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The solution of the Liouville equation for the ensemble of free particles is presented and the classical analog to 
the quantum accelerating Airy wave packet is constructed and discussed. Considering the motion of various classical 
packets – with an infinite and restricted distribution of velocities of particles – and also the motion of their fronts, we 
demonstrate in the simplest and most definite way why the packet can display a more sophisticated behaviour (even 
acceleration) as compared with a free individual particle that moves at a fixed velocity. A comparison of this classi-
cal solution with the quantum one in the Wigner representation of quantum mechanics, which provides the closest 
analogy, is also presented.
Keywords: Liouville equation, accelerating front, density matrix in Wigner representation

1. Introduction

Due to dispersion in the  Schrödinger equation, 
wave packets usually spread out during their prop-
agation at a constant velocity in free space. How-
ever, almost half a century ago it was shown [1] that 
there existed a  specific solution of that equation 
expressed in the Airy function which, on the one 
hand, did not change its form (that is why it is 
called a coherent state), and, on the other hand, it 
demonstrated an accelerating motion. These exotic 
solutions have recently aroused some interest  [2] 
in possible applications towards the description of 
non-spreading optical beams  [3] and the  genera-
tion and control of plasma in dielectrics [4].

The abovementioned solution is also interest-
ing from a  didactic point of view because of an 
obvious contradiction between the  quantum ac-
celerating state and the classical free particle mo-
tion corresponding to it. Usually this contradiction 
is explained on the basis of the wave properties of 
the packet. In our view the main reason for that is 
a statistical nature of quantum mechanics. If this is 
the case, such strange packets should exist in clas-

sical mechanics as well if particles were described 
statistically using the  Liouville equation. The  aim 
of this paper is to present solutions of that equa-
tion and to discuss the classical analog to the accel-
erating quantum coherent state corresponding to 
a free particle. To our mind, this classical problem 
is much simpler as compared to the quantum one, 
and consequently it may be helpful in understand-
ing quantum mechanical problems better. In addi-
tion, we show that the analogy between the classical 
and quantum descriptions of the abovementioned 
sophisticated packets is quite close if the  density 
matrix equation in the  Wigner representation of 
quantum mechanics is used.

The paper is organized as follows. In Section 2 
a description of the model is provided, convenient 
dimensionless variables are introduced, and the Li-
ouville equation for the ensemble of free particles 
is formulated. A general solution of that equation 
is given in Section  3. In the  following three sec-
tions special cases such as an accelerating packet, 
a single particle and the packet of a restricted veloc-
ity distribution are discussed. Section 7 deals with 
the possible accelerating motion of the sharp front. 
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In Section 8 classical solutions obtained are com-
pared with the quantum ones given in the Wigner 
representation of quantum mechanics. Our conclu-
sions are presented in Section 9.

2. Model

The quantum wave packet corresponding to the ac-
celerating quantum particle is described by the fol-
lowing Schrödinger equation:
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Here m is the particle mass, a is its acceleration, and 
ћ is the Planck constant. To make expressions more 
transparent we rescale time t, coordinate x and ve-
locity v as follows:
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After this transformation the initial Eq. (1) can 
be presented in a simpler dimensionless form:
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The dimensional expressions can be easily re-
stored by applying the  same transformation in 
the opposite direction.

As mentioned in the  Introduction, Berry and 
Balazs have shown [1] that the Schrödinger equa-
tion for the free particle
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has the solution

Ψ(x, t) = eit(x–t2/3)Ai[21/3(x–t2/2)], (5)

where the  symbol Ai stands for the  Airy func-
tion [5]. The probability corresponding to this wave 
function,

P(x, t) =|Ψ(x, t)|2 = Ai2[21/3(x–t2/2)], (6)

is a  function of the single argument (x –  t2/2) in-
dicating that it is a coherent state related to the ac-
celerating particle.

