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We discuss the Wigner function representation from the novel standpoint of establishing a natural holography-
like correspondence between the descriptions of a generic quantum system in the phase space (‘bulk’) picture versus
its spacetime (‘boundary’) counterpart. In certain cases, the former may reduce to the gravity-like dynamics of a lo-
cal metric-type variable while the latter takes on the form of some bosonized collective field hydrodynamics. This
generic pseudo-holographic duality neither relies on any particular symmetry of the system in question, nor does it
require any relation to some underlying ‘string theory; thus providing a systematic way of constructing practical - as
opposed to the previous ‘ad hoc’ — examples of genuine holographic duality.
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1. Generalized holography

Among all the remarkable theoretical advances
under the hashtag #holography one of the great-
est interest to condensed matter physics is the on-
going quest for generalizing the original, highly
constrained (i.e. Lorentz- and maximally super-
symmetric, etc.), string-theoretical holographic
conjecture to as broad as possible (i.e. non-Lor-
entz-, non-isotropic-, non-supersymmetric, etc.)
variety of quantum many-body systems [[1-7].

In that regard, the so-called ‘bottom-up’ ho-
lography has been portraying itself as a powerful
technique offering solutions to the traditionally
hard condensed matter problems. This innovative
approach (sometimes referred to as the anti-de-Sit-
ter/condensed matter theory, or AdS/CMT, corre-
spondence) borrows its formal structure and math-
ematical apparatus (often ‘ad verbum, for the lack
of an alternative) from the very specific, carefully
crafted and highly symmetric examples of such
duality known under the acronym AdS/CFT and
conjectured in the original context of fundamental
string theory and its various reductions [[L-7].

So far, however, all the attempts of putting ap-
plied holography on a firm foundation - either
along the lines of the geometrized renormalization
group (RG) flow or entanglement dynamics in ten-
sor networks, or by using artificial thermodynamic
(Fisher-Ruppeiner, Fubini-Study, etc.) metrics, or
else — have remained consistently inconclusive.

Nonetheless, instead of striving to deliver
a solid proof of principle, the field of AdS/CMT
has, by and large, stayed the course reminiscent
of hacker’s code cracking: that is, trying to guess
some higher-dimensional enhanced gravity-like
theory (often on the sole basis of technical con-
venience) and then rely on the persuasive power
of visual agreement between some pre-selected
experimental data plots and the (for the most
part, numerical) calculations based on the above
AdS/CMT ‘dictionary’. A great many number of
the customarily verbose and frustratingly look-
alike accounts of such pursuits can be readily
found in the applied holographic literature from
the year 2007 onwards [E]. Judging by the factual
outcome of this massive attack, though, the code
does not appear to have been cracked yet.
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Such fundamental shortcomings notwithstand-
ing, the still continuing occasional exercises in
the holographic phenomenology utilize a hand-
ful of the popular bulk geometries, especially fo-
cusing on the legacy solutions of the prototypical
Einstein-Maxwell-dilaton theory. Other than their
relative simplicity and sheer availability (alongside,
possibly, some lingering anthropic factor) a proper
justification of such choices does not appear to have
been an essential part of the holographic agenda,
regardless of whether the results were meant to be
applied to the lattice Hubbard-like models, super-
conducting cuprates, low-density 2DEG, Dirac/
Weyl materials such as graphene, or else.

Lately, though, a gradual decline in such ‘or-
thodox’ applications of the AdS/CMT machinery
has been giving way to advanced hydrodynamics
of strongly coupled quantum matter and general
out-of-equilibrium physics (eigenstate thermaliza-
tion, many-body (de)localization, chaos spreading,
operator growth, etc.). Correspondingly, instead
of the once ubiquitous renditions of esoteric black
holes, nowadays a typical slide show on the topic
of AdS/CMT is more likely to feature the images of
water flows, rapids, whirlpools, and other familiar
hydrodynamic patterns [é}

Of course, hydrodynamics, while suggesting
some intriguing holographic connections, has
long been discussed outside of any holographic
context. Therefore, the renewed appreciation and
novel applications (thanks to a number of recent
experimental advances) of the theory as earthly as
hydrodynamics alone do not provide an answer to
the question that should have (but does not seem
to have been) long dominated the holographic dis-
course, that is: ‘So why, on Earth, strings?!”

The goal of this note is to recall a decades-old
theoretical approach known as collective field the-
ory [] and its more recent developments that
might be capable of providing a much-needed justi-
fication for the ‘stringy hydrodynamics’ (especially,
in those non-relativistic and/or rotationally-non-
invariant settings that are typical of the condensed
matter applications but do not normally occur in
the original string-theoretical context). Alterna-
tively, this approach can be viewed as a variant of
the long-pursued idea of (non-linear) ‘bosoniza-
tion’ that aims to reformulate a quantum theory of
interest in terms of some intrinsically geometric
bosonic variables.

