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Numerical simulations of stationary fluorescence spectra of molecular systems usually rely on the relation be-
tween the photon emission rate and the system’s dipole–dipole correlation function. However, research papers usu-
ally take this relation for granted, and standard textbook expositions of the theory of fluorescence spectra also tend 
to leave out this important relation. In order to help researchers with less theoretical training gain a  deeper un-
derstanding of the emission process, we perform a step-by-step derivation of the expression for the fluorescence 
spectrum, focusing on rigorous mathematical treatment and the underlying physical content. Right from the start, 
we employ quantum description of the electromagnetic field, which provides a clear picture of emission that goes 
beyond the phenomenological treatment in terms of the Einstein A coefficient. Having obtained the final expres-
sion, we discuss the relation of the latter to the present level of theory by studying a simple two-level system. From 
the technical perspective, the present work also aims at familiarizing the reader with the density matrix formalism 
and with the application of the double-sided Feynman diagrams.
Keywords: quantum molecular electrodynamics, dipole–dipole correlation function, Einstein coefficients, 
Feynman diagrams

1. Introduction

Fluorescence (or emission) spectroscopy is the key 
tool for obtaining information about the bright ex-
cited states in molecular systems [1]. The concepts 
behind the experiment and its implementation are 
not difficult, and the  simplest theoretical descrip-
tion follows from the usual textbooks on quantum 
mechanics. On the other hand, researchers are of-
ten confronted by the need to understand fluores-
cence spectra of condensed matter systems. These 
systems are complex entities, usually described 
within the theoretical framework of open quantum 
systems. It provides a way of calculating the evolu-
tion of the transition dipole moment operator and, 
consequently, its autocorrelation function. This 

function is usually called the dipole–dipole correla-
tion function, and it fully describes the  stationary 
photon emission process. Thus, in order to under-
stand, and, more importantly, to simulate the fluo-
rescence spectra of molecular systems, one requires 
a  deep understanding of the  relation between 
the fluorescence spectra and the dipole–dipole cor-
relation function. Unfortunately, this is rarely de-
tailed in textbooks or monographs.

Indeed, while the  relation of the  absorption 
spectra of condensed matter systems to the  cor-
responding dipole–dipole correlation function is 
quite easily understood and is often presented in 
literature [2–4], that is not the case for fluorescence 
spectroscopy. The key difficulty lies in the fact that 
classical description of the field is sufficient when 
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analysing absorption, but quantum description 
must be used for fluorescence. Another issue is that 
the system under consideration has to be described 
by the  density operator, rather than the  wave 
function. That is why most quantum mechanics 
textbooks describe fluorescence only in terms of 
the Einstein coefficients [5–7]. The same is true for 
more specialized textbooks pertaining to spectros-
copy [8, 9], while books specifically on fluorescence 
are more focused on concepts and experimental 
issues, neglecting the  theoretical description [1, 
10]. The seminal textbook by Mukamel does con-
tain the  description of the  fluorescence in terms 
of a quantum field, but it focuses on the  time-re-
solved fluorescence, complicating the  description 
[11]. Research papers, on the other hand, usually 
either just state the  end result without much jus-
tification [12–16] or simply cite Mukamel’s book 
[17, 18]. Therefore, researchers new to the field face 
significant difficulties when they try to understand 
the  theoretical concepts and reasoning behind 
the results stated in literature.

In this paper, we present a detailed derivation of 
the relation between the stationary (or relaxed) flu-
orescence spectrum of a condensed matter system 
and the  relevant dipole–dipole correlation func-
tion. This is done by employing the quantum de-
scription of the electromagnetic field and the densi-
ty operator formalism. Even though the derivation 
is somewhat lengthy, the mathematical procedures 
are not difficult, as long as they are done carefully. 
Moreover, it is instructive to demonstrate how one 
may deal with rather bulky expressions, which may 
sometimes be done partly by following the physical 
reasoning. Having derived the formula for the fluo-
rescence spectrum, we apply it to a simple two-level 
system and show its relation to the Einstein A coef-
ficient. We believe that our work will be beneficial 
for researchers seeking to bridge the gap between 
textbook knowledge and research papers.

2. Preliminaries

In its most general form, the  total Hamiltonian 
of a  condensed matter system interacting with 
the electromagnetic field may be written in the fol-
lowing form,

ĤT = ĤS + ĤSF + ĤF , (1)

where the  three terms describe, correspondingly, 
the system, its interaction with the electromagnetic 
field, and the  electromagnetic field itself. We will 
discuss each term in more detail below.

The molecular system under consideration de-
scribed by the Hamiltonian ĤS may either be isolated 
or it can be ‘open’ – that is, interacting with its envi-
ronment, such as a solvent. In the latter case, the ĤS 
operator is usually partitioned even further, separat-
ing the Hamiltonians of the system (usually the elec-
tronic degrees of freedom of the relevant molecules) 
and its environment (usually the vibrational degrees 
of freedom of both the relevant system and its envi-
ronment), together with an additional Hamiltonian 
describing the  system–environment interaction. 
The exact form of ĤS will not be relevant for the pre-
sent derivation as the results obtained below will be 
rather general, but the important point is that the fi-
nal expression is valid for open systems.