Now we are switching over to our main purpose, 
and we shall discuss the  classical description of 
a similar motion. Instead of using Newton’s equa-
tions for the individual particle we consider the en-
semble of free particles and treat them statistically. 
The  statistical description of classical particles is 
based on the  Liouville theorem  [6] which states 
that the distribution function f(x, v, t) of the par-
ticles in the phase space (the density of particles in 
the (x, v) plane in our case) behaves like an ideal 
liquid which remains constant when moving along 
the  classical trajectories. This statement leads to 
the following Liouville equation

0f fv
t x

∂ ∂
+ =

∂ ∂
 (7)

for the  distribution function of free particles. 
The solution of this equation enables us to express 
all properties of the particles via the integrals with 
the distribution function given above. For instance, 
the density of the particles as a function of coordi-
nate and time is given as follows:

–
( , ) d ( , , ).n x t v f x v t

∞

∞
= ∫  (8)

This statistical technique is considered to be an 
analog to the solution of Newton’s equations for in-
dividual particles.

3. Solution of the Liouville equation

The simplest way to find the solution of Eq. (7) cor-
responding to the  accelerating motion is to look 
for a static solution in the accelerating frame {y, w} 
which is related to the initial laboratory frame {x, v} 
by the following equations:

x = y + t2/2, (9a)

v = w + t. (9b)

In order to obtain the  Liouville equation in 
the new frame it is necessary to make the following 
substitution of the derivatives in Eq. (7),

– – , ,f f f f f ft
t t y w x y

∂ ∂ ∂ ∂ ∂ ∂
→ →

∂ ∂ ∂ ∂ ∂ ∂
 (10)

which leads to the following equation:
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Actually it is the same Liouville equation includ-
ing the  additional force term that appears due to 
a non-inertial accelerating frame.

According to Courant  [7], the  first-order par-
tial differential equation can be solved by means 
of the  trajectory method. These trajectories (or 
characteristic curves) follow from the set of ordi-
nary differential equations which are composed of 
Eq. (11) coefficients in the following way:

d d d .
1 –1
t y w

w
= =  (12)

In solving these equations we obtain the trajec-
tories

y – wt – t2/2 = y0, (13a)

w + t = w0 (13b)

defined by two constants y0 and w0. Actually they are 
trajectories of individual particles if one describes 
them by means of Newton’s equations. According 
to the abovementioned trajectory method, Eq. (11) 
means that the derivative of the distribution function 
along the trajectories (13) is equal to zero. Therefore 
the  distribution function is constant along each of 
them, and the general solution of the Liouville equa-
tion (11) can be given as any function of those two 
constants characterizing the trajectory:

f = f(y0, w0) ≡ f(y – wt – t2/2, w + t). (14)

This expression will be used to obtain and dis-
cuss all specific solutions.

4. Accelerating solution

Let us start with the  accelerating solution which 
is an analog to the  quantum coherent state with 
the probability given by Eq. (6).

Eliminating time t from Eqs.  (13) we obtain 
the following equation,

y + w2/2 = y0 + w0/2 ≡ c0, (15)

which defines a set of fixed trajectories in the (y, w) 
plane. They are shown in Fig. 1 by dashed parabo-

las. The  constant c0 indicates the  rightmost point 
of the  parabola. One of them indicated by a  (red 
online) solid curve corresponds to the c0 = 0 value. 
Since the solution of the Liouville equation (14) can 
be chosen as any function of two constants y0 and 
w0, we choose it as a  function of their expression 
given by Eq. (15),

f = δ(y0 + w2
0/2) ≡ δ(y + w2/2), (16)

where the  symbol δ(x) stands for the  Dirac 
δ-function. This function corresponds to the case, 
where all particles are located only on the  red 
(c0 = 0) trajectory with constant density. This dis-
tribution can be regarded as a static one only nomi-
nally because from a microscopic point of view all 
particles move along the  trajectories in the direc-
tion shown by the arrow.

