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Analytic solutions for the reduced cross-section and its derivatives with respect to lny are presented at the low-x limit. The
DGLAP evolution equations for singlet and gluon structure function based on Regge-like behaviour of the gluon distribution and
the structure function at this limit are solved. We calculated numerically and compared our results with the HERA experiment
H1 data at small x. All results can be consistently described within the framework of perturbative QCD.
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1. Introduction

Deep-inelastic lepton–nucleon scattering (DIS) has
been pivotal in the development of the understanding
of strong interaction dynamics. Also, at small values
of the Bjorken scaling variable x it is interesting for
understanding the inner structure of hadrons. In the
one-photon exchange approximation the neutral cur-
rent double differential cross-section, d2σ/(dx dQ2) ,
is given by the expression

d2σ
dx dQ2

=
2πα2Y+
Q4x

σr , (1)

where the reduced cross-section is defined as

σr ≡ F2(x,Q
2)− y2

Y+
FL(x,Q

2) , (2)

with Y+ = 1 + (1 − y)2. Here Q2 is the squared
four-momentum transfer, x denotes the Bjorken scal-
ing variable, y = Q2/(sx) is the inelasticity, with s the
electron–proton centre of mass energy squared, and α
is the fine structure constant [1–5].

The reduced cross-section depends on the two inde-
pendent structure functions F2(x,Q

2) and FL(x,Q
2).

At low x, the structure functions’ behaviour is well un-
derstood in terms of Regge-like behaviour [6]. Recent
studies [7, 8] have shown that it is possible to use Regge
theory for the Dokshitzer–Gribov–Lipatov–Altarelli–

Parisi (DGLAP) [9] evolution. Inserting this behaviour
into the parton-model calculation of the structure func-
tions gives us the small x behaviour Fi=S,g ∼ xλi=S,g as
x→0, where λS and λg are the gluon and structure func-
tion exponents. Our goal in this work is to present an
approximate analytical solution for the reduced cross-
section and its derivatives. In order to do this, the
DGLAP evolution equations are calculated neglecting
the quark distribution. The approach, using the Regge
and the Regge-like behaviour for singlet and gluon dis-
tribution respectively, has been applied in this paper.
The formulation of the problem in next-to-leading or-
der DGLAP (NLO-DGLAP) evolution equations for the
calculation of the reduced cross-section and its deriva-
tives throughλg andλS exponents and numerical results
are given in Section 2. Finally, Section 3 is devoted to
calculation and results.

2. Formalism

In perturbative QCD, the longitudinal structure func-
tion FL(x,Q

2) is proportional to αs. At low x we
use the fact that the non-singlet contribution FNS

2 can
be ignored safely. Now we can write the longitudinal
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structure function by an integral over the quark and
gluon distributions as [1, 4]

FL(x,Q
2) =

1∫
x

dy
y
Kq

(
x

y
,Q2

)
F2(y,Q

2)

+

1∫
x

dy
y
KG

(
x

y
,Q2

)
G(y,Q2) (3)

with

F2 = x

nf∑
i=1

e2i
[
q(x) + q(x)

]
, (4)

where the structure function is given by a sum of quark
and anti-quark momentum distribution functions. The
gluon momentum density is given by G(x,Q2) =
xg(x,Q2). Here ei are the quark charges and nf = 4
the number of flavours, and the kernels are

Kq(x,Q
2) =

αs

4π
4CF x2 (5)

and

KG(x,Q
2) =

αs

4π
[8x2(1− x)]

nf∑
i=1

e2i , (6)

where CF is the colour Casimir operator. With substi-
tuting the splitting functions, FL is obtained:

FL(x,Q
2) =

4αs

3π

1∫
x

dy
y

(
x

y

)2

F2(y,Q
2) (7)

+
20αs

9π

1∫
x

dy
y

(
x

y

)2(
1− x

y

)
G(y,Q2) .

