass confined to a 2d surface with some (dia-
gonal) metric gij  =  diag[gϕϕ,  gff] and subjected to 
the static vector (Aϕ, Af) and scalar Φ potentials,

2 21 1 ( – ) ,
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ff
f fH g g Aφφ
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where the  background fields are given by the  ex-
pressions
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The  coordinate f appears to be cyclic, so that 
the conjugate momentum πf is conserved. In fact, 
even for generic vector Ai(ϕ) and scalar Φ(ϕ) po-
tentials the  dynamics described by the  Hamilto-
nian (18) remains effectively one-dimensional 
(this observation would have been far less obvi-
ous, though, had the vector potential been taken 
in a gauge other than the Landau one).

Moreover, for A(ϕ)  =  2aeϕ, B(ϕ)  =  be2ϕ, and 
C(ϕ)  =  c the  operators (17) obey the  algebra 
(16), thus guaranteeing the  SL(2,R)-invariance of 
Eq. (15), which now takes the form

2 2 21 1e – e ,
2 2 2f f

bH a cφ φ
φπ π π= + +  (20)

while the metric ds2 = dϕ2 + e–2ϕdf2 becomes that of 
the hyperbolic plane H2.

Such connection between the  SYK problem 
and a  particle on H2 in magnetic field has been 
pointed out and exploited before  [4–7, 41–45]. 
As the above suggests, it can be extended towards 
a  broader class of (ostensibly) 2d Hamiltoni-
ans – albeit, at the expense of adding new (admit-
tedly, somewhat unphysical) terms proportional 
to the powers of momentum πn

f with n > 2 and/or 
n < 0.

The standard SYK scenario corresponds to 
choosing aπf = –µ, b = c = 0, which reduces (20) to 
the Hamiltonian of the 1d Liouville quantum me-
chanics

21 e ,
2

H φ
φπ µ= +  (21)

the relation of which to the Schwarzian action (8) 
has been discussed extensively  [39–45]. Indeed, 
upon the  substitution f '  =  eϕ the  zero-temper-
ature action (8) amounts to the  Gaussian kinetic 
energy of the  (unbounded) variable ϕ(τ), since 
Sch{f, τ} = (∂τϕ)2.

Moreover, this change of variables can be for-
mally implemented as a  constraint enforced by 
the momentum πf playing the role of the Lagrange 
multiplier  [39–45]. Introducing the  second mo-
mentum πϕ in the  Legendre transformation of 
the  Schwarzian and rescaling the  entire action 
with M, one then recovers the 2d Lagrangian

21– ( – e ),
2 fL f

M
φ

φ φπ φ π π′ ′= +  (22)
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which implies a constant πf = µ ~ J  [39, 40], con-
sistent with (21). At finite temperatures the above 
change of variables results in the  additional term 
δL  =  –  (2π/β)2e2ϕ in (22)  [41–45]. By contrast, in 
Refs. [39, 40] a modified finite-temperature relation 
between f and ϕ was used, (tan πf/β)' = eϕ, which 
yields the same 1d Liouville Hamiltonian (21) at all 
temperatures. However, in this case the variable f 
ceases to be cyclic, which makes the intrinsically 1d 
nature of this theory more obscure.

Quantizing the  ‘particle-in-(electro)magnetic-
field’ Hamiltonian (20) for a = 𝒜/M, b = 1/M, and 
c = 𝒜 2/4M, factorizing its eigenstates, Ψ(ϕ, f) = ψ(ϕ) 
× eiµf, and shifting the variable ϕ → ϕ – ln 𝒜/µ, one 
arrives at the 1d Schroedinger equation

2
2 2 2

2
– (e sgn ) ( – ) ,�� � � � �

�
� ��

� �� ��� �
ε

 
(23)

where ϵ = 2M(E – c) and λ = a/2b1/2 (in the finite-
temperature case λ = µβ = O(βJ) >>1).