Now by performing transformation (9) we ob-
tain the following distribution function in the labo-
ratory frame:

f(x, v, t) = δ ([x – t2/2] + [v – t]2/2). (17)

As time t appeared in the argument of the distri-
bution function, the  trajectories in the  laboratory 
frame are no longer fixed. The motion of the  tra-
jectory corresponding to function (17) (to the red 
online trajectory shown in Fig. 1) is illustrated in 
Fig. 2, where time values are indicated by numbers 
on the curves. The rightmost points of the moving 
parabolas are shown by small solid (blue online) 
circles. They are located on the solid parabola

x = v2/2, (18)

Fig. 1. The set of fixed trajectories in the (y, w) plane 
of the accelerating frame.
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that is obtained by zeroing both brackets in the ar-
gument of function (17). This parabola corresponds 
to the accelerating particle with

x = t2/2, v = t. (19)

This accelerating motion reveals itself more 
clearly when the  density of particles is calculated 
by means of integral (8) with distribution function 
(17), namely,
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where the zeroes of the δ-function argument are as 
follows:

2
0 – 2 .v t t x± = ±  (21)

Consequently, the density of particles reads

2
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{0, 0,( ) 1, 0
xx x
<Θ = ≥

 (23)

stands for the Heaviside step function.

We see that the density demonstrates radical-
type singularity that accelerates in the  positive 
direction of the  x axis. It is shown in Fig.  3 by 
a thick solid (blue online) curve as a function of 
the (x – t2/2) argument. For comparison the quan-
tum mechanical result (6) is indicated by a  thin 
(red online) curve just below the  classical one. 
Within the accuracy of normalization the classical 
result coincides with the envelope of the asymp-
tote of the squared Airy function [5]

2 2 3/21| Ai(– ) | ~ sin (2 /3 /4),x x
x

π
π

+
 

(24)

which confirms that the considered classical prob-
lem of free particles is an analog to the accelerat-
ing coherent quantum state. It leads us to the con-
clusion that the effect of acceleration is caused by 
the statistical properties of the classical system, as 
well as a statistical nature of the quantum system.

Fig. 3. Accelerating packet: a thin (red online) curve is 
the quantum mechanical result according to Eq. (6), 
a  thick (blue online) curve is the classical result ac-
cording to Eq. (22).

Fig. 2. Motion of the trajectory in the (x, v) plane of 
the laboratory frame.
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5. Motion of an individual particle

Now we shall show that the obtained accelerating 
state of the  ensemble of particles does not con-
tradict to the  motion of a  free individual particle 
which maintains its constant velocity.

The motion of an individual particle follows 
from the general solution of the Liouville equation 
(7) when the  bellow-presented distribution func-
tion is chosen:

f = δ(y0 – x0) δ(w0 – v0)
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= δ(y – wt – t2/2 – x0) δ(w + t – v0). (25)

It corresponds to the particle which at the mo-
ment t = 0 is located at the point {x0, v0}.

Using Eqs. (9) and going back to the laboratory 
frame we obtain the  following distribution func-
tion,

f(x, v, t) = δ(x – vt – x0) δ(v – v0), (26)

which shows that the  individual particle moves 
along the trajectory

v = v0,    x = x0 + v0t, (27)

maintaining its initial velocity v0 indicated in Fig. 2 
by a thin horizontal dotted line.

Consequently, the effect of acceleration is a pure 
statistical property of the  ensemble of particles 
caused by a  very specific initial condition when 
particles with a  constant density are located on 
the infinite (red online) trajectory shown in Fig. 1. 
This initial distribution includes particles of infinite 
velocities, which results in nonintegrable density.

6. Motion of a packet

The interesting question is whether it is possible to 
find an experimentally realizable initial condition 
when the packet demonstrates the accelerating mo-
tion. We shall try to answer this question modify-
ing the distribution function (16), and adding some 
localization of velocities close to some average ve-
locity v0, namely choosing this function as follows:

f(y, w) = δ(c0) Φ(w0 – v0)

≡ δ(y + w2/2) Φ(w + t – v0). (28)

Here the  function Φ(v) stands for some symmet-
ric local distribution of velocities. For instance, 
the Gaussian distribution

2– /1( ) e v Dv
Dπ

Φ =  (29)

may be chosen.
Going back to the laboratory frame we have

f(x, v, t) = δ(x + v2/2 – vt) Φ(v – v0). (30)

In a  sense we can regard this distribution 
function as an intermediate solution between 
a  nonphysical distribution (17) that demon-
strates the  accelerating motion and the  distribu-
tion (26) corresponding to the individual particle 
that maintains a  constant velocity. This distribu-
tion can be generated experimentally by injecting 
particles at the point x = 0 with some retardation 
depending on the particle velocity. It might be ex-
pected that in changing the D value it is possible 
to change gradually one type of motion to another 
one.