The Regge-like behaviour of the gluon distribution
function and the structure function is that the functions
increase as x decreases. This behaviour at small x
corresponds to a rising longitudinal structure function.
Now let us use this behaviour, as the x dependence of
this at low x is consistent with a power law for fixed Q2

[10–15], as can be shown:

dF2(x,Q
2)

d lnx
= −λS F2(x,Q

2) (8)

and
dG(x,Q2)

d lnx
= −λg G(x,Q2) , (9)

where λS and λg are the respective exponents. These
functions are determined by the form fi=F2,G =

Ci=F2,G x−λS,g where the coefficients C are approxi-
mately independent of Q2 with a constant mean value
[16]. In a series of papers [16, 17] we have seen, λS,g
rises approximately linearly with lnQ2. This depen-
dence can been represented as λS,g = bS,gln(Q2/Λ2).
The coefficients bS,g are constant [16]. We are consider-
ing the similar scale Q2/Q2

0, so we can write the varia-
tion of F2(x,Q

2) and G(x,Q2) through the same func-
tions. To begin with, the evolution of ∂F2(x,Q

2)/∂lnQ2

and ∂G(x,Q2)/∂lnQ2 at fixedx values is obtained over
all Q2 values, as we have found:

∂F2(x,Q
2)

∂ lnQ2
= −bS lnxF2(x,Q

2) (10)

and
∂G(x,Q2)

∂ lnQ2
= −bg lnxG(x,Q2) . (11)

Therefore the gluon distribution and the structure
function evolutions from the initial conditions are found
as

F2(x,Q
2) = F2(x,Q

2
0)

(
Q2

0

Q2

)bSlnx
(12)

and

G(x,Q2) = G(x,Q2
0)

(
Q2

0

Q2

)bglnx
. (13)

On the basis of the DGLAP evolution equations it is
known that the structure function and the gluon distri-
bution function exponents can be evaluated. This fact
makes it possible to relate the gluon and the structure
function exponents to the initial exponents as has been
suggested previously [16], i. e.

ln
λg0

λg − xλg
t∫

t0

x−λg

(
3α

π
− 61α2

9π2

)
dt

=

t∫
t0

(
3α

π
− 61α2

9π2

)
1− xλg

λg
dt , (14)

for the gluon distribution exponent evolution and

λSF2(x, t)− λS0F2(x, t0) =

0.555

π

t∫
t0

αsG(x, t)

[
2λg

3 +λg
(1− x3+λg)

+
λg

1 +λg
(1− x1+λg)−

2λg

2 +λg
(1− x2+λg) +
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+ 2x3+λg + x1+λg − 2x2+λg

]
dt

+
1.852

π2

t∫
t0

α2
s G(x, t) dt , (15)

for the singlet structure function exponent evolution.
The initial conditions are

λS0 =
∂lnF2(x, t0)

∂lnx−1
(16)

and

λg0 =
∂lnG(x, t0)

∂lnx−1
. (17)

In these equations t0 = ln(Q2
0/Λ

2) is the starting scale,
where Q2

0 corresponds to the square of the input mo-
mentum and Λ is the QCD cutoff parameter. These
equations can be determined through λg and λS for our
aims, respectively [16].

On the other hand, based on the Regge-like be-
haviour of the gluon distribution and the structure func-
tion, Eq. (7) can be solved. Integrating it we have

FL(x,Q
2) = η F2(x,Q

2) + ζ G(x,Q2) , (18)

where

η =
4αs

3π

1− x2+λS

(2 +λS)
(19)

and

ζ =
20αs

9π

(2 +λg)x
3+λg − (3 +λg)x

2+λg + 1

(2 +λg)(3 +λg)
. (20)

Substituting Eqs. (12) and (13) into Eq. (18) and then
into Eq. (2) for each constant value of x gives us a re-
lation of the reduced cross-section σr with λS and λg
exponents. On this basis we find that

σr(x,Q
2) =F2(x,Q

2
0)

(
Q2

0

Q2

)bSlnx(
1− y2

Y+
η

)

− y2

Y+
ζ G(x,Q2

0)

(
Q2

0

Q2

)bglnx
, (21)

where F2(x,Q
2
0) and G(x,Q2

0) are the input structure
function and gluon distribution function. In order to es-
timate its derivatives, we take the derivatives of Eq.(21)
with respect to lny for each value of constant Q2 and x,
(i. e. (dσr/d lny)Q2=constant and (dσr/d lny)x=constant).
So we obtain the following results:

dσr
d lny

∣∣∣∣
Q2=const

=

− ∂F2(x,Q
2
0)

