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An approach to exact quantum solutions of the time-dependent two energy level Jaynes–Cummings model with 
an imaginary photon process is represented in this work. The Lewis–Riesenfeld invariant treatment and the unitary 
transformation method are used for this purpose. The original Schrödinger equation is reduced to an equivalent solv-
able one through unitary transformations by using suitable unitary operators. The reduced equation corresponds to 
a simpler Hamiltonian which is written as a linear combination of the generators of the reduced-dimensional SU(2) 
algebra. A Hermitian invariant operator is constructed based on the same algebraic formulation and its instantane-
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1. Introduction

The interactions between a  two-level atom and 
a quantized single-mode electromagnetic field have 
attracted much attention in the physics community 
up until now, thanks to their potential applicabil-
ity in the  state-of-the-art science [1–6]. The  ex-
periments of such interactions reveal many novel 
quantum effects, such as the  quantum collapses 
and revivals of atomic inversion [7, 8], photon an-
tibunching [9], squeezing of the radiation field [3, 
10], inversionless light amplification [11], and in-
ducing a controllable transparency [12, 13]. Two-
level atoms are not only used for providing the sim-
plest model for light–matter interactions, but are 
a kind of potential resources for qubits in quantum 
information processing, which are indispensable in 
quantum computation, quantum communication, 
quantum teleportation, etc. [14–16].

Many quantum problems along this line can be 
treated by means of the  Jaynes–Cummings model 
[17]. This model provides exact solutions in a wide 
variety of problems in quantum optics and beyond 
[6, 18–25]. Furthermore, the  researches based on 
the  Jaynes–Cummings model enable us to predict 
many new features in the limit of strong coupling of 
the  atom and the  cavity mode. A  notable research 
subject investigated using this model is the  evolu-
tion of the  geometric phase in quantum systems. 
For instance, the  geometric phase in two energy 
level atoms which interact with light waves through 
an imaginary photon process was carried out by 
adopting the Jaynes–Cummings model [6]. Further, 
the  research for the  geometric phase in a  general-
ized Jaynes–Cummings model with double mode 
operators and phase operators is also found [25]. 
The  Jaynes–Cummings model continuously caught 
attention from researchers thanks to its relative 
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simplicity and easiness of its extension to a variety of 
dynamical systems through analytic expressions and 
numerical computations. This can be evidenced by 
the growing abundance of new publications based on 
this model (see, e.g. Ref. [26] and references therein).

Motivated by the  research trend mentioned 
above, we investigate the  quantum characteristics 
of two-level atoms which undergo time-dependent 
interaction with radiation fields in a  cavity. In or-
der to describe the system, we will use the Jaynes–
Cummings model together with the  mathematical 
framework of the invariant methods and the SU(2) 
algebra. The  Jaynes–Cummings model is a  very 
important model, which has been used in many 
studies such as the  quantum spin Hall effect [27], 
entanglement generation [28] and PT-symmetric 
system [29]. The detailed calculation in this context 
will be performed based on the time-dependent uni-
tary transformation.

The quantum invariant theory proposed by 
Lewis and Riesenfeld [30, 31] will be adopted. This 
invariant is known as a  powerful tool for treating 
dynamical systems described by time-dependent 
Hamiltonians. The original basic invariant formula-
tion of the quantum theory has now been general-
ized so that it can be used more broadly. Actually, 
the  concept of the  invariant operator was used to 
study the exact solutions of various class of time-de-
pendent Schrödinger equations. In the development 
of our theory, the eigenstates of the time-dependent 
invariants will be replaced with those of the  time-
independent invariants via the unitary transforma-
tion. Through this procedure, the  exact solutions 
of the  time-dependent Schrödinger equation for 
the system will be derived.

This work is organized as follows. In Section 2, 
we will formulate the  physical problem which de-
scribes the  Jaynes–Cummings model for two-level 
atoms interacting with light through an imaginary 
photon process [6, 32, 33]. In Section 3, we will sim-
plify the Hamiltonian description of our system by 
introducing the  unitary transformation methods. 
The quantum solutions will be investigated in Sec-
tion 4 using the invariant methods. The last Section 
is devoted to the concluding remarks.