In the previous studies of the SYK model the sign 
of µ  =  πf would be routinely chosen negative and 
the squared exponential term e2ϕ neglected (alterna-
tively, in Refs. [39, 40] the latter would have never ap-
peared in the first place) so as to reproduce the mono-
tonic repulsive potential of the Liouville Hamiltonian 
anticipated on the basis of the correspondence with 
the bulk Euclidean AdS2 [4–7, 16–24].

For µ < 0 the positive definite spectrum of (23) 
is continuous, ϵk = (k2 + 1/4 + λ2), parametrized by 
a ‘momentum’ k, while its eigenstates are given by 
the Whittaker function (here z = 2λeϕ)

ψk ~ e–ϕ/2Wλ,ik(z). (24)

For b  =  0 (24) reduces to the  eigenstates of 
(21) given by the  modified Bessel functions, 
ψk ~ K2ik(√

–
z) [39–45].

In terms of the eigenstates ψk the partition func-
tion given by the (non-Gaussian) path integral can 
be computed as
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For b = 0 this calculation yields the free energy 
of the SYK model [4–7, 16–24, 39, 40] 
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where E0 and S0 are the extensive ground state en-
ergy and zero-temperature (‘residual’) entropy. 
The  last two terms represent the  next order cor-
rections (O(1/Jβ) and O(1/N), respectively)  [4–7, 
16–24].

Using (25) one finds the (many-body) density of 
states (DOS)

0
1

( ) e ( ) ~ e sinh(2 ).
2 i

SEZ�

�
� � �

�
� �ε ε   (27)

Alternatively, this result can be inferred from 
the  well-known exact DOS  [46, 47], ρ(ϵ)  ~  sinh 
2π√

–
ϵ/(cosh 2π√

–
ϵ  +  cos 2πλ), by shifting the  field 

ϕ → ϕ – ln(–2λ) and taking the limit λ → i∞ [4–7, 
41–45].

In contrast to the  Liouville scenario, for 
sgnµ = 1 Eq. (23) features the non-monotonic Morse 
potential and may possess additional discrete states 
given by the associated Laguerre polynomials

ψn(z) ~ zλ–n–1/2–z/2Ln
2λ–2n–1(z) (28)

at the  discrete energies ϵn  =  –(n  –  λ  +  1/2)2, 
n = 0,..., [λ – 1/2].

At low temperatures (µβ  >>  1) the  num-
ber [λ – 1/2] of the bound states is large and they 
dominate the  partition function. Moreover, their 
spectrum becomes almost equidistant, allowing 
one to replace the  actual Morse potential with 
the approximate quadratic (‘oscillator’) one.

Furthermore, in the presence of the reparametri-
zation symmetry-breaking term (14) the  effective 
action becomes that of a ‘damped Morse potential’. 
Although canonical quantization of a  dissipative 
system can be intrinsically problematic, one can 
still resort to the path integral approach to study its 
statistical mechanics and correlations.

In the  quadratic approximation, one then ob-
tains the Gaussian action (here Ω ~ µβ/M)

2 2 2( | |) | | .
2 n n n

n

MSδ ω ω φ= +Ω +Γ∑
 

(29)

Although the  quadratic action (29) is gapped, 
the dynamics of the conformal time f still features 
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the zero modes n = 0, ±1 as the deformed Schwar-
zian action given by Eqs. (8, 14) remains invariant 
under the SL(2, R) group (this can also be inferred 
from the relation ϕ ≈ f ' – 1).

Using the simplified Eq. (29) one can compute 
the partition function

×
2 2

2 2
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1( )
2sinh / 2

,
| |

n

n n n

Z β
β
ω

ω ω

∞

=

=
Ω

Ω +
Ω + +Γ∏  (30)

where the divergent product can be regularized by 
introducing the cutoff frequency ωmax ~ J.

