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Multilayered phosphate bonded CoFe,0,-BaTiO,~CoFe,0, (CBC) and BaTiO,-CoFe,0, - BaTiO, (BCB) multi-
ferroic structures were formed by means of uniaxial pressing. The dielectric properties were studied in 20 Hz - 1 GHz
frequency and 120-500 K temperature ranges. The complex dielectric permittivity is 15-0.17i for CBC and 22-0.04i
for BCB, it is temperature- and frequency-independent below 250 K. At higher temperatures, strong dispersion
appeared governed by the Maxwell-Wagner relaxation. Such behaviour is determined by the 2-2 connectivity of
the sample. The highest direct magnetoelectric coupling coefficient was found for the BaTiO,-CoFe,0,~BaTiO, struc-

ture of 0.2 mVOe'cm™.
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1. Introduction

Multiferroics are single- or multi-phase materials
that demonstrate more than one ferroic order: fer-
roelastic, ferromagnetic or ferroelectric. Magneto-
electric (ME) composites comprising piezoelectric
and ferrite phases exhibit unique properties, in
particular, the coupling effect between the compo-
nents allows one to polarize samples with an exter-
nal magnetic field and vice versa.

According to different spatial distributions of
phases or connectivity, composites are divided into
several groups. The whole variety of connectivities
is not limited to only 0-3 and 2-2 [EI, E]; however,

the most studied are the two mentioned. The 0-3
type composites are particulate composites with
high sintering temperatures. Due to this, some un-
predictable phases are produced easily at the inter-
faces. As a result, the performance of the 0-3 com-
posites degrades [E, H]. Layered composites possess
higher values of the magnetoelectric response in
comparison to those of bulk ME materials [@].
Yang et al. demonstrated that the magnetoelectric
coupling coefficient of layered 2-2 structures is four
times larger than that of the bulk ones [ﬁ]. Together
with that, the 2-2 structures offer a wider range
of preparation techniques: bonding of previously
sintered layers [E], tape casting [[L0, ], chemical
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solution deposition [[2], sputtering and physi-
cal vapour deposition [[13]. Any of the mentioned
methods have pros and cons: casted structures in-
duce inner mechanical stresses upon annealing due
to shrinkage mismatch [@], bonded with polymer
tablets [E] degrade at higher temperatures due to
the degradation of epoxy, deposition techniques
are time and resource consuming.

Previously, it has been demonstrated that
phosphate bonding is a promising approach for
the preparation of composite bulk 0-3 magne-
toelectric ceramics. It provides a combination of
the simplicity of the preparation procedure with
a relatively high coupling coefficient []. Samples
are uniaxially pressed, which means that such an
approach may be applied for the 2-2 connectivity.

This research aims to synthesize the layered
BaTiO, and CoFe,O, structures, using a phos-
phate bonding of powders, into a ceramic material.
The impact of the 2-2 connectivity on the dielec-
tric properties and magnetoelectric coupling coef-
ficient is measured and discussed.

2. Materials and methods

An aluminium phosphate binder (APB) was syn-
thesized by the dissolution method. At the first step,
an aqueous suspension of aluminium hydroxide
Al(OH), was prepared. Then a concentrated solu-
tion (85 wt.%) of orthophosphoric acid was added
in portions to AI(OH), dispersion under continu-
ous stirring and heating of the reaction mixture up
to 363-373 K for 2.5-3 h until a viscous transparent
solution was obtained. The molar ratio of H,PO,
and Al(OH), was equal to 3:1. Being prepared,
the obtained transparent solution of APB was di-
luted with distilled water to a density of 1.42 g/cm’.

Commercially available BaTiO, (Sigma-Aldrich,
208108, grain size <3 ym, designated as BTO) and
CoFe O, (Sigma-Aldrich, 773352, mean grain size
of 30 nm, designated as CFO) powders were used
for the preparation of the multilayer phosphate
bonded structures. Two different mixtures of bar-
ium titanate with diluted AI(H,PO,), and cobalt
ferrite with the binder were prepared separately by
carefully grinding the components in an agate mor-
tar for 10-15 min. The content of the binder in both
mixtures was 5 wt.%. The prepared mixtures were
used to form a layered structure. On each step, an
amount of 0.1 g BTO/APB or CFO/APB mixture

was poured into a pressing mould and the plain
surface was levelled by manually pressing. After
the 3-layer structure was formed it was pressed
into tablets of 1 cm in diameter under 6 tons. As
a result, layered tablets CoFe,O,-BaTiO,-CoFe,O,
and BaTiO,-CoFe O,-BaTiO, were prepared (see
Fig. ). Further in the text, the samples are labelled
as CBC and BCB, respectively. The average thick-
ness of a single layer is 0.3 mm, and the total thick-
ness is 0.9-0.91 mm.

Fig. 1. Optical microscopy of the layered structures.
The background is millimetre paper.