2. Mathematical formulation

Let us describe an atom coupled to electromagnetic 
fields inside a  cavity, where the  fields are given in 

the form of a radiation bath. For this purpose, let 
us denote the position and momentum of jth elec-
tron in the atom as →rj and →pj, respectively. Then, it is 
possible to formulate our problem of the system by 
introducing a generalized time-dependent Hamilto-
nian of the form 
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where me is the mass of an electron. Here the first 
term is the minimal coupling, whereas the second 
term is the collection of the external potentials ex-
erted on each electron. Further, the  third, fourth 
and fifth terms represent the  free radiation fields, 
the  interaction energies between electrons, and 
the spin–field coupling, respectively.

From an appropriate simplification of the Ham-
iltonian given in Eq. (1) considering the actual situ-
ation of the system, we can have the Jaynes–Cum-
mings Hamiltonian. Speaking more precisely, such 
a model can be derived by considering three approx-
imations. The first approximation is that the distance 
between electrons is sufficiently large so that the in-
teractions between them can be ignored. The  sec-
ond is that the energies of photons are quite small 
compared to Rydberg energies, implicating that 
the spin–field coupling is approximately zero. Final-
ly, as the third approximation, we neglect the term 
which corresponds to field–field interactions based 
on the apparent fact that it is relatively weak com-
pared to the electron–field interactions.

From the  above approximations, the  Hamilto-
nian operator H(t) describing the  system reduces 
to the  sum of three operators: the  Hamiltonians, 
for each, correspond to the  free fields H(t)field, 
the atomic excitation H(t)atom and the Jaynes–Cum-
mings interaction H(t)interaction. Thus, we have

H(t) = H(t)field + H(t)atom + H(t)interaction
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The quantified version for this Hamiltonian is giv-
en by
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ћϖk(t)a†
k,  υ (t)ak,  υ(t) in the  first term is the  energy 

of the quantized free electromagnetic field associ-
ated with the kth mode frequency ϖk and the υth 
element of the polarization among two orthogonal 
components in the polarization direction, whereas 
ak, υ(t) and a†

k, υ(t) are, respectively, the fermionic an-
nihilation and creation operators in the Heisenberg 
picture. Notice that quantized fields are composed 
of a set of harmonic oscillators which have differ-
ent frequencies. The  second term, 0

1 ( )
2 ztϖ σ , is 

the quantized energy of the matter, where ϖ0(t) is 
the atomic transition frequency and σz is a Pauli ma-
trix associated with the z axis. Finally, in the interac-
tion term Σi, j Σk, υ ћ[Ω(t)b†

jbia
†
k, υ(t) + Ω*(t)b†

ibjak, υ(t)], 
Ω(t) is the Rabi frequency in the dipole approxima-
tion and bi is the field operator of the atom. From 
a  substitution of variables via expanding the  sum 
Σi,  j, it is possible to make replacements b†

2b1  →  σ+ 
and b†

1b2 → σ−, where the matrices σ± are two-level 
atom operators of the form 1 ( i )

2 x yσ σ σ± = ± . We can 
easily confirm that the  two-level atom operators 
satisfy the commutation relations, [σz, σ±] = ± 2σ± 
and [σ+, σ−] = σz.

In this way, we finally have the  Jaynes–Cum-
mings Hamiltonian for the system with the imagi-
nary photon process as
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where we have used the relations Ω(t) = Ω0(t)e2iΓ(t) 
and Ω∗(t) = Ω0(t)e–2iΓ(t). For convenience, we have 
dropped the  subscripts k and υ in this expres-
sion by focusing on the  interaction of an atom 
with a  particular mode of the  cavity. This Ham-
iltonian represents the  interaction of a  two-level 
atom with a quantized mode of radiation fields in 
an optical cavity. Such an interaction is the cause 
of the spontaneous emission and absorption from 
the atom. If we put Ω0(t) = g(t) and Γ(t) = ϖ(t)t, 
the  Hamiltonian in Eq.  (4) reduces to that in 
Ref. [6].

To understand the  quantum behaviour of 
the system described by the Hamiltonian of Eq. (4), 
we now solve the corresponding Schrödinger equa-
tion, which is of the form

i | ( ) ( ) | ( ) .t H t t
t
∂

Ψ 〉 = Ψ 〉
∂
  (5)

Because the Hamiltonian is a time-dependent form, 
it is necessary to simplify this equation in order to 
solve it. We will show how to convert this Ham-
iltonian to a simple form by means of the unitary 
transformation in the following section.

3. The unitary transformation

We now carry out a  unitary transformation of 
the  original Schrödinger equation in order to re-
duce it to an equivalent simple one described with 
a  transformed Hamiltonian. Based on a  reduced-
dimensional SU(2) algebra, the transformed Ham-
iltonian will be converted into a desired one.

