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The paper presents a further development of the method presented in G. Gaigalas, P. Rynkun, and
L. Kitoviené, Second-order Rayleigh-Schrodinger perturbation theory for the Grasp2018 package: core-
valence correlations, Lith. J. Phys. 64(1), 20-39 (2024) (https://doi.org/10.3952/physics.2024.64.1.3),
based on a combination of the relativistic configuration interaction method and on the stationary sec-
ond-order Rayleigh-Schrédinger many-body perturbation theory in an irreducible tensorial form. In
this extension, the perturbation theory accounts for both electron core-valence and core correlations
when an atom or ion has any number of valence electrons, while the relativistic configuration interaction
accounts for the rest of correlations. This allows a significant reduction of the space of the configuration
state functions for complex atoms and ions. We also demonstrate how this method works for the energy

structure calculation of Fe XV ion.
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1. Introduction

A major challenge in atomic structure calcula-
tions is the accurate description of electron corre-
lations. Many powerful theoretical methods, such
as different Ver51ons of many-body perturbation
theory (MBPT) [[1, ] the configuration interac-
tion method (CI) [B], the relativistic configuration
interaction (RCI) [H], the random phase approxi-
mation with exchange (RPAE) [ H] the multi-
configuration Hartree-Fock method (MCHF) [ﬂ]
or the multiconfiguration Dirac-Hartree-Fock
(MCDHF) method [E], have been developed to ac-
count for correlation effects. These methods have
their own disadvantages in obtaining highly ac-
curate atomic data. For example, the inclusion of
correlation effects in the MCHF, MCDHE, or CI
methods rapidly increases the expansion of atomic
state function (ASF), especially for complex atoms.

* Dedicated to the memory of professor Adolfas Jucys (1904-1974),
pioneer of contemporary theoretical physics in Lithuania, initiator of
the ‘Lithuanian Physics Collection, on the occasion of his birth and death

anniversaries.

Perturbation theory (PT) has practical and theo-
retical difficulties for degenerate states, especially
in selecting the model space [EI] The structure of
terms of the PT series often leads to one- and two-
particle operators, which almost in all versions of
many-body perturbation theory are not in an irre-
ducible tensorial form and cannot use the advan-
tage of Racah algebra [E, ].

Probably the most efficient and consistent way
to account for correlation and relativistic effects
simultaneously is to combine RCI and relativistic
many-body perturbation theory methods . .
This is particularly relevant for complex many-elec-
tron atoms with open f-shells, such as lanthanides
and actinides, when calculating energy spectra and
other properties.

A combination of the relativistic configuration
interaction method and the stationary second-or-
der Rayleigh-Schrodinger many-body perturba-
tion theory in an irreducible tensorial form []
has been already developed and implemented
in the Grasp2018 package [] to account for
the core-valence correlations. In this paper, we
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present the extension of this method (see Section 2)
when core correlations are added, and show how to
use it in real applications (see Section 3).

2. Combination of the RCI method with
the stationary second-order Rayleigh-
Schrédinger many-body perturbation theory

In regular Grasp [, ] calculations, to obtain
radial orbitals, the main correlations are included
in the MCDHEF calculations. This is followed by
RCI calculations to add other important correla-
tions via the configuration state functions (CSFs).
To include valence (V) and valence-valence (VV)
correlations, the space is extended by CSFs, in
which one or two electrons are excited from va-
lence orbitals to virtual orbitals. Other types of
correlations, such as core-valence (CV) and core
(C) correlations, are added in the same manner.

In this paper, we present a combination of
the RCI method and the stationary second-or-
der Rayleigh-Schrodinger many-body perturba-
tion theory in an irreducible tensorial form, RCI
(RSMBPT), where CV and C correlations are in-
cluded according to the RSMBPT. The inclusion of
CV correlations using the RCI (RSMBPT) method
has already been developed and it can be found in
Ref. [] with the expressions and its implementa-
tion in the Grasp package. This contribution com-
ing from the CV correlations of the configurations
K" to E(Ky.J) in the second order of perturbation
theory is expressed as Eq. (22) of Ref. [B],