This way one obtains the free energy

max

2 2
1

–

1 1 | |ln( ) ln 1

1 ln(1– e ) ln
2 2

n n

F
N

J

ω

β

ωβ
β β ω

β π

=

Ω

 Γ
= Ω + + ≈ +Ω 
Ω Γ  ≈ + +  Ω 

∑
 

(31)

for 1/β  <<  Ω,  Γ, whereas at higher temperatures 
the  quadratic approximation fails and the  lead-
ing part of Eq. (26) would be reproduced instead. 
The  thermodynamics properties of the  Morse 
model are, therefore, markedly different from those 
of the Lioville one. In particular, the specific heat is 
exponentially suppressed.

From (31) one infers the  oscillator-like ‘Dirac 
comb’ DOS which averages out to a constant at en-
ergies E >> Ω,
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For a more detailed comparison with the stand-
ard SYK case one can also evaluate the correlator of 
the stress tensor T(τ) = M(f ''' – (2π/β)2f ')
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At τ = 0 this result agrees with the direct estimation 
of the energy variance (for Γ < Ω)

2
2 3 3

2( ) ln ( ) ~ max[1/ , ].E Z Mδ β β
β
∂

= Ω
∂

 (34)

As a  more subtle diagnostic of the  boundary 
dynamics, in the ‘Schwarzian’ (long-time, low-tem-
perature, M ≲ β) limit the fluctuations of the Liou-
ville soft mode strongly affect the averaged prod-
ucts
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The  denominator in (35) can be promoted to 
the  exponent where it contributes to the  overall 
piece-wise (in the time domain) Liouville potential 
representing the 2p consecutive quenches [39, 40].

As the result, in the original SYK case with q = 2 
the  fluctuation-dressed averages 〈G pf (τ,  0)〉 were 
found to change their p-dependent algebraic decay 
~ 1/τp/2 for τ << M to the universal behaviour ~ 1/τ3/2 
developing for τ >> M [39, 40].

By contrast, in the Morse theory for Ω << 1/M 
the  fluctuation-averaged two-point correlator 
changes its behaviour from (6) for τ << M to
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(36)

since the  matrix element N1  =  |〈0|e∆ϕ|n〉|2  ~ 
[Ln

n(–∆2/2)]2∆2n and the DOS (32) are non-singular 
for n ≤≲ λ and the sum over ~λ terms can be ap-
proximated by the  integral. In the  opposite limit, 
1/M ≲ Ω, there is no room for algebraic behaviour 
and (36) decays exponentially.

Likewise, the SYK averages of the higher pow-
ers 〈G pf (τ, 0)〉 are sensitive to the behaviour of the 
p-particle DOS and under the  above conditions 
demonstrate the  crossovers from the  short-time 
power-law behaviour ~1/τp/q to the  intermediate 
universal one, ~ 1/τ, and, finally, to the exponen-
tial decay ~ e–Ωτ at the longest times. In the latter 
limit, the would-be universal algebraic contribu-
tion of the continuous part of the spectrum, 1/τ6∆, 
is suppressed by the much smaller factor ~ e–Ωλτ.

In addition to the  Schwarzian fluctuations, 
the  multi-point correlators can also receive sub-
leading O(1/N) contributions from the  massive 
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modes which are not governed by the Schwarzian 
action (8) but can be accounted for by summing 
the ladder diagrams [4–7, 16–24].

Specifically, in the  case of the  p  =  2 function 
〈Gf τ1, τ2)Gf (τ3, τ4)〉 the massive modes do not sig-
nificantly contribute to τ2,3 < τ1,4, whereas in the do-
main τ1,2 < τ3,4 they do, being solely responsible for 
the  irreducible (non-factorizable) contribution to 
that function [39, 40].

In particular, upon analytically continu-
ing from the  domain τ4  <  τ2  <  τ3  <  τ1 to the  real 
times τ1  =  β/4  –  it/2, τ2  =  –β/4  –  it/2, τ3  =  it/2, 
τ4  =  –β/2  +  it/2, the  all-important out-of-time-
order (OTO) correlators demonstrate their initial 
short-time/high-temperature exponential growth

1 3 2 4
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( , ) ( , )
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f f t

f

G G
O

MG
λ

τ τ τ τ β

β
 =  
 

 
(37)

revealed by summing the  ‘causal’ ladder series for 
β << t << β ln M [4–7, 16–24].