Notably, while manifesting some features remi-
niscent of the desired holographic correspondence,
this approach demonstrates that the pertinent space-
time metrics may not be chosen at will and are often
quite different from the routinely utilized ones.

2. Phase space quantization

A systematic description of many-body dynamics in
d spatial dimensions calls for the use of the Wigner
function w(x,p,t) defined in the 2d + 1-dimension-
al phase space (plus time). The space of such func-
tions is equipped with the Moyal product

i%(éx Bo—pdx)
J(x,p)*g(x,p)=f(x,p)e g(x.p), (1)
which introduces the symplectic structure through
the Moyal bracket

& =r*g8g*f (2)

The Wigner’s description is well suited for taking
into account the underlying theory’s invariance un-
der the phase space volume-preserving diffeomor-
phisms, including its natural time evolution that
can be thought of as a canonical transformation
governed by the Liouville theorem.

Furthermore, when quantizing the system via
the method of functional integration, the func-
tion w(x,p,t) becomes a constrained field variable
implementing a coadjoint orbit's quantization of
the phase space volume-preserving diffeomor-
phisms a la Kirillov-Kostant.

In this procedure, an orbit’s element g|¥ (¥ |¢"!
is constructed by acting with an element ¢ of the in-
finite-dimensional group of diffeomorphisms on
the projector to a chosen (e.g. ground) state |¥ ). In
the partition function Z = / Dw exp(-S(w)) the in-
tegration then runs over the functions satisfying
the constraints

w*w=w, Trw =1 (3)

and governed by the action
1
Sw) = | dxdpdt(ijds W{0,10,0 W}y — wHJ (4)
0

where the first term represents the Berry phase, with
the integral over the auxiliary variable s depending
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only on the boundary value w(x, p, t,s=1) = w (x,
p, t) at s = 1. This way, one arrives at the formally
exact geometrized description of the non-linear

o-model type [].
The equation of motion derived from Eq. (@)

W+ {w, Hy,, =0 (5)

reproduces the standard kinetic equation when
the Moyal bracket is approximated, to the lowest
order in the powers of 7, by the Poisson one (here-
after the dot and prime stand for the time and space
derivatives, respectively)

w+ wo H, - H 0w = St[w], (6)

where the one-body Hamiltonian H, may include an
external potential. For example, in the so-called ‘non-
critical 2d string theory’, where the spatial coordinate
originates from the eigenvalues of N x N matrices, it
happens to be the inverted oscillator (V ~ -x?) [

]. Also, the n > 2-body terms H_in the Hamilto-
nian involving higher powers of w are bundled into
the collision integral in the right-hand side.

In the case of fermions, the semiclassical vac-
uum configuration corresponding to the uniform
Fermi sea is described by the expression

wo(X7 P, t) = 9(#(X7 t) - €p)7 (7)

where the local chemical potential u(x, t) denotes
a sharp boundary between the occupied and vacant
momentum eigenstates with the dispersion € .

Facilitating further progress with the 2d + 1-di-
mensional ‘bulk’ theory (4) requires a convenient
parameterization of the bounding momentum.
Previously, a similar task was tackled in the early
works on multi-dimensional bosonization, where
this goal was achieved by distinguishing between
the Fermi momentum p, tracing the fiducial Fermi
surface (FS) and the normal to the FS (‘radial’) de-
gree of freedom describing fluctuations of the mo-
mentum distribution [R4-4(].

For instance, in the much studied d = 2 case
the simplified action for the vector p, reads

S(py) = jdxdr(i [dspy, pyx0,py—H(py )} (8)

where the Hamiltonian H is cast in terms of the lo-
cal density p = p_ x dp./2.

In what follows, we focus on the case of d = 1,
where the fluctuating FS can be described in terms
of M > 1 pairs of the Fermi momenta p"(x, t)
bounding the occupied states (M > 1 accounts for
the possibility of folds’ in the presence of shock
waves and other FS singularities [.])'

In particular, the 1d configuration ([]) reads

w,(x, p,0) = . > (P (x,) - p), (9)

+ o=l

while its small perturbation

ow(x, p, t) = ho(x —x_)o(p — p,,) (10)
is strongly peaked at the classical phase space tra-
jectory (x_(x,psb)s P (x,ppt)), where the initial
data x, and p_ are determined by the current values
(x, p) at a later time t.

It is worth mentioning, though, that while be-
ing capable of faithfully reproducing the long-dis-
tance, late-time asymptotics of the response func-
tions, in its practical (hence, approximate) form
the d > 1-dimensional bosonization technique is
not well suited for computing the Lindhard-type
2p,-singularities, just as it may not be sufficient for
the single-particle propagators [].

In d = 1, despite several decades of studies
there has been a recent surge of renewed interest
in the out-of-equilibrium dynamics of quantum
interacting bosons and fermions. Many of those
studies focus on the integrable and non-ergodic
systems which are governed by the generalized
Gibbs ensembles (GGE) and may not comply with
the more generic eigenstate thermalization hypoth-
esis (ETH) [t1-67].