The system–field interaction Hamiltonian is 
taken to be of the form 

mol

SF
1

ˆ ˆˆ– ( ),
N

H a a
a=

= ×å E rm  (2)

where  �mα is the transition dipole moment of the αth 
molecule, Nmol is the  number of molecules in 
the system, and rα is the position of the αth mole-
cule. The operator  �E(rα) is the electric field strength 
operator that describes the  field confined within 
the volume V. It is given by [11, 19] 

,

* †i –iˆ ˆ ˆ( ) (i e –i e ),
s

s s s sN Nα
α α⋅ ⋅=∑

k
k k k k k k
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where summation over all possible wave vectors k 
and polarizations s is performed. Operators  �aks and  
�a†

ks are bosonic annihilation and creation operators, 
and 0| | /2N c Vε=k k

 is the normalization factor 
with V being the quantization volume. The meth od 
of complex amplitudes is being used here, so the po-
larization vector pks is a complex quantity (similarly 
to the case when, for example, elliptically polarized 
waves are studied [19]). Assuming that V corresponds 
to a cube of side 𝓁, components of k are restricted to 
kj = 2πnj/𝓁, with j = x, y, z denoting the Cartesian 
components of the  vector, and nj being integers. 
Since pks  ⊥  k, summation over s means summa-
tion over two polarizations. It should be noted that 
the  operator �mα acts only on the  system states, 
while the operator  �E(rα) acts only on the field states. 
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Therefore, the tensor product of these operators is 
to be understood in Eq. (2), i.e.

ˆ ˆˆ ˆ( ) ( )

ˆ ˆˆ ˆ( ) ( ),

x x

y y z z

E

E E

α α α α

α α α α

µ

µ µ

⋅ ≡ ⊗

+ ⊗ + ⊗

E r r

r r

µ

  (4)

where the symbol “⊗” explicitly denotes the tensor 
product. The Hamiltonian (2) corresponds to the di-
pole approximation [11, 19], whereby it is assumed 
that each molecule may be adequately described as 
a single electric dipole, neglecting higher order ef-
fects related to the  magnetic dipole moment and 
electric quadrupole moment. Therefore, the  elec-
tric field is assumed not to change appreciably over 
the dimensions of the molecules. This approxima-
tion is valid as long as the wavelength of the radia-
tion is much greater than the size of the molecule. 
For example, the dimensions of the porphyrin ring 
of a chlorophyll molecule are ≲1 nm, clearly much 
less than the  wavelength of visible light. Finally, 
the field Hamiltonian is [11, 19]

†
F

,

1ˆ ˆ ˆ ,
2s s

s
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where the mode frequency ωk = c|k|. Note that by 
employing the  Hamiltonians defined by Eqs.  (2) 
and (5) we are using the second quantization nota-
tion, with the field being quantized in addition to 
the molecular system. As a consequence, the elec-
tric field strength (3) is described by an operator 
rather than a function, and it has no time depend-
ence since we are working in the Schrödinger pic-
ture at this point. The (harmonic) time dependence 
will emerge naturally once we switch to the inter-
action picture and transform the creation and an-
nihilation operators accordingly (see Eqs. (45, 46)).

3. Derivation

We seek to obtain the formula for the stationary (or 
relaxed) fluorescence spectrum of molecular sys-
tems, and we begin by discussing the assumptions 
involved. The relevant molecular system may be of 
arbitrary size, ranging from single isolated mol-
ecules to large molecular aggregates in a solvent or 
protein environment. The system is assumed to be 
excited by an infinitely short laser pulse, and the 
subsequent ‘equilibration’ – relaxation to the lowest 

electronic levels of the  excited electronic state 
manifold – is assumed to be instantaneous as well. 
Therefore, we will not take into account any pho-
tons emitted during the  equilibration period, but 
rather restrict the analysis to the photons emitted 
thereafter. Since radiative lifetime of the molecular 
excited states is often on the order of nanoseconds 
and the  equilibration time of the  excited states is 
a few to tens of picoseconds [3], our assumption of 
instantaneous excitation and following equilibra-
tion corresponds to this separation of timescales. 
Finally, we ignore the multiphoton relaxation and 
any non-radiative relaxation channels, such as 
thermal decay or internal conversion [3].

The fluorescence spectrum f(ω, t) of a molecu-
lar system is effectively a  distribution function of 
photon frequencies which shows the  number of 
photons per unit frequency range (around ω) that 
the  system emits per unit time at time t after ex-
citation. We aim at describing the relaxed fluores-
cence spectrum, therefore we will be interested in 
the steady-state distribution f(ω). As will be shown 
below, f(ω) is easily related to the single-mode dis-
tribution fks(t) that describes emission of photons 
with frequencies corresponding to a specific wave 
vector, |k| = ωk/c, and a specific polarization s. Thus 
now we will seek an expression for fks(t).

From a  purely quantum perspective, the  rate 
of emission of a photon with a wave vector k and 
polarization s may be calculated as the  rate of 
change of the  occupation number corresponding 
to the (k, s) mode of the electromagnetic wave [11, 
19]. The occupation number operator is given by

  �𝒩ks =  �a†
ks  

�aks.   (6)

We must now find the operator  �fks that corresponds 
to the  emission rate observable fks. By identifying 
the photon emission rate with the emission spec-
trum [11], we adopt one of the  several possible 
quantum definitions of the  spectrum [20]. Such 
an intuitive definition turns out to be adequate for 
the present analysis, as the spectra calculated using 
the final formula agree with the measured spectra 
reasonably well [15, 16].