We first consider the following transformation

|Ψ(t)⟩ = U(t)| 
–
Ψ(t)⟩, (6)

where U(t) is a unitary operator that is given by

U(t) = exp[iΓ(t)σz]. (7)

Based on this, the  original Hamiltonian given in 
Eq. (4) can be transformed in a way that
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∂
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Using the relations

U–1(t)σ+U(t) = σ+exp[–iΓ(t)],

U–1(t)σ–U(t) = σ– exp[iΓ(t)], (9)

the transformed Hamiltonian can be easily evalu-
ated to be

† 0

†
0 –

( )( ) ( ) ( )
2

( )[ ].

z
tH t t a a t

t a a

ϖϖ σ

σ σ+

 = + +Γ  
+ Ω +









 (10)

In order to manage this Hamiltonian in an al-
gebraic way, we introduce SU(2) generators of 
the form
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while 1 is the identity matrix. These generators sat-
isfy the commutation relations

[Σ1, Σ2] = iΣ3, (15)

[Σ2, Σ3] = iΣ1, (16)

[Σ3, Σ1] = iΣ2, (17)

which are closed. We also consider the relations

[∆, Σi] = 0       (i = 1, 2, 3). (18)

Then, the  transformed Hamiltonian 
–

H(t) can be 
represented as a  linear combination of the opera-
tors Σi, such that
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In the  context of the  Jaynes–Cummings model 
for a two-level system, the complete set of the exact 
quantum solutions can be obtained through a gen-
eralized quasialgebra in a sub-Hilbert-space. In this 
regard, the  eigenvalue equation for the  supersym-
metric generator ∆ can be written in the form [6, 34]
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where n are eigenvalues. Using this, the Hamilto-
nian, Eq. (19), can further be transformed as
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4. Invariant operator and exact quantum 
solutions

The invariant theory is useful in the  research 
of quantum systems described with a  time-de-
pendent Hamiltonian. In many cases along this 
line, the  Hamiltonian is represented by a  linear 
combination of the  generators of a  certain alge-
bra, like the Heisenberg or Lie algebra, for exam-
ple. The  main advantage of the  invariant theory 
is that it allows one to obtain exact solutions of 
the Schrödinger equation for a complicated system 
which involves spatio-temporal differential equa-
tions. In this theory, the solutions of the associated 
Schrödinger equation are represented in terms of 
the eigenstates of the invariant.

According to the Lewis–Riesenfeld theory [30, 
31], a complete set of solutions of the Schröding-
er equation for the  transformed Hamiltonian are 
found by using a  Hermitian operator Ī(t), which 
satisfies the Liouville–von Neumann equation:

d ( ) ( ) 1 [ ( ), ( )] 0.
d i
I t I t I t H t

t t
∂

= + =
∂    

          (22)

We assume that the  set of reference eigenstates 
{| 

–
λ, t⟩} for the set of operators {Ī(t)} are continuous 

with respect to t. Because all eigenstates are associ-
ated with the same eigenvalue, it is possible to write 
the eigenvalue equation in the form

Ī(t) | 
–
λ, t⟩ = 

–
λ| 

–
λ, t⟩, (23)

where 
–
λ is a time-constant eigenvalue. If the eigen-

value is not degenerate, we can easily obtain the so-
lution of Eq.  (23). However, for the  case where 
the eigenvalues are degenerate, Eq.  (23) is not al-
ways satisfied. In such a  case, we must construct 
the eigenvectors {|

–
λ, t⟩} which diagonalize the Her-

mitian operator (i – )H
t
∂
∂


. This procedure is al-
ways possible because the equation of the invariant, 
Eq. (22), means that (i – )H

t
∂
∂
 commutes with Ī(t).

The corresponding global phases µλ(t) are de-
fined by the relation associated to the wave func-
tion | 

–
Ψ (t)⟩

i ( )| ( ) e | , .tt tλµ λΨ 〉 = 〉  (24)

While | 
–
Ψ (t)⟩ satisfies the Schrödinger equation in 

the transformed system, µλ(t) follow the relation
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A complete set of solutions for the  Schrödinger 
equation is given in terms of the eigenstates of an 
invariant together with a time-evolving phase. Ac-
cording to the  superposition principle, any linear 
combination of the  solutions of the  Schrödinger 
equation is also a solution of the Schrödinger equa-
tion.