It is worth noting that in 1d Eq. () represents
a classical analog of the infinite-dimensional
quantum algebra W_ composed of the operators

W = (56)’”(13)” with the commutation relations

N L7 (_h)k
|:Wmn7VVrs:|_ k::1: k X
m!s!

( n'r! B jx (11)
(n—kKr-k)! (n—k)(s—k)!

A

m+r—k.,n+s—k

where the r.h.s. reduces to (ms—nr)W in

m+r-1,n+s-1

the /2 > 0 limit, thereby encompassing the algebra
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SL(2,R). This algebra has been extensively studied
in the context of Quantum Hall Effect (QHE) and
the various reincarnations of (effectively) non-
commutative spacetimes.

Anabstract Hilbertspace canbereadily equipped
with a geometric structure that has long been elu-
cidated alongside the more familiar Berry phase.
However, the even (Fubini-Study metric) - as op-
posed to the odd (Berry curvature) - component
of the same rank-2 tensor has been receiving less
attention.

Such a phase space metric can be naturally in-
troduced in the context of special coherent - (de)
localized neither in the coordinate nor momentum
space - states |p, x, 0) = e%|0) which minimize
both the coordinate and momentum uncertainties.

Allowing, for the sake of generality, some coor-
dinate-momentum cross-correlations, the corre-
sponding Wigner function reads

W4, (%, p,0) = [dye® (W | x+y/2)(x— y/2| W)

h c,0x’ +0.8p° +20, 0x5
N eXp[ - 2P . p]» (12)

2D

— — — 2
where 0x = x - x, p =p - p, D=00, -0, ,and
the parameters 0, 9, 0, control the Gaussian coor-
dinate and/or momentum variations.

The above suggests a naturally defined Fubini-

type metric on the phase space [ 3]

ds?=((0,%[0,¥) — (¥|0, ¥)(0,¥[¥) 0, (13)
where 6H = (dx, dp). Taken at its face value, this
formula establishes some form of superficial cor-
respondence between single-particle quantum me-
chanics and 2d metrics that can be viewed as solu-
tions of certain classical gravity.

Further generalizing Eq. ([13) to include energy
fluctuations one arrives at the (Euclidean) 3d metric

ds* = ((AH)Y)df* + ((A%)')dp?

+ ((Ap)*)dx? + 2(AXAp)dxdp (14)

given by the uncertainties of the conjugate vari-
ables (x <> p, t <> H). Also, considering the metric
() to be the expectation value ds? = (¥|ds?|¥) of
the operator-valued interval ds? paves the way for
promoting the bulk (phase space)-to-boundary
(spacetime) relationship to the quantum level.

As the operators’ uncertainties depend on
the choice of the state |¥), so does the dual met-
ric (). Heuristically, one might expect that for
the single-particle dispersion governed by the dy-
namical exponent z (¢, ~ p?) the above variances
behave as follows,

((Apy) ~ ((Axy) ' ~ p?,
((Ax)(Ap)) ~ ((Ap))"X(Ap)™"?) ~ P’

((AH)Y’) ~ ((Ap)’)* ~ p*¥, (15)
so that the metric () conforms to the so-called
Lifshitz variety (coefficients A, B, C and D are con-
stants)

2
ds* = Ap**dt* + Bp*dx® + C(;Lz-i- 2Ddxdp, (16)

which has been often invoked in various applica-

tions of AdS/CMT [].
3. Non-linear hydrodynamics

The formally exact representation (@) of the phase
space dynamics provides a basis for further sim-
plifications, thus giving rise to (semi)classical hy-
drodynamic equations for the various moments of
the Wigner distribution

w (x, t) = [ dp w(x, p, H)p". (17)
Among those moments are such standard hydro-
dynamic variables as the local mass p (# = 0), mo-
mentum Q (n = 1), and energy € (n = z) densi-
ties, respectively. This transition from the entire
Wigner function to the first few of its moments
can be thought of as a dimensional reduction
from the 2d + 1-dimensional bulk (phase space)
to its d + 1-dimensional boundary hyper-surface
(spacetime) which, in practice, amounts to mere
integration over the d-dimensional momentum.

Correspondingly, the mass ]p, momentum ]Q,
and energy ] currents are given by the general ex-
pression

Oc
J, = [dp—~w(x,p,0)p" (18)
’ op

forn=0,1, 2.
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In the case of d = 1, the lowest moments of
the Wigner function () correspond to the
aforementioned bounding Fermi momenta
P, = Jdpw(1+sgn p)/2 or, equivalently, the local den-
sity and material velocity
(19)

1 1
p=—I(p,—p), v==(p,+p).
2

2
Note that limiting the momentum values to the in-
terval 0 < p < oo, similar to the holographic radial
variable, is dictated by the chiral nature of the exci-
tations carrying sign-definite momenta.
These variables have the Poisson bracket
{p(x), v(y)} = 0 8(x - y). (20)
Then taking the various moments of Eq. (E) one
arrives at the hydrodynamic equations of motion
which include the continuity equation
p+(pv) =0 (21)
and the inviscid Navier-Stokes (a.k.a. Euler/Burg-
ers/Hopf) one
. , P! VI
VW' =———-Kk—,
P P
where the ‘quantum pressure’ P(p) (internal stress
tensor of the 1d quantum fluid) is a system-specific
function of the local density, while the last term
with the dispersion curvature x = apzep represents
the force exerted by the external potential (if any).