It follows from our definition of the  emission 
rate that 

d
( ) ( ),

d
s sf t        t

t
�k k�  (7)
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where 𝒩ks is the  mode occupation number ob-
servable which operator  �𝒩ks corresponds to. 
Meanwhile, it is known from standard courses in 
quantum mechanics [5, 21, 22] that if an observ-
able A has a  corresponding (time-independent) 
operator Â, then an observable B whose quantum 
average equals to the average of d ( )

d
A t

t
 has a cor-

responding operator 

i ˆˆ ˆ[ , ],B H A=


 (8)

where Ĥ is the Hamiltonian of this exemplary sys-
tem. Therefore, it follows that

T
iˆ [ , ].s sf H=k k�

ˆ �̂  (9)

We recall that ĤT consists of three terms [see 
Eq. (1)], but the occupation number operator acts 
only in the  Hilbert space of the  field states, and 
it therefore commutes with ĤS. Moreover, looking 
at Eqs. (5) and (6), we notice that  �𝒩ks commutes 
with ĤF as well. Therefore, [ĤT,   �𝒩ks] = [ĤSF,   �𝒩ks]. 
Further, the  fact that the  creation and annihila-
tion operators corresponding to different modes 
mutually commute allows us to leave only a single 
(k, s) mode when substituting Eq. (3) into Eq. (9). 
Thus,

iˆ [ , ],s s sf H N=k k k�
�ˆ ˆ  (10)

where we define a single-mode system–field inter-
action Hamiltonian,
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The aim is now to find the quantum average of 
the emission rate operator. This may be conveniently 
approached with the help of the density matrix for-
malism, so we start by introducing the total density 
operator �ρT(t) that describes both the  system and 
the field. The key advantage of working with den-
sity operators rather than wave functions is that 
the final result will be suitable for open quantum 
systems as well. Let t0 denote the excitation time; 
then, as the  system state �ρS(t0) has just been pre-
pared, we may assume that initially there are no 

correlations between the  system and the  field. 
Hence, the total density operator is initially a ten-
sor product of the system and the field parts [23], 

 �ρT(t0) =  �ρS(t0) ⊗  �ρF(t0).  (12)

Once the system has been prepared, it starts inter-
acting with the electromagnetic field, and the rela-
tion no longer holds at later times, with the evolu-
tion of the total density matrix being controlled by 
the  total Hamiltonian (1). The  required quantum 
average is then given by 

T T

T T

ˆ ˆ( ) Tr ( ( ))

1 ˆ ˆ ˆTr [ , ] ( ) ,

s s

s s

f t f t

H N t

r

r
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 (13)
          

T T
i ˆTr [ , ] ( ) ,s sH              tρ =   k k�

ˆ ˆ



�

where the  symbol Tr stands for the  trace, and 
the  index T (total) emphasizes that the  trace is 
taken with respect to both the system and the field 
states. For the  interpretation of subsequent equa-
tions, it is beneficial to use the trace identity (A.4) 
to recast (13) into 

                             
 �𝒩 (14)T T

i ˆ ˆ( ) Tr – [ , ( )] .s ss
f t H tr

æ ö÷ç= ÷ç ÷çè øk kk


We now have to find the expression for the den-
sity operator. The density operator satisfies the Li-
ouville–von Neumann equation [23], 

T 0 T SF T
d i iˆ ˆˆ ˆ ˆ( ) – [ , ( )] – [ , ( )],
d

t H t H t
t
ρ ρ ρ=

 

       (15)

where we have partitioned the total Hamiltonian as
 
ĤT = Ĥ0 + ĤSF,   Ĥ0 = ĤS + ĤF . (16)

This partitioning will allow us to treat the  sys-
tem–field interaction as a  small perturbation and 
develop a  perturbation expansion with respect to 
the electric field strength [11], 

(0) (1)
T T Tˆ ˆ ˆ( ) ( ) ( ) ...t t tρ ρ ρ= + +  (17)

The initial condition is chosen such that at t  =  t0 
(when the  fluorescence starts) the  system has 
reached the  excited state equilibrium. Further, 
we assume that the  resulting density operator 
 �ρS

eq ≡  �ρS(t0) is known, while the field is in the vacu-
um state |0F〉〈0F|, 
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eq eq
T T 0 S F Fˆ ˆ ˆ( ) | 0 0 | .tρ ρ ρ≡ = ⊗ 〉〈  (18)

Fluorescence thus corresponds to the spontaneous 
light emission process. Formally, the vacuum state 
is a tensor product of the zero-occupation states of 
all the modes. Specifically, let |0k's'〉 denote the zero-
occupation state of the (k', s') mode; then, 

F
,

| 0 | 0 ,s
s

′ ′
′ ′

〉 = 〉∏ k
k

 (19)

where the product symbol is to be understood as 
a tensor product. Hence, âks|0F〉 = 0 for all k and s.

The zeroth order term in (17) corresponds 
to the  unperturbed system with ĤSF  =  0, hence it 
corresponds to the equilibrium state, 

(0) eq
T T 0ˆ ˆ( ) , .t t tρ ρ= >  (20)

For the first order term, Eq. (15) takes the form 

(1) (1)
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As we show in Appendix B, the formal solution is 

0

0 1 0 1
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Substituting  �ρT
(0)(t) +  �ρT

(1)(t) for  �ρT(t) in Eq. (14) 
and using Eqs. (20) and (22), we obtain 

  
(23)
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The first term on the right-hand side of Eq.  (23) 
represents the  time-independent zeroth order 
contribution to the fluorescence. However, the in-
teraction with the  field is totally neglected at 
the zeroth order, therefore, the said term is equal 
to zero (as can be verified directly). Since we are 
interested in the steady state emission rate, we will 
now set t0  →  –∞ (the system started to fluoresce 

in the infinite past) and use the cyclic invariance 
of the  trace to rearrange the exponential factors. 
Equation (23) becomes

 
 (24)

2
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where we have defined the  single-mode system–
field interaction Hamiltonian in the  interaction 
picture as 

0 1 0 1
ˆ ˆ(i/ ) –(i/ )I

1
ˆ ˆ( ) e e .H t H t

s sH t H=k k
   (25)

As we can see from Eq. (24), the photon emission 
rate becomes time-independent, as it should be in 
the  case of the  stationary fluorescence. The  pres-
ence of a double commutator and two Hamiltoni-
ans indicate that two interactions with the field have 
to occur for the system to emit a photon. The inte-
gration variable t1 in Eq. (24) represents the delay 
between these two interactions. This delay may be 
arbitrary, therefore, we have to perform integration 
over all possible delays spanning from 0 to infin-
ity in order to obtain the stationary value. This ex-
plains the physics behind the integral in Eq. (24).