Scanning electron microscopy was perform-
ed with a Helios NanoLab 650 microscope.
The broadband dielectric spectra were investi-
gated in a frequency range of 20 Hz - 1 GHz.
For the quasi-static range up to 1 MHz, an LCR
HP4284A was used. In a frequency range of 1
MHz - 1 GHz, ¢ was studied with a coaxial line
spectrometer with a vector network analyzer Agi-
lent 8714ET. For both frequency ranges, custom-
made heaters and liquid nitrogen cryostats were
used for temperature measurements. The temper-
ature was measured with a Keithley 2700 multi-
meter. The measurements were done on cooling
with a rate of 1 K/min. The samples with an area of
2-3 mm? were prepared for measurements. Silver
paste was applied as an electric contact.

The direct magnetoelectric coupling coefficient
was measured with a custom-made set-up [] based
on the dynamic lock-in detection technique [[17].
The polarized sample (5 kV/cm) was placed in
the system of four electromagnets with the configu-
ration of the magnetic field of H = H, + H_. Bruker
electromagnets were used to generate the static field
u,H, in a range of -1 to 1 T. A low amplitude y H,_
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field was generated with Helmholtz coils connect-
ed to an ac source (Brul and Kjaer, Naerum, Den-
mark). Both magnetic fields were applied in parallel.
The ME-induced voltage was measured by a lock-in
amplifier SR830. Silver electrodes were sputtered to
as-prepared pellets for measurements.

3. Results and discussion

Scanning electron microscopy of the CBC sample
is presented in Fig. (a). Bigger grains on the right
correspond to the BTO/APB layer, and CFO/APB
is on the left. According to the EDX mapping
(Fig. (b)), the interface is clear, interpenetrations
were not detected.

3.1. Dielectric properties

Temperature dependences of the real and imagi-
nary parts of dielectric permittivity are presented in
Fig. B. Below 250 K, both samples demonstrate fre-
quency- and temperature-independent dielectric
permittivity of 15-0.17i and 22-0.04i for CBC and
BCB, respectively. Above 250 K, a strong frequency
dispersion is observed in the real part accompanied
by frequency-dependent pronounced maxima in
¢". At higher temperatures, the dielectric permit-
tivity of CBC is twice higher than the one of BCB
and reaches 700. The dielectric losses of CBC are 3
times higher in comparison with those of BCB, up
to 250 at peak. In contrast to the bulk samples [],

(a)
Electron image Ti
(b)
I 70 ym ! ! 70pym ! ! 70pm !
Fe Co Ba
! 70 ym ! 70 ym ' : 70 pm I

Fig. 2. Scanning electron microscopy of the interface of the CFO and BTO layers (a). Elemental mapping of the
interface of the CFO and BTO layers (b). Here the orientation of the layers is opposite.
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Fig. 3. Temperature dependences of the the real (a) and (c) and imaginary (b) and
(d) parts of the dielectric permittivity of layered structures.

anomalies related to the phase transition of BaTiO,
were not detected.

Such behaviour of &(T) is determined by very
different dielectric properties of BaTiO, and
CoFe,0,. Cobalt ferrite demonstrates a low dielec-
tric permittivity at room temperature and below it;
however, both real and imaginary ¢ increase rap-
idly upon heating [@]. In the ferroelectric phase,
barium titanate has a higher permittivity but it
decreases according to the Curie’s law above the
phase transition [[L9].

The frequency spectra of dielectric permittivity
demonstrate several relaxation maxima of the im-
aginary part for both of the samples under inves-
tigation, as presented in Fig. @ The Havriliak-Ne-
gami function with N = 2 or 3 relaxation terms was
used to describe the frequency spectra of ¢,

Z 7 (1)

1+(Ja)r)

wheree_=lim __ e, 7 is the relaxation time of the ith
process, w = 27v is the angular frequency, & and
B, (0 < &, B < 1) describe the broadness and sym-
metry of the maximum of the imaginary part, and
j* = -1. The function of two relaxation terms was
used for BCB and 3 for CBC spectra. The relaxa-
tion time 7 depends on the temperature follow-
ing the Arrhenius law (see Fig. E). The activation
energies are 0.60 eV for BCB and 0.58 for CBC
structures which is close to the values obtained for
the bulk composites [].

The Maxwell-Wagner relaxations are related
with non-homogeneous media. The difference in
the dielectric properties of components leads to
the polarization at the interfaces in the external
electric field. Such relaxation is typical of the bulk
BaTiO,-CoFe,O, composites []. In the previous
case, the polarization occurred on BT/CF and BT/
phosphate grain boundaries. But in the studied
case, the layered sandwich structure of the sample
plays the main role. That can be proved as follows.
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Fig. 4. Frequency dependences of the the real (a) and (c) and imaginary (b) and (d)
parts of the dielectric permittivity of layered structures. Symbols stand for the meas-
ured data, and lines are the best fits with Eq. (1).
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Fig. 5. Temperature dependences of the relaxation
time. Symbols stand for the measured data, and lines
are the best fits with the Arrhenius law.