AEPT(CV) =
= A&,(KJ)+
N [ (L Ky DA F nl j,nl j)+

nlj k>0

22 {Zﬂ(fj%'“”,KxJ)x

nlj n'l'j'>nlj k>0
xAF*(nl j,n'l'j")+
+D G Ky HAG  (nl j, 'l )+
k
+z \7,( (f jw é!j/w” gjw—z f, j!w’+2’ K}CJ K/Z/J/)X
k
AR (nl jnt j,n't' ju't’ i} (1)

Here we extend the combination of the RCI method
with RSMBPT to include the core correlations via
perturbation theory, which has already been used for
CV correlations in Ref. [[13]. This allows even great-
er reduction of the CSF space for the RCI method.

The Feynman diagrams corresponding to the fol-
lowing type of core correlation are shown in Fig. E],
where all lines with a double arrow of diagrams are
renamed m, i.e. m' = m:

(n L)1 (L) (L) (n, )y ()] (2)

These are the same four two-particle Feyn-
man diagrams which partly describe CV corre-
lations (see Ref. []). The detailed explanations
and expressions in an irreducible tensorial form of
the diagrams are presented in Ref. [B].

It should also be mentioned that the method
proposed in the paper does not allow the follow-
ing type of core and core-valence correlations to be
included via RSMBPT:

(naga)jzja-'.1 (nmgm)]::t/m —> (naga)jija (nmgm)j:::,mﬂ’ (3)
()7 (n,L,) i)~

g (naea) jzja (nmem) jr:,mJ (nnen) jzrﬁz' (4)

Fig. 1. The CV Feynman diagrams of the second-or-
der effective Hamiltonian for core correlations (n )

et (n e ) jum = (ne) e (n, ) jrm (ne)j.
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This is related to the fact that these C (Eq. (2)) and
CV (Eq. (3)) correlations described via Feynman
diagrams depend on the potential of the radial or-
bitals found. This makes the implementation of this
type of correlations impossible to be included in
the RSMBPT method for any potential of MCDHF
equations. Therefore, these correlations should be
included in the RCI calculations in a regular way.
According to Ref. [@], the energy contribu-
tion of the admixed configurations from C corre-
lations (Eq. (2)) can be added to a regular energy
of the term yJ of the configuration K and can be
expressed as the energy E (KJ), which does not de-
pend on the term, and the sum of the product of
Slater integrals and spin-angular coefficients:

E(KxJ)=E,(KJ)+ A& (KJ)+
+ZZﬂ(£j”’,K;(J)[T"(n£j, nl j)+

+AF (nl j, nt ) ].(5)

The contribution of the C correlations in
the second-order of perturbation theory according
to Eq. (5) can be expressed as

AEPT(C) =A8,(KJ)+
+ 33 f (0" K g )AF (nl j,nl j). (6)

nlj k>0

A€ (KJ) (see Table |1), the contribution of C cor-

relations in the second-order of perturbation the-

ory deriving from the total energy E (KJ), can be

expressed through A, D and C coefficients, which
have the following expressions:

A(x, ij,1]") =
kkx)||k kx R
=D PR L, (7)
e (i Ji Jr) Uy Jp T

D(l],l']’)Z:P(OO,l],l']')-I-

+%Z(—l)"‘”~f”@<0k,zy',i']"), (8)
JUn 7175
k Ji Js
Clk,ij,i]') = L QKK i),
21k Ji ©)

P (KK, ij, 1) = R (i 1) R (1, i) O (K, K), (10)
Q (kK i, i) = R G, ) R (i, ji) O (K, K). (1)

We would like to emphasize that the energy de-
nominator is defined differently (with the opposite
sign) than in the expressions of Feynman diagrams
(see, for example, Ref. [], Fig. 3, Egs. (10) and
(11)):

1
0 K', K e D=
- TN (12)

The R* is the generalized integral of the electro-

static interaction between electrons in Table [1:

R ) = {1+ 86 p][+sa@ )] x
x R* (M jimjys M jin j )% (13)
x<(CJNCPNE o) (0,7 1CP N, )

Here R*(n,j, n.j,n,j, n,j,) is the radial integral.