Let us check that possibility by calculating 
the mean coordinate of the packet,

–
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∞
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∫

 
(31)

where

x0 = –v0
2 – D/4 (32)

denotes the initial mean coordinate of the packet.
We see that the real packet of limited velocities 

demonstrates the motion at a fixed average velocity 
independently of the width D/4 of the packet. This 
fact has been noticed  [8] before when comment-
ing on the motion of quantum mechanical packets 
composed of the  superposition of the  abovemen-
tioned Airy functions.

7. The accelerating front

Although we failed to construct the  accelerating 
packet, we show that it is possible to construct 
the  packet with some accelerating parts, for in-
stance, with the  accelerating front. In order to 
illustrate this possibility we consider the  packet 
with a  rectangle type distribution of velocities 
(the constant velocity in the  region 0  ≤ w  ≤  v0) 
on the  initial (red online) trajectory shown in 
Fig. 1:

f(y, w, t) = δ(c0) Θ(w0) Θ(w0 – v0)

= δ(y + w2/2) Θ(w + t) Θ(v0 – w – t).                         (33)
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Using Eqs. (9) we go back to the  laboratory 
frame and obtain the following solution of the Li-
ouville equation:

f(x, v, t) = δ(x + v2/2a – vt) Θ(v) Θ(v0 – v).         (34)

The evolution of this trajectory is shown in Fig. 4. 
Actually it is a  horizontal stripe cut out of Fig.  2, 
which emerged owing to the restriction of velocities 
in the packet. Every point of the trajectory, say the one 
indicated by a (blue online) circle, moves to the right 
along a  thin dotted horizontal line, and the  initial 
(red online) trajectory moves to the  right and up-
wards with its rightmost point {xk, vk} moving along 
the (green online) parabola xk = v2

k/2, as explained in 
Section 4. The evolution of the coordinate and veloc-
ity corresponding to this point is shown in Fig. 5. We 
see that the acceleration of the front is evident. But it 
does not last forever. At the moment t0 the rightmost 
point of the trajectory reaches the limiting velocity v0, 
and its velocity no longer increases, as seen in Fig. 4. 
The reason for that is trivial: there are no more par-
ticles in the initial distribution with a larger velocity 
than v0, and the front velocity stabilizes.

In our opinion, this example clearly illustrates 
the difference between the motion of an individual 
particle described by an ordinary differential equa-
tion and the effects of the ensemble of particles de-
scribed by a partial derivative equation. The latter 
one has many more degrees of freedom, and there-
fore it has many more various solutions, even some 
exotic ones. In the considered case the acceleration 
of the front takes place not only because of accel-
eration of individual particles but also because of 
their collective motion during which faster par-
ticles injected later overtake the  slower ones, and 
consequently, the  impression of the  accelerating 
front forms. There are more effects of that type in 
physics. It is worth mentioning the  difference in 
phase and group velocities of the wave in the dis-
persive media, or precursors [9] moving faster than 
the wave packets.

8. Density matrix in the Wigner representation

The analogy between the  classical solution of 
the Liouville equation and the accelerating coher-
ent quantum mechanical state that we demonstrat-
ed in the previous sections becomes even closer if 
the quantum state is described by a density matrix. 
It is known that the quantum mechanical descrip-
tion can be based not only on the  wave function 
Ψ(x, t) which satisfies the Schrödinger equation

ˆi ,H
t
∂
Ψ = Ψ

∂  (35)

but also on the  density operator ρ̂ that satisfies 
the quantum Liouville (or von Neumann) equation

ˆˆ ˆi [ , ].H
t
ρ ρ∂
=

∂
 (36)

When comparing Eqs. (4) and (35) we see that 
in our case of dimensionless variables the free par-
ticle Hamiltonian reads

2

2

1ˆ – .
2

H
x
∂

=
∂

 (37)

In the coordinate representation the density op-
erator is usually presented by the  density matrix 
which in the case of a pure state (in the case where 
the  quantum system is characterized by the  wave 
function) reads

ρ̂ → ρ(x1, x2, t) = Ψ(x1, t) Ψ* (x2, t). (38)

x
0

v
v0

x0-x0 xk

vk

t0

Fig. 5. Motion of the point {xk, vk} corresponding to 
the right front of the packet.