In the Morse case the counterpart of (37) exhib-
its the less-than-maximal Lyapunov exponent

2 (1– ( )),L Oπλ γ
β

=  (38)

which should be contrasted with the result obtained 
in the original SYK model λL = 2π/β(1 – O(1/βJ)) 
[4–7, 16–24].

Also, in the  intermediate-time regime (present 
for Ω << 1/M) the Morse OTO function decays with 
the real time t as

〈Gf (τ1, τ2)Gf (τ3, τ4)〉 ~ 1/t4, (39)

the dependence of which again differs from the ~ 1/t6 

asymptotic found in the q = 2 SYK model [39, 40].
Returning to the  general question of the  ho-

lographic principle’s implementation in the SYK-
like models, one finds that some intrinsically 
1d details of the  Schwarzian/Liouville theories 
can also be observed in their conjectured bulk 
duals.

Specifically, in the  JT theory the  same 1d 
differential equation (23) emerges, its spectrum 
now being that of the  SL(2,  R) Casimir opera-
tor formulated in terms of two angular variables, 
θ and φ, related to the  space-time coordinates 
(tan(θ – φ/2) = re–τ, tan(θ + φ/2) = reτ). The wave 
function once again factorizes onto the  ‘angular’ 

and ‘radial’ ones, eimφχk(θ), the latter obeying the 1d 
equation [4–7, 16–24] solved by the functions (24),

2 2
2 2

2 2

1/ 4– – 2 tan ( – ) .
cos

k m mλ θ χ λ χ
θ θ

 ∂ +
+ = ∂ 

(40)

Alternatively, the tangle of (pseudo)holograph-
ic relationships between the  SL(2,  R)-symmetric 
boundary (Schwarzian/Liouville-like) and bulk 
(JT-like) theories can be viewed as different forms 
of embedding (at fixed radial and angular vs tem-
poral and angular coordinates, respectively) into 
the global AdS3 space [41–45, 48–52].

To further elucidate such generalized relation-
ship one can use the framework of the generalized 
JT-dilaton theory

,
( ( )) ,

r
S R U g K

τ τ
= Φ + Φ + Φ∫ ∫  (41)

where the appropriate dilaton potential U(Φ) might 
be able to reflect the  various Diff(S1)-symmetry 
breaking extensions to the basic Schwarzian action.

To that end, the quadratic term U2(Φ) ~ Φ2 has 
already been shown to correspond to the non-local 
contribution (11) [4–7]. In the future, it would be 
interesting to establish a  link between the  higher 
order terms Φn and (non)local and/or (non)geo-
metric deformations of the  fundamental Schwar-
zian action (8).

In the  meantime, the  natural emergence of 
the  ‘particle-in-(electro)magnetic-field’ (Liouville-
like) quantum mechanics provides a  convenient 
technical framework for generating novel sequenc-
es of (pseudo)holographic 1d systems and their 
(ostensibly) 2d duals. The latter would then be es-
sentially topological, akin to the theory of incom-
pressible electron droplets in the  Quantum Hall 
Effect [53–55].

Still more examples of such correspondence can 
be discovered by studying other Virasoro orbits as 
well as the even more general problem of quantum 
mechanics on a wider class of group manifolds and 
their cosets [56–58].

To conclude, the  systematic (non-conformal) 
extensions of the SYK model can be achieved along 
the  lines of single-particle quantum mechanics, 
thus allowing one to further explore their putative 
bulk (albeit, dimensionally reducible) duals. Con-
tinuing such work may help to elucidate the  true 
status of the  holographic studies of the  concrete 
(first of all, condensed matter) systems.
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