Table 1. Expressions for the core corrections to the energy in Eq. (5), not depending on the term.

AE, corrections

core subshells  valence subshells

core subshells  valence subshells virtual subshells

f_/%

(nafa)jjjqul (nmém)‘]r:m _)(naga)jjja (nmﬁm)];”’" (nrgr)jr

Wm

(/]

(w, =1-[j, DA, ma, rm) —(w, —1) D(ma, mr)s(j.,j,)

from CV; Feynman diagram

—1\Ja+ir
A

from CV,, CV5 and CVy Feynman diagrams

. 2> C(k, ma, mr) +Zi:1>(kk, ma, mr)
[]m] kK % Lk]

from CV, and CVs, Feynman diagrams

from CV, Feynman diagram
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Table 2. Expressions for the Slater integrals AF* (m, m) (see Eq. (5)) corresponding to the core (1 € ) j%«*! (n € )

jrm —>(ne)j¥a(n € )j*m(ne)j correlations.

Corrections

| Slater integral | k values

20k1YQ, k,ma,rm,mm)

from CV; Feynman diagram

AF*(m, m) k>0

H(=D) 4 Z(, ke, ma, mr,mm) + %] P(kk,ma,mr)

from CV, and CVs Feynman diagrams

from CVy Feynman diagram

The contribution of C correlations in the sec-
ond-order of perturbation theory arriving at
F* (nej, ntj) and AF* (ntj, nj) (see Table 2) can be
expressed through Y and Z coefficients. These have
the following expressions:

Y x, i, 15077 =

> 1)k+k'+v{ ko Kx H kK X}
= - ’ . . . ><
or Jo Ji Ji ) Uy Ty T

x T(Lkk',ij, i, i""),  (14)

T K, 1 177) =

=R, 1) RE (@7, 17) O (K, K), (15)

201, ki, 17.15") =

k joj
=Z{k, ! }U(L k' ij, i, i""), (16)

JJT
UL, ki, ij, 17, ") =
=R (@, i) RE(J'5ji") O (K, K). (17)

3. Calculation of core-valence and core
correlations with a new approach

As described in the above section, the method
based on the Rayleigh-Schrodinger perturba-
tion theory in an irreducible tensorial form [B]
is extended to include C correlations in the com-
putations. This section aims to present the results
when the CV and C correlations are included in
a regular way and using the stationary second-or-
der Rayleigh-Schrédinger many-body perturba-
tion theory in an irreducible tensorial form. For
this purpose, we computed the energy levels of
the 3s% 3p? 3s3d, 3d% 3p3d and 3s3p configura-

tions of Fe XV. Below the computational proce-
dure and results from the regular GrRasp2018 and
RCI (RSMBPT) computations are presented.

3.1. Computational scheme

An initial MCDHEF calculation for the even and
odd states of 3s%, 3p?, 3s3d, 3d?, 3p3d and 3s3p con-
figurations was done in the extended optimal level
(EOL) scheme []. The initial calculation was fol-
lowed by separate calculations in the EOL scheme
for the even and odd parity states. The space of
CSFs, referred to as the active space (AS), build-
ing the atomic state function (ASFs), was obtained
using the multireference-single-double (MR-SD)
method [E]. The MR set consists of the 3s?, 3p?,
3s3d, 3d* even and 3p3d, 3s3p odd configurations.
The orbital spaces (OS), to which single and dou-
ble (SD) substitutions from the configurations in
the MR were allowed, are OS, = {4s, 4p , 4p, 4d ,
4d, 4f , 4f}, .., OS_ = {8s, 8p_, 8p, 8d_, 84, 8f , 8f,
8g ,8g,8i, 8i}. SD substitutions were allowed from
the 3s, 3p , 3p, 3d , 3d orbitals, and S substitutions
were allowed only from the 2s or 2p_and 2p core
orbital. Only CSFs that have non-zero matrix ele-
ments with the CSFs belonging to the configura-
tions in the MR were retained. No substitutions
were allowed from the 1s? core, which defines an
inactive closed core. Based on the orbitals from
the MCDHEF calculations, RCI calculations were
further performed, including the Breit interaction
and leading quantum electrodynamic (QED) ef-
fects — the vacuum polarization and self-energy
corrections. Regular RCI calculations are marked
as CV+C RCL