Now let us analyse the trace in Eq. (24). The trace 
identity (A.6) allows us to change the  order of 
the operators under the trace as follows,

TrT( �𝒩k s[Ĥ
I
ks(t1), [ĤSF,  �ρT

eq]]) 

                = (TrT( �ρT
eq[ĤSF, [Ĥ

I
ks(t1),  �𝒩k s]]))

*.  (26)

We now have a commutator of ĤSF , which includes 
all modes of the field, with a single-mode operator 
[ĤI

ks(t1),   �𝒩k s]. Since operators corresponding to 
different modes mutually commute, we may use 
the  single-mode Hamiltonian Ĥks instead of ĤSF 
here and, consequently, in the initial Eq. (24). Also 
noting that, according to Eq. (25), ĤI

ks(0)  =  Ĥks, 
we rewrite the trace in a slightly more consistent 
way, 

T ≡ TrT( �𝒩k s[Ĥ Iks(t1), [Ĥ Iks(0),  �ρT
eq]]).            (27)

Upon expansion of the commutators, we will ob-
tain four terms in total, 
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T = T1 + T2 + T3 + T4,  (28)

T1 = TrT(  �𝒩k sĤ Ik s(t1) Ĥ Ik s(0)  �ρT
eq),  (29)

T2 = TrT(– �𝒩k sĤ Ik s(t1)  �ρT
eq Ĥ Ik s(0)),        (30)

T3 = TrT(– �𝒩k sĤ Ik s(0)  �ρT
eq Ĥ Ik s(t1)),  (31)

T4 = TrT(  �𝒩ks  �ρT
eq Ĥ Ik s(0) Ĥ Ik s(t1)).  (32)

These four terms may be presented graphically 
using the  double-sided Feynman diagrams [11] 
shown in Fig. 1. The  thick vertical lines repre-
sent the  elements of the  total density matrix, 
while the  dots and the  wavy arrows represent 
interactions with the  field; time runs from be-
low up. A  Hamiltonian operator appearing to 
the  left (right) of the  density matrix in the  for-
mula corresponds to an interaction with the field 
of the left (right) vertical line in the diagram. An 
incoming wavy arrow represents photon absorp-
tion (annihilation), and an outgoing wavy arrow 
represents photon emission (creation). Hence, 
the directions of the wavy arrows are dictated by 
the state of the system and the field: if the field is 
in the vacuum state and the system is excited, then 
photon emission occurs; conversely, if the  field 
is in a  singly excited state and the  system is in 
the  ground state, photon absorption takes place. 
The diagrams in Fig. 1 depict all possible relaxa-
tion pathways (restricted to only two interactions 
with the field, as required in a single-photon pro-
cess), and we encourage the reader to use the stat-
ed rules and check the  correspondence between 
the  diagrams and the  equations. An important 
point here is that knowing the rules for construct-
ing the  diagrams we could have first drawn them 

and then immediately written down Eqs.  (29–32). 
In fact, this is the way the two-sided Feynman dia-
grams are actually used in practice (just like the Fey-
nman diagrams for the  processes in the  Standard 
Model [24]). For example, we can construct (29) 
from Fig.  1(a), by starting from  �ρT

eq, acting from 
the left with Ĥ Ik s(0), and again acting from the left 
with Ĥ Ik s(t1). The final interaction is from the  left 
with   �𝒩k s, and we take the trace over all degrees of 
freedom. Other terms can be constructed similarly, 
with every interaction from the right introducing 
a minus sign.

We are only concerned with a single (k, s) mode 
in this discussion, and the initial density matrix of 
this mode is |0ks〉〈0ks|. The equilibrium density ma-
trix of the system, on the other hand, is generally 
a certain superposition state,

 
eq eq
S S

,

ˆ ˆ( ) | |,ab

a b

a br r= ñáå  (33)

where |a〉 is an eigenvector of ĤS. (In contrast to 
the  field state vectors, such as |0ks〉, the  system 
state vectors will not have any indices in our nota-
tion.) The total density matrix in the equilibrium 
is thus 

eq eq
T S

,

eq
S

,

ˆ ˆ( ) | | | 0 0 |

ˆ( ) | 0 | | 0 |,

ab s s
a b

ab s s
a b

a b

a b

r r

r

= ñá Ä ñá

= ñ ñá á

å

å

k k

k k  (34)

and each of the diagrams in Fig. 1 represents a sin-
gle element of this sum. By also showing the field 
state in addition to the  system state, we extend 
the usual Feynman diagram nomenclature.