It is well known that the non-linear hydro-
dynamic Egs. () and () can even be derived

from the Schroedinger equation for a free parti-
cle of mass m []. Specifically, by applying
the Madelung parameterization of the wave func-
tion W (x,t)= p(x,t)eis(x”) and separating out
the real and imaginary parts one arrives at the cou-

pled continuity and Navier-Stokes equations, re-
spectively, where

(22)

1 (e
v=———mr~—|, p=¥P}. 23
2im(‘1’j p=Y (23)
In the r.h.s. of Eq. () the pressure
2 '\2
P:_h_ﬁ (24)
&m p

contributes towards the overall energy density
€ = pv*/2 + P which, in general, might be neither

polynomial nor separable as a sum of two chiral
components P (p,).

It appears, however, that the pressure gradient
term couples excitations with opposite chiralities
(left/right moving) at the level of operators with
dimensions of four or greater. Moreover, even
if present, the non-chiral corrections do not af-
fect the states which are composed exclusively of
the chiral excitations withp =0orp =0.

Thus, an arbitrary single-particle wave function
Y(x, t) = (2miht/m)™" [ dye™e*2m Y (y) originat-
ing from the initial state ¥ (x) provides a valid
solution to the hydrodynamic equations (, )
with the pressure (@). Correspondingly, the pair
of functions p(x, ) and v(x, t) determines a certain
dual metric, as explained below.

4. Solvable hierarchies

For certain choices of the Hamiltonian H Eq. (@)
appears to belong to the infinite Korteweg—de Vries
(KdV) hierarchy of integrable 1d systems [].
Such Hamiltonians H, are related to the Gel-
fand-Dickey polynomials and form an infinite
set of the integrals of motion in involution ([Hi,
H' ] =0). In the asymptotically free regime of large
momenta (high energies) the kth member of this
family describes small-amplitude excitations with
the dispersion exhibiting the dynamical exponent
z=2k-1.

In particular, the generic 1d Luttinger liquid
(LL) behaviour is associated with the quadratic
Hamiltonian H =Y _H,, given by the standard Suga-
wara construction

1 1
H ==> pl=—(’+7’p%), (25)
47 2
which gives rise to the equation of motion
p.Fp5=0 (26)

whose solutions given by the (anti)holomorphic
functions p (x,) describe two decoupled chiral
(x, = x+t) pseudo-relativistic (z = 1) excitations.
Corrections to the LL Hamiltonian (@) may
come from both the Gaussian terms of higher oper-
ator dimensions which represent non-linear terms
in the dispersion of the collective p- and v-modes,
as well as from the non-Gaussian ones which
are due to some intrinsic non-linearity of the 1d
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dispersion, as in the case of non-relativistic fermi-

ons at a finite density [].
For example, the next (2nd) member of the KAV
family is given by the non-Gaussian expression

1 1,
Hz=2(i)§pi+5(p¢)2=

1 i 1 ’ )
e S L BN A S "2,

SRV P 2( ) 5 (»)

for which the chiral components of Eq. (@) still re-
main uncoupled:

p,x3p, pl+p!'=0. (28)
In the asymptotic regime of high energies the lin-
earized Eq. (28) describes small waves with the ex-
pressly Lorentz-non-invariant cubic dispersion
(z=3).

In the opposite, low-energy and essentially non-
perturbative, limit Eq. (2§) permits non-linear

solitonic excitations (‘cnoidal’ waves) []

1

V(s f) ~
cosh” x,

(29)
whose propagation is described by the dispersion
€, ~ p*°. Compactifying the spatial coordinate into
a finite- length circle would then replace Eq. ( @)
with the elliptic Jacobi function.

In general, the non-Gaussian terms in the Ham-
itonian are sensitive to the microscopic details of
the model and stem from both kinetic and poten-
tial terms in the total energy. Specifically, in the case
of hard-core bosons, such as the Tonks-Girardeau
limit of the Lieb-Liniger model, the Hamiltonian
includes the pressure term P (p) ~ p*. By contrast, in
the quantum Toda chain the function P(p) is non-
polynomial. However, despite not being dividable
into a sum of two chiral terms, the latter can still fit
into the KdV Hamiltonian low momenta [].

Likewise, the deviations from the LL regime as-
sociated with a finite dispersion curvature and/or
chiral interactions can be studied with the use of
a linear combination H + H + ... of Egs. (@) and
(@) This way, one can obtaln non-linear correc-
tions de, ~ p°” to the linear LL spectrum at small
momenta [{t1-67).