The results of the calculation when the CV
and C correlations are included according to
the RSMBPT method are marked as CV+C RCI
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(RSMBPT). In this case, we use a program to
determine the contribution of each K' configu-
ration of the CV and C correlations for CSE, for
which energy needs to be calculated according
to Rayleigh-Schrédinger perturbation theory
in an irreducible tensorial form according to
Egs. (1) and (6). The program calculates the to-
tal contribution of the CV and C correlations and
the contribution of each K’ configuration of these
correlations for the computed levels. K" configu-
rations are sorted in a descending order accord-
ing to the impact of the CV and C correlations for
each level. Further, we select K’ configurations by
the CV and C correlations impact with the speci-
fied fraction (expressed in the percentage) of
the total CV and C contribution, and perform RCI
computations including them. The calculations
using the RSMBPT method were carried out using
different amounts of CV and C correlations: 95,
99, 99.5, 99.95 and 100%. In the RSMBPT meth-
od, the CSF space is divided into three sets: F, F’
and G (see Ref. [] for details). Thus in RSMBPT
computations, the Is is also defined as an inactive
core subshell, 2s, 2p and 2p subshells are defined
as active core subshells (that correspond to the F
set), 3s, 3p , 3p, 3d and 3d as valence subshells
(that correspond to the F’ set), and subshells be-
longing to OS, ..., OS, as virtual ones (that cor-
respond to the G set). This distribution of space is
consistent with regular Grasp calculations and al-
lows the use of a combination of RCI and RSMBPT
methods. It should be noted that the program gives
the contribution of the CV and C correlations of K’
configuration with the value greater than 1.0E-11,
the rest contributions are neglected. Therefore
a number of CSFs, when 100% of CV and C cor-
relations are included, is smaller than in the regular
CV+C RCI calculations. The C (Eq. (3)) and CV
(Eq. (4)) correlations (mentioned above in Sec-
tion 2), which were not included with the RSMBPT
method, were added to the RCI calculations in
a regular way, together with the valence and va-
lence—valence correlations.

3.2. Results

Table 3 presents the total energies from regu-
lar Grasr2018 calculations (CV+C RCI) for
35 computed states and differences of energies
using the CV+C RCI (RSMBPT) method with

the CV+C RCI results’ AE (CV+C RCI (RSMBPT))-(CV+C RCI)*
In the last line of the table, the number of CSFs
(N, from each calculation is given. It is seen
from the table that the results obtained with
the RSMBPT method converge to regular RCI
results (CV+C RCI) by including step by step
the most important K’ configurations of CV and C
correlations. The calculations using the RSMBPT
method are carried out in five steps, including 95,
99, 99.5,99.95 and 100% of CV and C correlations.
In case when all contributions of the CV and C
correlations (column 100%) given by the program
are included in the computations, the CV+C RCI
(RSMBPT) reproduce the results of regular RCI
computations. The negligible difference (to 4.0E-
06 a.u.) in the 100% column could be due to omit-
ted CV and C correlations with a very small con-
tribution (1.0E-11), as it was mentioned above.

In Table 4, the energy levels from the regu-
lar GrAsP2018 calculations CV+C RCI and from
the calculations using the RSMBPT method
CV+C RCI (RSMBPT) are compared. The energy
levels from the Atomic Spectra Database (ASD)
of the National Institute of Standards and Tech-
nology (NIST; Ref. []) are also given. As shown
in Table 4, by adding the most important K’ con-
figurations of CV and C correlations step by step
(as in Table B), the results smoothly converge to
the CV+C RCI results. In case when 99% of CV
and C correlations are included in the computa-
tions, the results are close to those of CV+C RCI.
The difference between the results of these calcula-
tions is only few tens of cm™ (which is a hundredth
of a percent of our calculated energy levels), and
in this case, the number of CSFs decreases twice
compared to the space in the CV+C RCI computa-
tions. By increasing the percentage of the CV and C
correlations included in the CV+C RCI (RSMBPT)
calculations, the difference between the results of
CV+C RCI (RSMBPT) and CV+C RCI decreases.
The results in the 100% column are in excellent
agreement with the regular Grasp2018 calcula-
tions. A difference of up to 1 cm™ could be due to
the omission of the CV and C correlations with
contribution less than 1.0E-11 (as mentioned
above, the program excludes configurations with
a very small contribution).