Fig. 4. Motion of the packet with a rectangle distribu-
tion of velocities (Eq. (33)).
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In 1932 Wigner  [10] proposed to replace this 
density matrix with the function

i

–
( , , ) d e ( – /2, /2, ),vF x v t x x tξξ ρ ξ ξ

∞

∞
= +∫

 
(39)

which depends on the  mean coordinate 
x = (x1 + x2)/2, and is the Fourier transform with 
respect to the  relative coordinate ξ  =  x2  –  x1. All 
other operators of quantum mechanics have to be 
changed in the same way. It should be noted that 
we still use the same dimensionless variables. That 
is why there is no Planck constant in the  above 
transformation, and the  velocity v coincides with 
the  dimensionless momentum p  →  (ћm2a)1/3p. 
The  equations that are obtained in this way are 
called the Wigner representation of quantum me-
chanics [11]. Its main advantage is that in this rep-
resentation quantum symbols and equations are 
quite similar to their classical counterparts. For 
instance, the coordinate and momentum operators 
convert themselves just to the numbers similar to 
the coordinate x and the momentum v used in clas-
sical mechanics. Their mean values are expressed in 
terms of simple integrals with the Wigner distribu-
tion function F(x, v, t):

– –

1 d d ( , , ),
2

x x v xF x v t
π

∞ ∞

∞ ∞
= ∫ ∫  (40a)

– –

1 d d ( , , ).
2

v x v vF x v t
π

∞ ∞

∞ ∞
= ∫ ∫  (40b)

The density of the  particles is also given by 
the integral similar to its classical counterpart

–

1( , ) d ( , , ).
2

N x t v F x v t
π

∞

∞
= ∫  (41)

Some price has to be paid for this simplicity and 
clearness: the  product of two operators and their 
commutator have more complicated expressions. 
Hence, if in the  Wigner representation the  quan-
tum mechanical operators  ̂A and  ̂B are replaced 
with the functions a(x, v) and b(x, v), respectively, 
their product and commutator have to be present-
ed as follows:

( ) ( ) ( ) ( )1ˆ ˆ· exp – ,
2i

a b a b

A B ab
v x x v

  ∂ ∂ ∂ ∂
  ∂ ∂ ∂ ∂  


 (42a)

( ) ( ) ( ) ( )2 1ˆ ˆ, sin – .
i 2

a b a b

A B ab
v x x v

  ∂ ∂ ∂ ∂      ∂ ∂ ∂ ∂  


 
(42b)

These equations are merely mnemonic rules 
presenting the Taylor expansions of the derivatives, 
where indexes show which function (a or b) they 
have to be applied to.

Although the sinus and exponent Taylor expan-
sions are infinite, very often they break off when 
applied to polynomial-type functions. Such is 
the free particle Hamiltonian (37) which becomes 
a quadratic function of the momentum H = v2/2 in 
the  Wigner representation. Due to this the  sinus 
function in Eq.  (42b) can be replaced with its ar-
gument, and the  commutator can be rewritten as 
follows:

[ ]
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2
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i 2 2
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= =

∂ ∂ ∂



 
(43)

Inserting this expression into Eq. (36) we finally 
obtain the following quantum Liouville equation in 
the Wigner representation

0,F Fv
t x

∂ ∂
+ =

∂ ∂  (44)

which coincides exactly with the classical Eq. (7).
Consequently, in the case of simple systems (that 

of free particles) the density matrix in the Wigner 
representation satisfies the classical Liouville equa-
tion, and the  quantum effects may reveal them-
selves only due to additional restrictions, such as 
the boundary or initial conditions, to be satisfied by 
the density matrix.