The diagrams enable us to discard the  terms 
that will not contribute to the  fluorescence. For 
example, in Fig. 1(a) corresponding to T1, we can 

Fig. 1. The double-sided Feynman diagrams corresponding to Eqs. (29–32).
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see that only the ket field vector undergoes chang-
es (since the Hamiltonians act on �ρT

eq from the left 
in Eq. (29)), and the field remains in the ground 
state after the  interactions. Therefore, the  se-
quence of interactions shown in Fig. 1(a) will not 
contribute to fluorescence, so T1 should equal to 
zero. A similar situation is seen in Fig. 1(d), which 
implies that T4 = 0. Only the terms T2 and T3 will 
contribute, where one interaction changes the ket 
and another one changes the  bra, as shown in 
Figs. 1(b, c).

Looking closely at the terms in Eqs. (29–32) we 
notice that, since all the operators under the traces 
are Hermitian, 

T1 = T4
*,    T2 = T3

*. (35)

This follows from the trace identity (A.4). The rela-
tions given in Eq. (35) are also encoded in the di-
agrams in Fig.  1, because Figs.  1(a,  d) as well as 
Figs. 1(b, c) are mirror images of each other.

We can now support our claim that T1 = T4 = 0 
by a  direct calculation. Substituting Eq.  (18) into 
the expression for T4 in Eq. (32), we obtain 

T4 = TrT(  �𝒩k s|0F〉〈0F| �ρS
eq Ĥ Ik s(0) Ĥ Ik s(t1)).        (36)

Since

 �𝒩k s|0F〉 =  �a†
k s

�ak s|0F〉 = 0, (37)

we have 

T1 = T4 = 0. (38)

Now we will turn to the evaluation of the term 
T3 in Eq. (31). The first step is to analyse the Ham-
iltonian Ĥ Ik s(t1). We may immediately rewrite 
Eq. (11) in the interaction picture as 
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(39)

The transition dipole moment operator is an op-
erator of the  system subspace. Therefore, when 
switching to the  interaction representation using 
Eq. (25), �mα is not being acted upon by the opera-
tor e(i/ħ)ĤFt1. Similarly, the creation and annihilation 

operators of the field commute with e(i/ħ)ĤSt1. Hence, 
we may switch to the  interaction picture using 
the formulas 

S 1 S 1
ˆ ˆ(i/ ) –(i/ )I

1ˆ ˆ( ) e e ,H t H tta a=  m m  (40)

and
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   (41)

F 1 F 1
ˆ ˆ(i/ ) –(i/ )†I †

1ˆ ˆ( ) e e ,H t H t
s sa t a=k k

   (42)

which remain compatible with the  definition in 
Eq.  (25). Equation (40) will not be elaborated 
any further in the  present derivation since that 
requires selecting a particular model for the mo-
lecular system. On the  other hand, the  quanti-
ties  � aI

ks(t1) and  
�ak s

†I (t1) may be readily calculated, as 
the  forms of the field Hamiltonian and the crea-
tion and annihilation operators are universal. 
Since the field Hamiltonian commutes with itself, 
we have

I
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and the  Heisenberg equation for the  evolution of 
 � aI

k s(t1) takes the simple form,
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Hence,

 �aI
k s(t1) =  �ak se

–iωkt1,

 �ak s
†I(t1) =  �a†

k
 
se

iωkt1. (45)

Using these results, Eq. (39) becomes
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(46)

Substituting Eqs. (46) and (18) into Eq. (31), we 
now have for T3,
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(47)

Once we expand the braces, we will have four terms 
under the trace, but only one of them will contribute. 
This can be seen in Fig. 1(c) from the direction of 
the wavy arrows that represent the interaction with 
the  field. For the  photon to be emitted, the  initial 
field state |0k s〉〈0k s| has to change into |1k s〉〈1k s| via 
two interactions with the field which are represented 
by two outgoing wavy arrows. The creation operator 
�a†

ks should act from the left on the ket, and a conjugate 
interaction should take place, which corresponds to 
the annihilation operator �aks acting on the bra from 
the right. Therefore, out of four possible combina-
tions of the directions of the two wavy arrows, only 
the one shown in Fig. 1(c) will contribute. In passing, 
we note that no combination of one-sided creation 
and annihilation of photons in Figs.  1(a,  d) could 
lead to the |1k s〉〈1k s| state in those cases.

Expanding the braces, we obtain 
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Since �aks|0F〉 = 0 and 〈0F| �a†
ks = 0, we indeed notice 

that only the  third term, containing �a†
ks|0F〉〈0F| �aks, 

will contribute. In order to simplify the  trace, we 
introduce a schematic notation

|0F〉 = |0ks〉 |0F–ks〉, (49)

meaning that the vacuum state of the field can be 
partitioned as a  product of the  vacuum state of 
the (k, s) mode and the vacuum state of the rest of 
the field, and 

TrF = TrksTrF–ks, (50)

meaning that we can first perform the trace over all 
modes but (k, s) and only then trace over the (k, s) 
mode. Then,
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(51)

Here Âks and  �Bks are arbitrary operators acting only 
on the (k, s) mode. Thus, we obtain from Eq. (48), 

(52)
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Inspecting the term 〈0ks| �aks|mks〉, we see that it will 
only contribute if m = 1. Hence, 
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Using Eqs. (28), (35) and (38), we have 

T = T2 + T3= T3
*

 + T3 = 2ℜ(T3). (54)