Thus, it can be seen that the RCI (RSMBPT)
method, when CV and C correlations are included,
produces results that match the regular ones. By
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Table 3. Total energies (in a.u.) from the CV+C RCI calculations and differences (in a.u.) between the CV+CRCI
(RSMBPT) and CV+C RCI energies AE for Fe XV are given when the CV and C correla-
tions are included in the computations.

(CV+CRCI (RSMBPT))-(CV+C RCI)

No. | State CVrERCL 95% 99% AE(CWCRC;;SEZT))(CV+CRCU99.95% | 100%
1 3s'S,  -118243030203  0.00178946  0.00045030 0.00026337  0.00008561  0.00000002
2 3s3p’PC -1181.36480226  0.00197381  0.00058056  0.00034857  0.00008929  0.00000039
3 3s3p’Pr -1181.33820345  0.00160825  0.00039368  0.00022404  0.00004079  0.00000010
4 3s3p’P;  -1181.27370668  0.00167068  0.00041319  0.00024809  0.00004752  0.00000002
5 3s3p'Pr 1180.82591412  -0.00154878  0.00037164  0.00021696  0.00004166  0.00000018
6 3p’P,  -1179.90299188  0.00227387  0.00058237  0.00036949  0.00012520  0.00000003
7 3p’'D,  -1179.87922968  0.00184307  0.00044139  0.00023671  0.00004951  0.00000002
8 3p’P,  -1179.85723426  0.00210413  0.00054570  0.00032064  0.00008543  0.00000004
9 3pPP,  -1179.77862047  0.00159810  0.00035493  0.00019870  0.00004506  —-0.00000004
10 3pt'S,  -1179.42248968  0.00220519  0.00053086 0.00031971  0.00009746  0.00000002
11 3s3d°D,  -1179.33608105  0.00198106  0.00044895  0.00026079  0.00005123  —-0.00000037
12 3s3d°D,  -1179.33137782  0.00161881  0.00032508  0.00016488  0.00002351  0.00000026
13 3s3d°D,  -1179.32397202  0.00201250  0.00047993 0.00023062  0.00004272  -0.00000133
14 3s3d'D, 117895545428  0.00162037  0.00034608 0.00017830  0.00002806  —0.00000068
15 3p3d°F;  -1178.19871370  0.00202851  0.00047531 0.00027051  0.00005367  0.00000157
16 3p3d°F;  -1178.15359232  0.00230291  0.00055974  0.00032274  0.00007092  0.00000069
17 3p3d'D;  -1178.10669754  0.00181324  0.00040713  0.00022404  0.00005106  —-0.00000019
18 3p3d°F;  -1178.10109503  0.00250480  0.00062540 0.00036157  0.00009234  —-0.00000070
19 3p3d°D;  -1177.95043389  0.00197565  0.00045613  0.00025318  0.00005326  0.00000093
20 3p3dPy  -1177.94726099  0.00188294  0.00042846  0.00023824  0.00005289  -0.00000069
21 3p3dDy  -1177.89568608  0.00217807  0.00052526 0.00028042  0.00006212  -0.00000270
22 3p3dPy  -1177.89056768  0.00260665  0.00064465  0.00040704  0.00009653  0.00000117
23 3p3dPr  -1177.88908357  0.00176233  0.00040870  0.00021420  0.00004491  0.00000106
24 3p3d°Dy  -1177.88749171  0.00170255  0.00038866 0.00020909  0.00004652  0.00000008
25 3p3d'F.  -1177.58555544  0.00222814  0.00055158  0.00030917  0.00006694  0.00000025
26 3p3d'P!  -1177.52845259  0.00194221  0.00043948  0.00024891  0.00005826  0.00000100
27 3d°F,  -1176.18298893  0.00152815  0.00030221  0.00014706  0.00002265  0.00000108
28 3d2°F,  -1176.17531388  0.00218646  0.00052794  0.00027605  0.00005240  —0.00000086
29 3dF,  -1176.16597541  0.00203061  0.00043858  0.00022350  0.00004804  -0.00000154
30 3d2'D,  -1176.03470535  0.00151666  0.00029751 ~ 0.00014078  0.00002390  -0.00000021
31 3d*%P,  -1176.02162854  0.00238518  0.00056882 0.00031729  0.00007873  0.00000002
32 3dP,  -1176.01869277  0.00211055  0.00048229 0.00026501  0.00006066  0.00000001
33 3d'G,  -1176.01407157  0.00223271  0.00050833  0.00027154  0.00005889  -0.00000401
34 3d2°P,  -1176.01176978  0.00148483  0.00029431 0.00013336  0.00002842  —-0.00000035
35 3d'S,  -1175.64578266  0.00234712  0.00055670  0.00031665  0.00007741  0.00000003
Nesrs 372043 90859 182643 218556 300041 360394
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Table 4. The energy levels (in cm™) and differences (in cm™) between the CV+C RCI and NIST energies,
AE(CWC RCD-(NISTY and between the CV+C RCI (RSMBPT) and CV+C RCI energies, AE(CV+C RCI (RSMBPT))-(CV+C RCLY
for Fe XV are given when the CV and C correlations are included in the computations.