∂lnx

(
Q2

0

Q2

)bSlnx(
1− η

y2

Y+

)

− F2(x,Q
2
0)

(
Q2

0

Q2

)bSlnx λS

ln(Q2/Λ2)
ln
Q2

0

Q2

(
1−η

y2

Y+

)

− F2(x,Q
2
0)

(
Q2

0

Q2

)bSlnx(
2y2

2−y

Y 2
+

η+
y2

Y+

4αs

3π
x2+λS

)

+
∂G(x,Q2

0)

∂lnx

(
Q2

0

Q2

)bglnx y2

Y+
ζ

+G(x,Q2
0)

(
Q2

0

Q2

)bglnx λg

ln(Q2/Λ2)
ln
Q2

0

Q2

y2

Y+
ζ

−G(x,Q2
0)

(
Q2

0

Q2

)bglnx

×
[
2y2

2− y

Y 2
+

ζ − y2

Y+

20αs

9π
(x3+λg − x2+λg)

]
(22)

and

dσr
d lny

∣∣∣∣
x=const

=

− F2(x,Q
2
0)

(
Q2

0

Q2

)bSlnx{
λS

lnx
ln(Q2/Λ2)

(
1− y2

Y+
η

)

+ 2y2
2− y

Y 2
+

η − y2

Y+

4αs

3π

[
1− x2+λS

(2 +λS)ln(Q2/Λ2)

+
λSlnxx2+λS

(2 +λS)ln(Q2/Λ2)
+

λS(1− x2+λS)

(2 +λS)2ln(Q2/Λ2)

]}

+G(x,Q2
0)

(
Q2

0

Q2

)bglnx{
λg

lnx
ln(Q2/Λ2)

y2

Y+
ζ

− 2y2
2− y

Y 2
+

ζ − y2

Y+

20αs

9π

[(
− 2x3+λg + 3x2+λg − 1

+ (2 +λg)x
3+λgλglnx− (3 +λg)x

2+λgλglnx
)

×
[
(2 +λg)(3 +λg)ln(Q2/Λ2)

]−1

−
(2 +λg)x

3+λg − (3 +λg)x
2+λg + 1

(2 +λg)2(3 +λg)ln(Q2/Λ2)
λg −
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−
(2 +λg)x

3+λg − (3 +λg)x
2+λg + 1

(2 +λg)(3 +λg)2ln(Q2/Λ2)
λg

]}
. (23)

Equations (21)–(23) are our main results. Therefore
the reduced cross-section and its derivatives with re-
spect to lny at x or Q2 constant based on λS and λg
exponents are determined.

3. Calculation and results

In this paper we employed the Regge-like behaviour
of structure function and gluon distribution to calculate
the reduced cross-section and its derivatives with re-
spect to lny at Q2 = 20 GeV2 and Q2 = 22.5 GeV2.
We have taken the exponents λS and λg for our calcu-
lation from Ref. [16]. In these calculations λS = 0.270
and λg = 0.370 at Q2 = 20 GeV2, also λS = 0.274 and
λg = 0.372 at Q2 = 22.5 GeV2, respectively. The same
analysis can be done for otherQ2 values, too. In our cal-
culations, the value ofΛ is as used in Ref. [13], i. e.,Λ =
292 MeV. We have taken the parameters of the input
distributions xq(x) = aq x

bq (1−x)cq [1+dq
√
x+eq x]

for xg(x,Q2
0), V (x,Q2

0), and A(x,Q2
0) at the initial

scale Q2
0 = 4 GeV2 using H1 and BCDMS data for

Q2 ≫ 3.5 GeV2 [17]. The parameterisations used are
summarized in Table 1. The initial proton structure

Table 1. Parameters of the input distributions for xg(x,Q2),
V (x,Q2), and A(x,Q2).