Moreover, Eq. (@) can be further modified by
including irrelevant non-Gaussian terms, such as

pi, without destroying its integrability. Indeed, such
extension results in yet another, Gardner, equation
(a.k.a. mixed KdV-m(modified)KdV, the two equa-
tions being related by virtue of the Miura transfor-
mation p_ > p’ + p.).

As a hallmark of integrability, the higher-k level
members of the KAV hierarchy possess the bi-Ham-
iltonian structure relating them as follows [[9-95 -]

H; . OH;
ax5 i :®;5 k. (30)
O, op,
Here the long derivative is
D:=2p 0. +0p, + 0. (31)

The higher-k level members of the KdV and
mKdV families can also be morphed into a two-
parameter Gardner sequence of Hamiltonians.
Furthermore, certain solvable systems of M >
coupled non-linear equations were shown to be
associated with the higher-spin symmetry alge-
bras SL(M, R) (e.g. the Boussinesq equations for
M = 3) [p6-101].

Generic Hamiltonians ¥, u H, which include
different members of the integrable family can be
used to derive zero entropy GGE hydrodynamics.
In particular, one can study crossovers between
the LL and higher-k level regimes at varying mo-
menta. In essence, this construction provides
a (formally exact) bosonization scheme that was
fully exploited, e.g. in the context of the solvable
Calogero-Sutherland model [].

Under the time evolution governed by the su-
perposition of different H a generic initial condi-
tion produces a collection of solitons with different
velocities and a continuum of decaying disper-
sive waves. Being more robust the soliton excita-
tions dominate in the late-time behaviour and,
in particular, the systems equilibration towards
a steady GGE state described by the density matrix
G =exp(-X . Wi H?), where the chemical potentials
u, are to be determined by equating the averages
of the commuting charges (Hi) = Tr(g a )/ Tr G
to their chosen values.

Along these lines, one can also study the von
Neumann entropy S = —Trg In g The Wigner func-
tion satisfying the constraints ( E) corresponds to
a pure state of zero entropy and the presence of an
infinite number of conserved charges precludes
standard thermalization. When the constraint
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ceases to hold, the state becomes mixed, thus re-
sulting in a finite entropy. The ensuing thermaliza-
tion can be accounted for by introducing viscous
terms, such as 77p"’, in the r.h.s. of Eq. ().

5. Dual bulk gravity

A deep relationship between classical gravity and
hydrodynamics has long been known as one par-
ticular take on the holographic paradigm, often
referred to as the ‘fluid-gravity’ correspondence.
The crux of the matter is observation of the simi-
larity between the asymptotic near-boundary be-
haviour of the Einstein equations for the bulk met-
ric and the Navier-Stokes ones describing a dual
boundary fluid in one lesser dimension (besides,
the complementary hydrodynamic behaviour
near the event horizon can be similar to that at
the boundary). Albeit being truncated and, there-
fore, approximate such relations can be systemati-
cally improved, thus enabling certain computation-
al simplifications. Whether or not this duality can
be promoted to the quantum level requires further
analysis.

Remarkably, in the case of d = 1 this corre-
spondence becomes exact. Specifically, the Ein-
stein equations stemming from the action of 3d
gravity with a negative cosmological constant
(here I and G are the AdS radius and Newton’s
constant, respectively)

/
S=——|dxdud R+2/1*)=0 32
[ dxdrdp e ) (32)

coincide with the equations describing two decou-
pled Chern-Simons (CS) models with the com-

bined action []

S=

Trjdxdpdzem(A 0,4 + ATAZAY).
(33)

The chiral connections Ai are matrices that can be
expanded in the basis spanned by the generators
L5 ,, of the algebra SL(2,R) x SL(2,R) = SO(2, 2)
They obey the commutation
I* L] = (n - m) I:i .
i L*=1/26 6 -6 6 .
The topologlcal action @) then reduces to
a pure boundary term while the equation of mo-
tion becomes that of null curvature

relations [;
and are normalized, Tr L*

ayArv +A*A: - (peov) = (34)

+
u

Parameterizing its solutions in terms of an arbitrary
group element y, and functions p (x,) and p,(x,)

Ao p, ) = () L, dt £ p,d0) x.(p), (35
one finds this equation to be equivalent to

which, in turn, coincides with one of the above
solvable equations, provided that the chemical po-
tentials 4 conjugate to the variables p_ are given by
the derivatives .

OH*

Sp.
Choosing the Hamiltonian appropriately one can
then reproduce the solvable (m)KdV, Gardner, and

other equations. In particular, the KdV family is re-
covered for

Hy = (37)

A(upny=—ii A (rpiay=plt - ”Wii
P P (38)

e + + ,U+ H.Ds

A (e pt)= pu Lt — p [+ e HePs e

2p
the expressions that are manifestly Lorentz-non-
invariant for all k > 1.