Energies Energy differences

No. | State AE cvc Re1 RSMBPT))-(CV+C RCI)
NIST | CVFCRCL | ABcycpanousn | 95% | 99% | 99.5% | 99.95% | 100%

1 3s*1S, 0 0.00
2 3s3p°P§ 233842 233850.17 8.17 40.46 28.59 18.70 0.81 0.08
3 3s3p°Pg 239660  239687.93 793 -=39.77 -12.42 -8.63 -9.83 0.02
4 3s3p°P3 253820  253843.34 23.34 -26.07 -8.15 -3.36 -8.36 0.00
5 3s3p'Pg 351911 352122.45 21145 -52.83 -17.27 -10.19 -9.65 0.03
6 3p*°P, 554524  554680.46 156.46 106.32 28.99 23.29 8.69 0.01
7  3p*'D, 559600 559895.66 295.66 11.77 -1.95 -5.85 -7.92 0.00
8 3p*°P, 564602 564723.10 121.10 69.06 20.94 12.57 -0.04 0.00
9 3p*°P, 581803  581976.83 173.83 173.83 -20.93 -14.19 -8.90 -0.01
10 3p*'S, 659627  660138.51 511.51 91.24 17.68 12.36 2.60 0.00
11 3s3d°D, 678772  679103.01 331.01 42.05 -0.30 -0.57 -7.55 -0.09
12 3s3d°D, 679785  680135.25 350.25 -37.45 -27.48 -21.62 -13.63 0.05
13 3s3d°D; 681416  681760.63 344.63 48.96 6.51 -7.18 -9.41 -0.29
14 3s3d'D, 762093  762640.93 54793 -37.11 -22.87 -18.67 -12.63 -0.15
15 3p3d°F 928241  928726.29 485.29 52.46 5.49 1.57 -7.01 0.34
16 3p3d°F 938126  938629.29 503.29 112.69 24.01 13.03 -3.23 0.14
17 3p3d'Ds 948513  948921.50 408.50 5.22 -9.47 -8.63 -7.58 -0.05
18 3p3d°F; 949658  950151.11 493.11 157.00 38.43 21.55 1.48 -0.16
19 3p3d°Ds 982868  983217.41 349.41 40.86 1.28 -2.24 -7.10 0.20
20 3p3d°Ps 983514  983913.78 399.78 20.52 -4.79 —-5.52 -7.18 -0.16
21 3p3d°Dj 994852  995233.16 381.16 85.29 16.45 3.75 -5.15 -0.59
22 3p3d°P; 995889  996356.52 467.52 179.35 42.66 31.53 2.40 0.26
23 3p3d°P§ 996243  996682.25 439.25 -5.96 -9.13 -10.80 -8.93 0.23
24 3p3d°Ds 996623  997031.62 408.62 -19.07 -13.53 -11.91 -8.58 0.01
25 3p3d'F; 1062515 1063298.97 783.97 96.28 22.23 10.05 -4.10 0.05
26 3p3d'P; 1074887 1075831.60 944.60 33.52 -2.38 -3.18 -6.00 0.21
27 3d*°F, 1370331 1371126.74 79574 -57.35 -32.50 -25.53 -13.82 0.23
28 3d?°F; 1372035 1372811.22 776.22 87.13 17.04 2.78 -7.29 -0.19
29 3d*°F, 1374056 1374860.78 804.78 52.92 —-2.58 -8.75 -8.25 -0.35
30 3d*'D, 1402592 1403671.22 1079.22 -59.87 -33.53 -26.90 -13.54 -0.05
31 3d?°P, 1406541.25 130.75 26.01 11.84 -1.51 0.00
32 3d*°P, 1407185.58 70.47 7.02 0.36 -5.48 0.00
33 3d*'G, 1407058 1408199.81 1141.81 97.29 12.74 12.74 -5.86 -0.88
34  3d*°P, 1407773 1408705.00 932.00 -66.86 -34.24 -28.53 -12.55 -0.08
35 3d*!'S, 1487054 1489029.89 1975.89  122.39 23.35 11.69 -1.80 0.00