Let us see a special method for constructing an 
invariant operator which satisfies the condition in 
Eq. (22). If an operator which evolves according to 
the Schrödinger equation is known, it is, in princi-
ple, possible to construct appropriate wave states. 
If an operator V(t) evolves according to the type of 
the Schrödinger equation

i ( ) ( ) ( ),V t H t V t
t
∂

=
∂
  (26)

then, any operator Ī(t), which is defined in a way that

Ī(t) = V(t)Ĩ(t)V–1(t), (27)

where Ĩ(t) is a priori Hermitian operator, satisfies 
Eq.  (22). To construct an invariant operator ac-
cording to Eq.  (27), we must know V(t) by solv-
ing Eq. (26). However, it may be not an easy task 
to solve Eq.  (26). Hence, it is favourable to avoid 
such a cumbersome task by adopting a more skill-
ful method, i.e. resorting to the Lewis–Riesenfeld 
method. Nevertheless, one can also exploit Eq. (26) 
directly in certain particular situations.

Let us now consider a  general case where 
the generators Σi follow an l-dimensional closed al-
gebra of Ξ such that

Ξ = {Σ0, Σ1, Σ2,…, Σl}, (28)

where Σ0 designates the identity operator. If we as-
sume that the elements in this representation obey 
the relation

0
[ , ] ,

l

i j ijk k
k

ε
=

Σ Σ = Σ∑  (29)

the associated Hamiltonian can be written as a lin-
ear combination of Σi [35]. For the  same reason, 
the invariant operator Ī(t) in our case can be writ-
ten as a linear combination of the operators given 
in Eqs. (11–13), such that

Ī(t) = α(t)Σ1 + β(t)Σ2 + γ(t)Σ3, (30)

where α(t), β(t) and γ(t) are time-dependent 
real coefficients. We note that the  operators Ī(t), 
 

–
H(t) and V–1(t)Ī(t)V(t) can be generated by using 
the generators of the same algebra. From the rela-
tion [∆, Ī(t)] = 0, we can confirm that the eigenvec-
tors of the operator ∆ are also | 

–
λ, t⟩ as those of Ī(t).

By inserting Eqs. (21) and (30) into Eq. (22), and 
taking Eq. (29) into account, we see that α(t), β(t) 
and γ(t) satisfy the coupled differential equations:

0
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In terms of the solutions of the above three coupled 
equations, we can describe the explicit form of Ī(t). 
If the  formulae of time functions are specifically 
given, the  integrations of Eqs.  (31), (32) and (33) 
may be possible. However, in some cases, such in-
tegrations would be a little difficult task.

Let us now use well-chosen external parameters 
for further development. For this, we introduce 
new operators

Σx = Σ1 + iΣ2, (34)

Σy = Σ1 – iΣ2, (35)

Σz = Σ3. (36)

Then, the invariant Ī(t) can be rewritten in terms of 
them in the form

Ī(t) = A(t)Σx + A∗(t)Σy + γ(t)Σz, (37)

where

i1( ) ( ( ) – i ( )) e ,
2

A t t t θα β κ= ≡  (38)

–i1*( ) ( ( ) i ( )) e ,
2

A t t t θα β κ= + ≡  (39)
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2 21 ,
2

κ α β= +  (40)



M. Berrehail et al. / Lith. J. Phys. 62, 1–9 (2022)6

( )( ) arctan .
( )
tt
t

βθ
α

=  (41)

To solve the eigenvalue equation of the invariant 
operator Ī(t) which is given by Eq. (37), we regard 
the unitary transformation

| 
–
λ, t⟩ = V(t)| 

~
λ, t⟩. (42)

Here, the time-dependent unitary operator V(t) is 
expressed as
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The eigenvalue equation for the new invariant op-
erator can be written as

Ĩ(t)| 
~
λ, t⟩ = 

~
λ| 
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λ, t⟩, (45)

where | 
~
λ, t⟩ is the eigenstate. Because eigenvalues do 

not vary in a unitary transformation, we have  
~
λ = 

–
λ.

From some mathematical manipulations for 
this transformation, we get
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Based on this, we finally find the  expression of 
the initial invariant in the form of the operator σz:

Ĩ = V–1(t)Ī(t)V(t) = σz. (49)

In principle, there is no restriction on choosing 
the  formula of the  initial invariant so long as our 
eventual aim is to obtain an invariant operator Ī(t) 

whose eigenvalue equation is exactly solvable. How-
ever, the choice of an initial invariant in a  simple 
form such as Eq.  (49) may be very favourable for 
a succinct description of the system. We note that 
the initial invariant chosen in Refs. [6] and [34] is 
also σz.