Moreover, the equation of motion (B4) can be
converted into that of the gravity model (32)) under
the identification of the 3d metric

12
g =7 (A~ 4,4~ 4,). (39)

On the gravity side the different saddle points of
the coherent states path integral can be identified
as globally distinguishable (but locally AdS)) clas-
sical solutions. In particular, it can be shown that
the only minima of the action () corresponding
to the boundary Hamiltonian H, + H, are those
with a constant (negative) curvature. The two
competing minima are the thermal AdS,and BTZ
(Banados-Teitelboim-Zanelli) black hole.
However, by introducing higher order terms
H_with k > 3 one can generate new KdV-charged
black hole configurations []. The cor-
responding boundary theory is encoded in
the boundary conditions for the connection (@),
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by varying which one can explore a variety of
the integrable 1d systems.

The standard LL with k = 1 is reproduced by
introducing the original Brown-Henneaux bound-
ary conditions with constant u_ ~ p_, the outer/
inner horizons being located at p, = (p, £ p)I2.
The dual metric
2 2

dp’ p.+p
ds? = p2 +(p2—2(p++p)+ >

jdt2
(40)

2 2
+(p2 +2(p. +p)+L2p‘]abc2 +(p,p )dxdt
p

describes a rotating BTZ black hole with the event
horizon but no curvature singularity.

For static, yet non-constant p (x) the corre-
sponding boundary solutions possess non-trivial
global charges given by the chiral surface integrals
H:, while their bulk counterparts can be regarded
as black holes with multi-graviton excitations (‘soft
hair’) [].

The general solution can be obtained by act-
ing on the ground state (e.g. BTZ black hole)
with elements of the asymptotic symmetry group
commuting with the Hamiltonian. This way one
can construct various constant curvature, yet lo-
cally AdS spacetimes with an anisotropic Lifshitz
scaling and dynamical exponent z = 2k - 1. This
opens up the possibility of studying nonrelativis-
tic holography without the need of bulk geome-
tries which are asymptotically Lifshitz spacetimes.
Furthermore, in the case of a higher-spin sym-
metry SL(M, R) the list of attainable gravitational
backgrounds may include the asymptotically Lo-
bachevsky, Schroedinger, warped AdS, etc. space-
times [[102-11(].

Shocks and other abrupt perturbations are char-
acterized by FS breakdowns and emergence of folds
where the spatial derivative p’ diverges, thereby
requiring several pairs of the bounding momenta
p.. In the presence of shocks, the conventional spa-
cetime hydrodynamics becomes insufficient for
describing long-time behaviour, although the full-
fledged phase space hydrodynamics can avoid such
problems.

In that regard, particularly interesting are
the non-stationary configurations represent-
ing particles released from a confining potential

which gets suddenly switched on/off [[[11-113].

Such quenching profiles generically have space-
like boundaries where the saddle point solutions
of the collective field hydrodynamics diverge at fi-
nite times and the semi-classical description fails.
Ascertaining the emergent spacetimes and their
dynamics then requires a detailed study of fluctua-
tions around the pertinent saddle points.

6. Reductions and generalizations

Despite having been repeatedly stated and exten-
sively analyzed at the level of salient symmetries
and concomitant algebraic properties, the general
gravity/fluid correspondence in dimensions d > 1

has not yet been put to much of a practical use [,
il 14-125].

Specifically, such a relationship was shown to
exist between the solutions of classical d + 2-di-
mensional gravity and their d + 1-dimensional
hydrodynamic counterparts, whereby the former
would be given by the metric

2 dp2
f(p)p®

parameterized in terms of the spacetime-depend-
ent co-variant velocity u#(x, t) and local temperature

T (x, 1) [, ]. The latter satisfy the hydro-

dynamic equations on a fixed background, provid-
ed that flp) =1 (4nT/p)'and A =g +u u,. Thus,
a given fluid profile can be associated with a certain
asymptotically AdS, ,-like spacetime with a hori-
zon located at p, = 4nT.

A still more general (asymptotically accu-
rate) solution can be constructed with the use of
the metric ansatz

(0)

8. 2
g/tv(x>p7t) :#+gﬁ) +pTg(2)g(0)gLZV)’

with arbitrary functions g[ﬂ‘i’z)(x, t) [, 114-123].

In contrast to the generic case of d > 1, pure grav-
ity in d < 1 does not support any finite energy ex-
citations. Therefore, the fluid/gravity correspond-
ence takes on a particularly simple form where
the dual bulk theory appears to be non-dynamical
and fully determined by the gapless boundary de-
grees of freedom (‘boundary gravitons’).

Of course, such a scenario of ‘holography light’
does not quite rise to the level of genuine holo-
graphic correspondence where the bulk theory is

+p’(A,, — f(p)u,u,)dx"dx", (41)

(42)
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supposed to have a non-trivial quantum dynamics
which gets quenched and turns classical only in
a certain (large N) limit. It should be noted, how-
ever, that, barring a few exceptions, the customar-
ily assumed ‘classicality’ of the bulk geometry (re-
gardless of whether or not the 1/N- and/or ‘stringy’
corrections are important) and a complete neglect
of any back-reaction on the fixed background
metric appear to be by far the most common ap-
proximations routinely made in the absolute ma-
jority of all the AdS/CMT calculations performed
so far [B].