a b c d e

gluon 1.10 −0.247 17.5 −4.83 68.2
V 86.3 1.47 4.48 −2.12 1.60
A 0.229 −0.130 19.7 −3.82 29.8

function F2(x,Q
2
0) is obtained from the decomposition

of the structure function into two independent combi-
nations of parton distribution functions V (x,Q2) and
A(x,Q2), according to

F2 =
1

3
xV +

11

9
xA . (24)

The results of the calculations are shown in Figs. 1–
3. In Fig. 1 a comparison is made between our obtained
values for the reduced cross-section and the H1 Collab-
oration [17] data, indicating the fact that the reduced
cross-section σr can be determined with reasonable pre-
cision. As can be seen, there is some rate of incre-
ment as observed in the H1 data, but with a somewhat
smaller rate. For Q2 constant, there is a crossover point
for both of the curves whose prediction is numerically

Fig. 1. Determination of the reduced DIS scattering cross-section
(closed points). Triangles represent data from the H1 Collabora-
tion [17] with the total errors including the experimental and model

uncertainly of the QCD fit.

Fig. 2. Determination of the derivative dσr/d lny = −dσr/d lnx
at fixed Q2 (closed points). Triangles represent data from the H1

Collaboration [17] with the total error.

Fig. 3. Determination of the derivative dσr/d lny = +dσr/d lnQ2

at fixed x (closed points).
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equal. The resulting y-derivatives of σr with respect to
lny at fixed Q2 are shown in comparison with those ex-
tracted from H1 data [17] in Fig. 2. The error bars in the
H1 data [17] include the total errors. Finally, the data in
Fig. 3 show derivative of the reduced cross-section with
respect to lny at x constant. We see that there is good
agreement between the two data sets, leading us to con-
clude that we can obtain the reduced cross-section and
its derivative based on the gluon and structure function
exponents at all y values. The increase rates are almost
the same for all Q2 values but at low x we see its in-
crement rate is decreased. We expect that NLO QCD
calculations of the longitudinal structure function are
more correct and its solutions will give a better fit to
global data and parameterizations at very low x.

In conclusion, based upon the Regge-like behaviour
of the gluon and the structure function at low x, an ap-
proximate method for the calculation σr and its deriva-
tives with respect to lny is presented. In this method
σr and its derivatives with respect to lny for low x val-
ues atQ2 constant using the DGLAP evolution equation
without knowledge of the longitudinal structure func-
tion FL(x,Q

2) are determined. Careful investigation
of our results show a good agreement with the previ-
ous published data based on an “extrapolation method”
and a “derivative method”. There is however a region,
a Q2 interval, where the two regimes, Regge and per-
turbative QCD, are compatible. We have seen that we
can use a Regge-like theory which constrains the initial
parton densities at Q2 = Q2

0 and obtain the distribu-
tions at higher virtualities with the DGLAP evolution
equation. These comparisons indicate that the forms
of obtained reduced cross-section and its derivatives
are similar to those predicted from experimental data.
More corrections with NLO QCD calculations will be
needed to refine this observation at high y. To summa-
rize, we find that the model described in Eqs. (21)–(23),
together with the DGLAP evolution, provides a simple
and economic solution that could be useful for further
practical applications, for example in nuclear physics.
In addition, we can conclude that the initial input and
its evolution give a good fit to the experimental data in
range of the variables x and Q2.
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REDUKUOTOJO SKERSPJŪVIO IR JO IŠVESTINIŲ SPRENDINYS NEDIDELĖMS x VERTĖMS,
REMIANTIS GLIUONŲ IR SANDAROS FUNKCIJŲ EKSPONENTĖMIS
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Santrauka
Pateiktos analizinės redukuotojo skerspjūvio ir jo išvestinių iš-

raikos lny atžvilgiu, kai Bjorkeno parametras x yra mažas. Iš-
spręstos DGLAP evoliucinės lygtys singletinei ir gliuonų sandaros
funkcijai, grindžiamos Redže tipo gliuonų pasiskirstymo ir sanda-

ros funkcijos elgsena šioje riboje. Skaitmeniškai gauti rezultatai
palyginti su HERA bandymo H1 duomenimis, kai x maži. Visus
rezultatus galima nuosekliai aprašyti naudojant perturbacinę kvan-
tinę chromodinamiką.