In order to understand better the difference be-
tween the classical and quantum solution of the Li-
ouville equation we compute the Wigner function 
(39) in our case of the coherent state described by 
the wave function of Airy type (5),

i ( – ) 1/3

–

1/3

( , , ) d e Ai 2 ( – /2)

Ai 2 ( /2) ,

v tF x v t X

X

ξξ ξ

ξ

∞

∞
 =  

 × + 

∫
 
(45)

where

X = x – t2/2. (46)
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This integral can be calculated analytically tak-
ing advantage of the  integral representation of 
the Airy function

3i i( /3)

– i

1Ai( ) d e ,
2

xu ux u
α

απ
∞+ +

∞+
= ∫  (47)

where the  contour of integration is shifted up in 
the complex u plane by small quantity α to insure 
convergence of the integral. Now denoting P = v–t, 
a  =  21/3 and omitting the  integral limits (they 
are the  same as in integral (47)), we write down 
the Wigner function as follows:

3 3

3 3

3 3

i( – /2 /2)
2 –

i /3 i i /3 i

i /3 i i /3 i
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d e d e

1 d e d e
2
( – / 2 / 2)

1 d e e .
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u aXu s aXs

u aXu s aXs

u aXu u P a aX u P a

F

u s

u s

P au as

u
a

ξξ
π

π
δ

π

∞ +

∞

+ +

+ +

+ +

=

×

=

× +

=

∫

∫ ∫

∫ ∫

∫
 

(48)

Finally substituting u = (η + P)/a we rewrite this 
integral as

3 2i[ /3 2 ( /2 )]d e ,
2

P XaF � ��
�

� �� �  (49)

which according to Eq. (47) lets one to express this 
Wigner function in terms of the Airy function:

F(x, v, t) = 21/3Ai (2[(v – t)2/2 + (x – t2/2)]).       (50)

We see that the argument of this function coin-
cides with the argument of the classical distribution 
function (17) which proves that the Wigner function 
of the considered pure coherent Airy state can be 
constructed in the same way as the classical solution 
of the Liouville equation, namely, as some constant 
distribution along the classical trajectories. The only 
difference is that in the quantum case the constants 
cha racterizing different trajectories cannot be chosen 
arbitrary which indicates a  well-known fact that 
the quantum solution is stronger correlated as com-
pared with the classical one. This correlation appears 
as oscillations, the  characteristic period of which, 
according to Eq. (2), is proportional to ћ2/3. Inciden-

tally, this result illustrates a plain fact that the limit-
ing transition of quantum mechanics to classical one 
at ћ → 0 is quite complicated: the quantum oscilla-
tions disappear due to an increase in their frequency 
rather than due to a decrease in their amplitude.

Meanwhile the density calculated by the integral 
(41) with the Wigner function (50) coincides with 
the one obtained by Eq. (6) that we have checked 
numerically.

Conclusions

We presented a  general solution of the  Liouville 
equation describing an ensemble of free particles. 
In considering various specific cases we showed that 
although individual particles moved at a fixed veloc-
ity, the packet constructed of them can demonstrate 
quite a  different behaviour. If the  packet includes 
the particles with unrestricted velocities, it can even 
accelerate, and thus, it can become an analog to 
the  quantum coherent accelerating state described 
by the Airy function.

The mean coordinate of the packet which is com-
posed of the particles with restricted velocities does 
not show any acceleration. However, even in this case 
it is possible either to choose the initial condition or 
inject particles in a correlated way so that some parts 
of the packet, say, its front, should accelerate during 
the finite time interval. The essence of this motion 
is that the particles which are injected later overtake 
the slowest ones, and in this way create the image of 
the accelerating front.

These conclusions are applied in the  case of 
the quantum free particle because the density ma-
trix equation in the Wigner representation for this 
simple system coincides with the classical Liouville 
equation.
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Santrauka
Pateiktas Liuvilio lygties sprendinys, aprašantis laisvų 

dalelių ansamblį, ir sukonstruotas bei aptartas klasikinis 
kvantinio greitėjančio banginio Airy paketo analogas.

Sugretinus įvairius klasikinius begalinio ir riboto da-
lelių greičių pasiskirstymų paketus, pačiu paprasčiausiu 

būdu parodyta, kodėl iš laisvųjų dalelių, judančių pasto-
viu greičiu, sudarytas paketas gali elgtis gana įvairiai (taip 
pat ir greitėti). Šie klasikinio paketo judėjimo ypatumai 
palyginti su kvantinę dalelę aprašančiais tankio matricos 
lygties sprendiniais Vignerio vaizdavime, kur klasikinio 
bei kvantinio aprašymų analogija yra ryškiausia.
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