Together with Eq. (53) this result allows us to write 
Eq. (24) as 
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Since we are working in the  dipole approxima-
tion and neglect all higher order effects, we may set 
eik·(–rα+rβ)  ≈  1 [3]. Indeed, for the  dipole–dipole in-
teraction between the constituents of the molecular 
system to be significant, the distance Δr = |–rα + rβ| 
between the dipoles usually must not exceed ~100Å. 
This is the  case, for example, for chlorophylls in 
photosynthetic systems [25]. Meanwhile, the  fre-
quency of the  electronic transitions is ωk  ≈  3  fs–1, 
so |k| = ωk/c ≈ 107 m–1. Therefore, the upper limit 
for the product |k|Δr is 0.1 ≪ 1, which supports our 
claim. This lets us define the total system transition 
dipole moment operator as 
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leading to 
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In order to obtain the total fluorescence spec-
trum, we will have to sum over the polarizations, 
and it is appropriate to do so now. The  summa-
tion of the  relevant part of Eq.  (57) proceeds as 
follows, 
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Here, notation such as (pks)i is to be understood 
as the ith component of the vector pks; k0 denotes 
the  unit vector in the  direction of k (which is 
the wave vector of the emitted wave), and we have 
used the relation Σs (pks)i (p*ks)j = (δij – k0ik0j) [19]. 
Now we will account for the fact that the total sys-

tem transition dipole moment may be arbitrarily 
oriented with respect to the wave vector of the emit-
ted wave. Therefore, we perform orientational aver-
aging over all possible orientations of the transition 
dipole moments and the wave vectors k, 
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In the  third line, we have used the  results from 
Ref. [26]. Returning to Eq. (57), we will now have 
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If we wish to find the total number of photons 
in some frequency interval (ω1, ω2) that the system 
emits per unit time, we have to perform the sum-
mation over the corresponding wave vectors k, 
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In the  second line, we changed the  sum over k 
by an integral in the  spherical coordinates using 

Σk
3

3 d
(2 )

V k
π

Σ → ∫k d3k in the limit of large V and then de-

noting |k| = k. In the third line, we changed the in-
tegration variable, k = ωk/c. Finally, we recognized 
that 〈fk〉or does not depend on the direction of k (see 
Eq. (60)), which let us perform the integration over 
the angles with the result given in the fourth line.

The integrand in the  last line in Eq.  (61) rep-
resents the  total emission rate of photons whose 
frequencies lie in the  interval (ωk,  ωk  +  dωk) and 
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therefore represents the  fluorescence spectrum 
f(ωk) of the  system. Using Eq.  (60) and dropping 
the index “k” on ωk, we obtain 
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completing the derivation.
The trace in Eq. (62) denotes the dipole–dipole 

correlation function, 

Cμμ(t) = TrS( �mI(t)· �mI(0) �ρS
eq), (63)

calculated to the zeroth order in the  system–field 
interaction. Consequently, as we show in the  fol-
lowing section, the spectra calculated using Eq. (62) 
do not exhibit the radiative broadening. Neverthe-
less, the accuracy of the obtained formula turns out 
to be sufficient for simulating molecular systems 
interacting with the environment, since the broad-
ening of the  spectral lines due to the  system–en-
vironment interaction is not neglected in Eq. (62), 
and it is several orders of magnitude greater than 
the radiative broadening [8].

In general, calculation of the dipole–dipole cor-
relation function requires application of dynamical 
theories for open quantum systems. However, if we 
focus on some simple model system, we may calcu-
late Cμμ(t) without any advanced theories. As an ex-
ample, let us consider an isolated two-level system.

4. Emission rate of a two-level system

The system Hamiltonian of a general two-level sys-
tem is given by 
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where εn is the energy of the nth energy level, and 
we set ε1 > ε2. The transition dipole moment matrix 
may be taken in the form 
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where the  zero-valued diagonal elements express 
the absence of a permanent static dipole moment in 
the system. This is a valid simplification, as the stat-
ic dipole moment has no impact on the spontane-

ous emission process. Finally, the state correspond-
ing to the excited state equilibrium is described by 
the density matrix 

eq
S

1 0
ˆ ,

0 0
r

æ ö÷ç ÷=ç ÷ç ÷çè ø
 (66)

which shows that the  system occupies the  higher 
energy level with probability 1. Equations (64–66) 
completely define the  system, and the  dipole–di-
pole correlation function may be readily calculated 
from Eq. (63). As we show in Appendix C, the re-
sult is

Cμμ(t1) = |m12|
2eiω12t1, (67)

and the integration in Eq. (62) yields 
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As expected from the  application of Eq.  (62), 
the  obtained spectral line is not of a  Lorentzian 
profile with a finite natural linewidth, but is an in-
finitely narrow line instead, which is a deficiency 
of this level of approximation. However, the  co-
efficient in the obtained emission rate formula is 
precisely the well-known Einstein A coefficient, 
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212
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3
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c

ω
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m , (69)

that was originally used to phenomenologically 
describe the  process of spontaneous emission in 
a two-level system [19]. Thus, the derived station-
ary fluorescence spectrum formula (62) reduces 
to the  expected result in the  limit of the  simplest 
quantum system.

5. Conclusions

In this work, we have presented a  systematic 
derivation of the  relation between the  fluo-
rescence spectrum of a  condensed matter sys-
tem and the  relevant dipole–dipole correlation 
function. This requires describing the  electro-
magnetic field as a  quantum object, which can 
be conveniently done using the  second quan-
tization notation. Although conceptually and 
mathematically rather intricate, such a  descrip-
tion is highly advantageous because it allows 
one to operate directly with the  mode occupa-
tion operator. Consequently, the  rate of change 
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of mode occupation also has a  corresponding 
quantum operator, and the  theory thus naturally 
accounts for possible creation and emission of 
photons. This process cannot be adequately de-
scribed if the  electromagnetic field is treated 
classically; the only way to account for it without 
using the  concepts of quantum electrodynamics 
is to postulate that spontaneous relaxation fol-
lowed by the emission of a photon is possible. By 
contrast, the present derivation clearly shows that 
emission of photons is a result of the interaction 
between the  quantum system and the  vacuum 
state of the electromagnetic field.