Nonetheless, there are still important differences
between the situations in d = 0 and d = 1. As per
the above discussion, the latter is described by the LL
action of two chiral 1d bosons ¢ (x,) =In @' (x,)

DD, F DY)
(@)
= [ dxdtg. (¢, 7 4)).

This action can also be obtained from the more
general Alekseev—-Shatashvili functional which per-
forms path-integral quantization on the co-adjoint
orbit of the (double) Virasoro group. Alternatively,
it can be identified with the large central charge
limit in the conformal Liouville model, thus relat-
ing the latter to its namesake (Liouville) theorem
governing the phase space dynamics in the (semi)
classical limit.

Besides, this action can be viewed as a complex-
ity functional defining an associated quantum-in-
formation type of geometry on the Virasoro group,
its lower bound being given by the length of a prop-
er geodesic on the co-adjoint orbit [[126-131]].

In turn, the extensively studied case of d = 0 can
be attained in the AdS, theory by taking the limit
of a vanishing length of the compactified spatial
dimension. The resulting AdS, bulk theory, as well
as its JT (Jackiw-Teitelboim) extension, support
a pseudo-Goldstone time reparameterization mode
with the 1d boundary action given by the Schwar-
zian derivative [[132-17(].

Equivalently, it can be cast in terms of the Liou-
ville quantum mechanics on the quotient Diff (S')/
PSL(2, R) with the action

S, :jdz&fwle‘f‘)

Sy, = [ dxdt )

(44)

for ¢(t) = In®(f), where t > O(t) isa diffeomorphism
of the thermal circle. In the context of the space-less
random SYK (Sachdev-Ye-Kitaev) and non-ran-
dom tensor models this orbit emerges as the result
of factoring out the subspace of zero modes reflec-
tive of the SL(2, R) symmetry of the conformal
saddle-point solutions [[132-17(]]. The integrable
1d dynamics in such models is spatially ultra-local
and corresponds to z = o, thus being reminiscent
of the popular AdS/CMT schemes [[I-7].

Notably, in contrast to the marginal nature of
the 1d LL theory where the interaction remains im-
portant at all energy/temperature scales, in the SYK
tensor models it is strongly relevant in the infrared,
thus only affecting the conformal mean-field so-
lutions below a certain energy/temperature scale.
Also, the maximally chaotic AdS /JT gravity can be
dual not to a certain quantum mechanical (d = 0)
theory but (as in the case of SYK) a random en-
semble thereof. For comparison, in d = 1 neither
the boundary theory (43) saturates the chaos
bound, nor is the bulk behaviour dominated by
pure gravity.

In practice, establishing the SYK-to-AdS, dual-
ity involves matching thermodynamic properties of
the two systems, alongside their various correlation
functions. However, achieving this correspond-
ence beyond the lowest order (two-point) correla-
tion functions requires one to introduce additional
‘matter’ fields in the bulk which represents a tower
of higher-spin operators with the anomalous di-

ﬁnsions that all scale comparably with 1/1 [
17q).

Likewise, in the KdV-to-AdS, correspondence
the entropy, free energy, etc. can be matched as well,
giving rise to the dependences S = 74y, p? ~ T'"
and £ =Y (H:) ~ T""'%, provided that one choos-
es 4, ~ T in order for the metrics (@) to remain
regular everywhere in space. Notably, the thermo-
dynamics of KdV-charged black holes differs from
that of the usual BTZ ones [].

Comparison between the pertinent microstates
on both sides of the latter correspondence relies
on the fact that the 2d phase space can be spanned
by the overcomplete basis of coherent states
|¥) = exp(if, ¢ W )|0) while the boundary 1d
theory operates in the Hilbert space spanned by
the vectors |+n) = II p"|0). Employing this basis
the correlators of the bulk field O of mass m and
dimension A = (d + 1)/2+lm can be evaluated
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by the saddle point method, thereby resulting in
the semiclassical expression for the (real-time)
two-point function

GoolX, ps 1) ~

exp (A [ [g, dp* - g, A + g dx]™?), (45)
where the line integral is taken over the 3d geodesic
connecting the end points.

Placing the end points of this correlation func-
tion on the boundary yields the single-particle
boundary propagator. Fourier transforming this
expression in the spacetime domain one then ob-
tains

Gy, k)~

For instance, the BTZ bulk metric (@) yields
the following propagator of massless 3d bulk fer-
mions with the dimension A, = 1 and spin 1/2 [@,

71153,

G‘?’\F (a):k) :(

172
a)ikj ’ (47)
oFk
which gives rise to the power-law spacetime be-
haviour of the boundary propagator G, (7, x) ~
1/jx,*. These results should, of course, be dis-
tinguished from the standard LL propagator
G (o, k) = 1/(w + k) of free chiral fermions with
the dimension A = 1/2.