The weight concentration of cobalt ferrite in
the CBC sample is 66 wt.% and 33 wt.% in BCB.
For comparison, the relaxation of the bulk sample
of similar compositions BaTiO,-0.3CoFe,O, or
BaTiO,-0.6CoFe,O, is weak and can be observed
only in the reciprocal permittivity (electric modu-
lus) spectra. The sample can be considered as a cir-
cuit of impedances connected in series and the po-
larization at the interface between the BT and CF
layers is much stronger in comparison to the one at
grain boundaries in the bulk composite.

3.2. Magnetization and magnetoelectric coupling

Magnetic hysteresis loops are presented in Fig. H
The coercive field of the studied samples is as high
as 2256 Oe for CBC and 2332 Oe for BCB. That
is attributed to the 30 nm size of CoFe O, grains
[20]. The saturation magnetization depends on
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Fig. 6. M-H hysteresis loops measured at room tem-
perature.

the concentration of CoFe,O, and increases from
17 Am?*/kg for BCB to 31 A m?*/kg for CBC.

The amplitude of the direct magnetoelectric
coupling coefficient is presented in Fig. ﬁ The fre-
quency of the applied H__field is 90 Hz. The mag-
netoelectric coeflicient of BCB structure reaches
0.2 mVOe'cm™, and 0.12 mVOe'cm™ for CBC.
Similarly to the bulk composites, the magnetic
field dependence reaches a maximum of the cou-
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Fig. 7. Amplitude of the magnetoelectric coupling co-
efficient for the layered structures.

pling coefficient at a field of 0.5 T. That is the size-
related effect of the CoFe,O, grains of 30 nm [@].
The magnetoelectric coupling of 0.2 mVOe'cm™
for the BCB structure is higher than that of CBC.
The response of both structures is lower in compar-
ison to 1.1 mVOe'cm™ of bulk phosphate bonded
composites [E]. Several factors are responsible for
such drawbacks. The main one is the porosity of
the samples. Due to this, the magnetostriction ef-
fect of the whole CFO layer is lower in comparison
to that of sintered ceramics of high density. The me-
chanical contact between CFO and BTO also loses
quality, and finally, being porous, the BTO layer
provides a lower piezo voltage.

Table 1. Comparison of the direct magnetoelectric
coupling coefficients of layered BT-CF structures.

a, mVOe'cm™! Method | Reference
12 pulse laser deposition [22]
14 casting + spa.rk plasma 23]
sintering
14 x 1073 spin coating [24]
8.1x1073 tape casting [11]
36 x 103 tape casting [25]
3.9 electrophgretm [26]
deposition

The phosphate binder partially absorbs me-
chanical stresses and influences the properties of
composites [@]. Another factor is that the ferro-
electric layer is insulated or separated with CFO.
Due to this, it is difficult to polarize it fully.

However, the presence of magnetoelectric
coupling evidences the direct interface contact
between the phases. That makes the phosphate
bonded ceramic-based approach promising for
the layered 2-2 structures. The comparison with
data presented in the literature (see Table 1) sup-
ports the conclusion.

4. Conclusions

The barium titanate and cobalt ferrite powders
were bonded with a small amount of aluminium
phosphate binder into layered BaTiO,-CoFe,O,-
BaTiO, and CoFe,O,-BaTiO,-CoFe, O, structures.
The dielectric properties were studied in wide tem-
perature and frequency ranges. The behaviour of ¢ is
mostly determined by the layered structure of sam-
ples. Huge Maxwell-Wagner relaxations resulting
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from the polarization at the interface of layers were
observed. Experimentally measured direct magne-
toelectric coupling coefficients are 0.2 mVOe'cm™
for the BCB sample and 0.12 mVOe™'cm™ for CBC.
These moderate values are attributed to porosity
and difficulties with the polarization of BaTiO,.

The obtained results demonstrate that the pro-
posed approach is promising for the synthesis of
the layered structures and may successfully com-
pete with others due to its simplicity. The method is
eco-friendly and cost-effective.
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Santrauka

Daugiasluoksniai fosfatais suriti CoFe,O,
BaTiO, - CoFe,O, (CBC) ir BaTiO, - CoFe,O, -
BaTiO, (BCB) dariniai buvo pagaminti presavimo
badu. Dielektrinés savybés istirtos 20 Hz — 1 GHz
dazniy ir 120-500 K temperatary intervaluose. CBC
ir BCB dariniuose buvo i§matuotos dielektrinés skvar-
bos vertés, 15-0,17i ir 22-0,041i atitinkamai, kurios ne-

priklauso nuo daznio ir temperatiros Zemiau 250 K.
Aukstesnése temperatirose atsiranda stiprioji disper-
sija, badinga Maksvelo—Vagnerio relaksacijai. Toks el-
gesys yra susijes su 2-2 faziy erdviniu pasiskirstymu.
BaTiO, - CoFe,O, - BaTiO, darinyje buvo iSmatuotas
magnetoelektrinés saveikos koeficientas, kurio gauta
verté yra 0,2 mVOe'cm™.
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