The obtained formula for the  fluorescence 
spectrum is a rather general one since it does not 
rely on any specific model of the  quantum sys-
tem. This generality was achieved by employing 
the  density matrix formalism, which is manda-
tory when working with open quantum systems. 
In fact, the density matrix formalism proved to be 
equally convenient when studying a  simple two-
level system. As we have shown, the emission rate 
formula reduces to the  Einstein A coefficient in 
that special case.
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Appendices

A. Trace identities

In this section, we prove several trace identities 
used in the  main text. Throughout this work, we 
will be using extensively the  cyclic invariance of 
the trace,

Tr(  �A �B  �C) = Tr( �C  �A  �B) = Tr( �B  �C   �A),        (A.1)

where   �A,  �B and  �C are arbitrary, generally non-com-
muting matrices.

The first identity is

Tr( �A[ �B,  �C]) = Tr(– �B[ �A,  �C]). (A.2)

This is trivially proved by expanding the com-
mutator, 

Tr( �A[ �B,  �C]) = Tr( �A  �B  �C– �A  �C  �B)

= Tr( �C  �A  �B– �A �C  �B)

= Tr([ �C,  �A] �B)

= Tr(– �B[ �A,  �C]). (A.3)

This property of the  trace is similar to the  corre-
sponding property of the  scalar triple product of 
vectors, which is cyclically invariant as well.

Next, we prove that 

Tr�  �L  �M �N �P� = �Tr( �P �N  �M �L)�
*
,  (A.4)

where  �L,   �M,  �N and  �P are arbitrary Hermitian opera-
tors. The proof proceeds as follows, 

Tr�  �L  �M �N �P� = Tr� �L†  �M† �N† �P†�

= Tr�(  �P  �N  �M �L)†�

= Tr�(  �P  �N  �M �L)*�

= �Tr(  �P  �N  �M �L)�
*
. (A.5)

In the  third line, we recognized that Hermitian 
conjugate of an operator is the  transpose of its 
complex conjugate, but the trace, being the sum of 
the diagonal elements, is invariant with respect to 
transposition.

Finally, we will show that 

Tr(�L [  �M, [ �N,  �P]]) = �Tr(  �P[  �N, [  �M, �L])�
*
.          (A.6)

Starting by expanding all the commutators, we have

Tr(�L [�M, [  �N,  �P]) = �Tr(�L  �M  �N  �P – �L  �M  �P  �N

– (�L  �N  �P  �M– �L  �P  �N  �M)�

= �Tr�  �P  �N  �M �L –   �N  �P  �M �L – ( �M  �P  �N �L –   �M  �N  �P �L)��
*

= �Tr�  �P  �N  �M �L –   �P  �M �L  �N – (  �P  �N �L  �M –   �P �L  �M  �N)��
*

= �Tr�   �P  �N  �M �L –   �P  �N�L  �M – (  �P  �M �L  �N –   �P �L   �M  �N)��
*

= �Tr(   �P  �N[  �M, �L] –   �P[  �M, �L]  �N)�
*
= 
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= �Tr(  �P[  �N,[  �M, �L])�
*
. (A.7)

In the  third line, we used the  identity (A.4); in 
the  fourth line, we used the  cyclic invariance to 
make operator �P appear first in every term; in 
the fifth line, we simply swapped the second and 
the third terms.

B. First order solution for the density matrix

Below, we provide the steps leading to the  formal 
solution for the first order term of the density ma-
trix, as quoted in Eq. (22).

Our aim is to find the solution of Eq. (21). We 
may use the result of Eq. (20) and write 

(1) (1) eq
T 0 T SF T

d i iˆ ˆˆ ˆ ˆ( ) – [ , ( )]– [ , ].
d

t H t H
t
r r r=

 

  (B.1)

We will apply the method of variation of constants. 
The general solution of the corresponding homoge-
neous equation, 

(1) (1)
T 0 T

d i ˆ( ) – [ , ( )],
d

t H t
t
ρ ρ=

�
~̂ ~̂  (B.2)

is easily seen to be 

0 0
ˆ ˆ–(i/ ) (i/ )(1)

T ( ) e e ,H t H tt Cρ = � �~̂ ˆ  (B.3)

where  �C is some constant matrix. Next, we promote 
that matrix to a time-dependent one, thus seeking 
for the solution of (B.1) in the form 

0 0
ˆ ˆ–(i/ ) (i/ )(1)

T
ˆˆ ( ) e ( )e .H t H tt C tr =    (B.4)

Substituting into Eq. (B.1), we obtain 

0 0 eq
SF T

ˆ ˆ–(i/ ) (i/ )
ˆd ( ) i ˆ ˆe e – [ , ],
d

H t H tC t H
t

r= 



 (B.5)

and the formal solution is

0 0

0

ˆ ˆ(i/ ) –(i/ )eq
0 SF T

iˆ ˆ ˆ ˆ( ) ( )– d ´e [ , ]e .
t

H t H t

t

C t C t t H ρ′ ′= ∫ � �

�

 
(B.6)

In the equilibrium – at t = t0, when the perturba-
tion is absent  –  the  system density matrix is ful-
ly described by the  zeroth order term, �ρT