In contrast, using the metric build out of the
solitonic solution (29) changes the spacetime de-
cay from algebraic to exponential, G (t x) ~
exp(-Alx,|/]). In turn, the two-particle (energy)
excitations representing gapless boundary gravi-
tons remain propagating, thus featuring the ordi-
nary ballistic pole

k2
K —o

G, (@.k) = [ddxe™ ™ [G2, (x.0)] ~ (48)
Alternatively, this energy correlation function
can be obtained from the correlator (w(x, p, t)x
w(x', p', t')) computed as the path integral over
the Wigner function.

The ballistic behaviour (@) should be contrast-
ed against the diffusive one observed in, e.g. a chain

of coupled SYK models, G_(w, k) ~ k*/(k* + iw),
which would be indicative of a (maximally) chaotic
state [].

Further possible generalizations of the collec-
tive field hydrodynamics include incorporation
of the momentum Berry curvature in Eq. (H), ex-
ploration of the effects of viscosity, generic disper-
sion with z # 1, 2, etc. It would also be interesting
to investigate a development of turbulence which
has long been known to harbour some important
connections to quantum gravity.

7. Discussion

In this note, the Wigner function representation
of generic quantum systems was discussed from
the standpoint of pinpointing the possible origin
of the hypothetical generalized holographic corre-
spondence. To that end, using the Kirillov-Kostant
procedure of phase space quantization via the co-
herent state path integral and collective field hydro-
dynamics may seem rather promising.

Specifically, in line with the holographic lore,
path integral quantization on a co-adjoint orbit
of the W_group of the volume-preserving diffeo-
morphisms of the phase space exposes an intrinsic
relationship between the 2d+1-dimensional ‘bulk’
description and the d+1-dimensional ‘boundary’
hydrodynamics. The quantum bulk dynamics is de-
scribed by the action composed of the W_ genera-
tors while the corresponding boundary variables
are given by the moments () of the Wigner func-
tion. Systematically implementing this program
can then be thought of as ‘deriving’ the sought-out
holographic duality.

Importantly, such a generic form of corre-
spondence neither requires a reference to some
underlying ‘string’ theory, nor does it impose any
particular symmetry conditions on the boundary
system in question, while the putative bulk de-
scription does not necessarily have a gravity-like
appearance.

Nonetheless, in the case of d = 1 the corre-
sponding 3d bulk behaviour can indeed be cast
in terms of the (doubled) Chern-Simons theory
or, equivalently, non-dynamical Einstein gravity
with a negative cosmological constant. Further-
more, if the boundary Hamiltonian belongs to
the integrable (e.g. KdV) family, the correspond-
ing set of the bulk metrics may include the familiar
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BTZ, as would be generally anticipated in line with
the AdS/CFT paradigm [[L-7].

Furthermore, in d = 1 the phase space descrip-
tion can be viewed as a formally exact (non-linear)
bosonization of the boundary system. Many of
such systems appear to be integrable (hence, non-
ergodic) and possess an infinite number of locally
conserved currents given by the various moments
of the Wigner function which obey the equations of
zero-entropy generalized quantum hydrodynamics
of the GGE type.

In higher dimensions the moments of Wigner
function also serve as coeflicients in the series ex-
pansions of the would-be local bulk metrics over
the powers of the momentum p. Although with
the increasing spatial dimension the hydrodynamic
description becomes less accurate, it remains capa-
ble of capturing the salient features of the quantum
phase space dynamics governed by the conserva-
tion laws.

To summarize, the use of the phase space ap-
proach brings out the intrinsic correspondence be-
tween formally exact 2d + 1-dimensional and less
accurate (‘coarse-grained’) d+1-dimensional hy-
drodynamic descriptions of a given quantum sys-
tem. In this general setting, neither the latter needs
to be a conformal field theory, nor does the former
have to necessarily have the appearance of classical
gravity.

In those d = 0 and d = 1 cases, where the bulk
indeed appears to be amenable to a gravitational
description, the gravity theory has no dynamics
of its own and is fully determined by the bound-
ary degrees of freedom. Accordingly, the viable
bulk metrics can be mapped onto the solutions of
the boundary hydrodynamics.

In that regard, the holographic custom of pick-
ing out a particular metric and claiming some
sort of the Einstein—-Maxwell-dilaton theory to be
the proper bulk dual of a certain strongly correlated
system does not appear to be backed by the above
conclusions. Nevertheless, in some cases, including
d =0 and d = 1, certain phenomenological predic-
tions may indeed turn out to be right - albeit, quite
possibly, for the wrong reason.

However, if all the essentials of practical holog-
raphy were to amount to little else but hydrody-
namics - as the above discussion may seem to sug-
gest — then the whole issue of its justification and
validity would be largely moot and void.
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