Consequently, the eigenfunctions of the opera-
tor Ĩ corresponding to the  eigenvalues 

~
λ1  =  1 and 

~
λ2  =  –1 are given by 1

0
 
 
 

and 0
1
 
 
 

, respectively. As 

shown in Eq. (18), the operator ∆ forms a complete 
set of observables which commute with σz. Thus, by 
considering the eigenfunctions of the operator ∆, 
we see that the  corresponding normalized eigen-
functions of Ī(t) are given by
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From Eqs. (5), (6), (23), (24) and (25), we obtain 
two particular solutions of the  time-dependent 
Schrödinger equation of the time-dependent two-
level Jaynes–Cummings model as

         
(52)i ( )

1

|
| ( ) e ( ) ( ) for 1,

0
n t n

t U t V tµ λ
〉 

Ψ 〉 = = 
 

i ( )
2

0
| ( ) e ( ) ( ) for –1,

| – 2
n tt U t V t

n
µ λ

 
Ψ 〉 = = 〉   

 (53)

where the phases are given by

0
( ) ( )d ,

t

n nt Wµ τ τ= ∫  (54)

with

0

0

( ) 4 ( ) ( ) ( )
– [ ( ) ( ) 2 ( )] ( )

( ) – ( ) ( )sin ( ).

nW n

n c c

τ τ κ τ γ τ

ϖ τ ϖ τ τ γ τ

ϖ τ θ τ τ τ

= Ω

+ + Γ

+





(55)

In our work, the  parameter Γ(t) was taken to be 
a general form, i.e. it was not written in a  special 
form. If we take Γ(t) = ϖ(t)t, our development gives 
the  results for the  system that was treated in Ref. 
[6], whereas, by replacing Ω0(t) exp [2iΓ(t)] → g(t), 
we obtain the  solutions of the  system given in 
Ref. [34]. The final solutions, Eqs. (52) and (53), are 
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useful when we predict the evolution of the prob-
ability distribution of the  system. Such analyti-
cal solutions can be flexibly applied to relevant 
physical systems through the  suitable choice of 
the  time-dependent parameters. The  analytical 
results presented in Eqs. (52)–(55) are also use-
ful for solving similar problems which can use 
the present model as the first approximation, such 
as the Tavis–Cummings model [36].

On the one hand, it may be possible to obtain 
numerical solutions along this line from, for ex-
ample, the FDTD (finite difference time domain) 
method. As is well known [37], the FDTD method 
can be extended to some general situations where 
the  time-dependent Hermitian Hamiltonian in-
volves an explicit imaginary term as well as real 
ones.

5. Conclusions

Though two-level atoms interacting with radia-
tion fields are potential resources as elements of 
quantum devices, most of relevant researches so 
far were devoted to static problems described by 
a  time-independent Hamiltonian. In this paper, 
the problems related to this have been generalized 
to a  complicated time-dependent Hamiltonian 
system, by supposing that the parameters such as 
the electromagnetic field explicitly vary with time.

The complicated mathematical description 
associated with the  original system was reduced 
to that of a simple system through an alternative 
treatment. Speaking more concretely, the Hamil-
tonian given in Eq.  (4) was transformed into an 
equal but a  simple one by means of the  unitary 
transformation. To facilitate the  derivation of 
quantum states of the  system, we introduced an 
invariant operator described in terms of SU(2) al-
gebra.

The eigenvalues and eigenstates of the  invari-
ant operator were obtained by using the  Liou-
ville–von Neumann equation. We showed that 
the exact wave functions are represented in terms 
of the  eigenstates of the  invariant operator and 
some time-dependent phase factors, exp [iµn(t)]. 
As can be seen from Eqs. (52) and (53), they are 
relatively simple and involve the  eigenfunctions 
of the operator ∆. Such wave functions are basic 
tools for characterizing the quantum properties of 
the system.

In conclusion, we have derived the  analytical 
results for the  two-level system by transforming 
the  original Hamiltonian into a  linear superposi-
tions of generators of the SU(2) group. This belongs 
to a  more general class of operators of the  linear 
combination of unitaries (LCU) proposed in Ref. 
[38] and the  mathematical properties have been 
extensively studied in Refs. [39, 40]. It has become 
a powerful tool for designing quantum algorithms 
[41–43]. It may be an advantage of LCU in solving 
quantum mechanical problems, both classically as 
shown in this work, and quantum mechanically as 
shown in Refs. [41–43].
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