(0)(t), and 
all higher order terms are equal to zero. Hence, 
 �ρT

(1)(t0) = 0, which implies  �C(t0) = 0. Taking this into 
account and substituting Eq.  (B.6) into Eq.  (B.4), 
we finally arrive at 

(B.7)0 0

0

(1)
T

ˆ ˆ–(i/ ) ( – ) (i/ ) ( – )eq
SF T

ˆ ( )

i ˆ ˆ– d ´e [ , ]e .
t

H t t H t t

t

t

t H

r

r¢ ¢= ò  



It will prove to be more convenient to work with 
a slightly modified expression, which we obtain by 
performing a change of variables, t–t' = t1,

0

0 1 0 1

–
ˆ ˆ–(i/ ) (i/ )(1) eq

T 1 SF T
0

i ˆˆ ˆ( ) – d e [ , ]e .
t t

H t H tt t Hρ ρ= ∫ � �

�
(B.8)

C. Detailed calculation of the emission rate of 
a two-level system

Here, we show at full length how one may calculate 
the emission rate of a two-level system defined by 
Eqs. (64–66) starting from Eq. (62).

The first step is to find the dipole moment op-
erator in the interaction picture, 

S 1 S 1
ˆ ˆ(i/ ) –(i/ )I

1ˆ ˆ( ) e e .H t H tt =  m m  (C.1)

Using the expansion 

ˆe e | |,nAA

n

n n= ñáå
 

(C.2)

where   �A is an arbitrary operator, An is the nth ei-
genvalue and |n〉 is the nth eigenvector, we have 

(C.3)

1 1 1 1

2 1 2 1

12 1

12 1

(i/ ) –(i/ )
12

1 *(i/ ) –(i/ )
12

i
12

i*
12

0e 0 e 0ˆ ( )
00 e 0 e

0 e
,

e 0

t t
I

t t

t

t

t
� �

� �

�

��

� � � �� �
� � � � �� �� � � �� �� � � �
� �

� � �� �
� �

� �

� �

�
�

�

�

�

where we have defined the  transition frequency, 
ω12  =  (ε1–ε2)/ћ. We note that it is a  well-known 
result that each element (m,  n) of an arbitrary 
time-independent operator simply acquires a fac-
tor of eiωmnt in the Heisenberg picture [21]. (When 
viewing the  calculation of Eq.  (C.1) as an iso-
lated problem, we may consider ĤS to be the  to-
tal Hamiltonian of the  system, so that the  inter-
action picture coincides with the  Heisenberg 
picture.)

Noting that  �m =   �mI(0), performing the matrix 
multiplication and taking the  trace, we obtain 
the dipole–dipole correlation function, 
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� �
12 1

I I eq
1 S 1 S

i2
12

ˆˆ ˆ( ) Tr ( ) (0)

| | e .t

C t t��

�

�� �

�

µ µ

µ  (C.4)

Calculation of the integral in Eq. (62) then pro-
ceeds as follows, 

 (C.5)

( )

( )

1

12 1

–i
1 1

0

–i( – )2
12 1

0

2
12 1 12 1

0

2
12 1 12 1

–
2

12 12

d e ( )

| | d e

| | d cos ( – )

1| | d cos ( – )
2

| | ( – ).

t

t

t C t

t

t t

t t

ω
µµ

ω ω

ω ω

ω ω

πδ ω ω

∞

∞

∞

∞

∞

ℜ

= ℜ

=

=

=

∫

∫

∫

∫

µ

µ

µ

µ

In the last line, we used the integral representation 
of the Dirac delta function. Substituting this result 
into Eq. (62), we arrive at the final expression for 
the emission rate,

3
212

12 123
0

( ) | | ( – ),
3

f
c

ωω δ ω ω
π ε

=


m
 

(C.6)

where the presence of the delta function allowed us 
to change 𝜔3 to 𝜔3

12.
It can be straightforwardly verified that includ-

ing arbitrary static dipole moments m11 and m22 
leads to the same results.
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MOLEKULINIŲ SISTEMŲ STACIONARIOSIOS FLUORESCENCIJOS SPEKTRO 
FORMULĖS IŠVEDIMAS NAUDOJANT KVANTINĘ ELEKTRODINAMIKĄ
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b Fizinių ir technologijos mokslų centro Molekulinių darinių fizikos skyrius, Vilnius, Lietuva

Santrauka
Molekulinių sistemų stacionarių fluorescencijos 

spektrų skaitinis modeliavimas dažniausiai remiasi tam 
tikru sąryšiu tarp fotonų emisijos spartos ir sistemos di-
polių koreliacinės funkcijos. Mokslo darbuose ši išraiška 
paprastai laikoma savaime suprantamu dalyku, o fluo-
rescencijos spektrų teorijos vadovėliuose šis svarbus są-
ryšis nėra aptariamas. Norėdami padėti mokslininkams 
giliau suprasti emisijos procesą, šiame darbe, išlaikyda-
mi matematinį griežtumą ir akcentuodami formulių fizi-

kinį turinį, pateikiame nuoseklų fluorescencijos spektro 
išraiškos išvedimą. Naudojame kvantinį elektromagne-
tinio lauko aprašymą, suteikiantį aiškesnį emisijos pro-
ceso vaizdinį, negu fenomenologinis aprašymas taikant 
Einšteino koeficientą A. Gavę galutinę išraišką, pateikia-
me pavyzdinį jos panaudojimą, pritaikydami ją papras-
tai dviejų lygmenų sistemai nagrinėti. Be to, šiuo darbu 
siekiame supažindinti skaitytoją su tankio matricos for-
malizmu ir dvigubujų Feynmano diagramų taikymu.
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