Nesgs 372043 90859 182643 218556 300041 360394
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selecting the most important CV and C correlations
using the RSMBPT method, the CSF space can be
significantly reduced. This reduces the resources
and CPU time required for RCI calculations.

Comparing the CV+C RCI and CV+C RCI
(RSMBPT) results in the case of 100% with NIST
ASD [], the differences for energy levels to
1000000 cm™'reach 548 cm™. The agreement of oth-
er energies is a little worse, and for the level 3d*'S,
the difference reaches almost 2000 cm™. The root-
mean-square (rms) deviations obtained for all en-
ergy levels from the NIST data are 653 cm™'.

4. Conclusions

The method based on the Rayleigh-Schrédinger
perturbation theory in an irreducible tensorial form
is extended to include C correlations by providing
expressions for these correlations. This extended
combination of the RCI method with the RSMBPT
method allows for the estimation of the contribution
of any K' configuration of the CV and C correlation
with the preferred core and virtual orbitals for any
atom or ion based on perturbation theory instead of
the RCI method. The developed method has an ad-
vantage over the regular method because it allows for
the selection of the most relevant CV and C correla-
tions and significantly reduces the CSF space. This
leads to a smaller matrix and makes it easier to di-
agonalize. At the same time, it reduces the resources
and CPU time required for RCI calculations. The re-
duction of the CSF space using the RSMBPT would
be helpful and useful for calculations involving
complex atoms and ions, as the CSF space increases
rapidly when correlations are included in a regular
way. Another important aspect in the calculations
for complex atoms and ions is that the RSMBPT
method enables the CV and C correlations from
the deeper core to be estimated and taken into ac-
count. The combination of the RCI and the RSMBPT
methods with the advantages of RSMBPT extends
the possibilities of the Grasp package, particularly
for the calculations of complex atoms and ions.
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ANTROSIOS EILES RELEJAUS IR SREDINGERIO TRIKDYMU TEORIJA, SKIRTA
Grasp2018 PROGRAMINIAM PAKETUI: KAMIENO KORELIACIJOS*

G. Gaigalas, P. Rynkun, L. Kitoviené

Vilniaus universiteto Teorinés fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Darbe pateiktas tolesnis metodo - G. Gaigalas, P. Ryn-
kun, L. Kitoviené, Second-order of Rayleigh-Schrédinger
perturbation theory for the GrAsp2018 package: Core-va-
lence correlations, Lithuanian Journal of Physics 64(1), 20—
39 (2024), https://doi.org/10.3952/physics.2024.64.1.3 -
vystymas, pagrijstas reliatyvistiniu konfigaracijy superpo-
zicijos (RCI) ir neredukuotine tenzorine forma isreiks-
tos stacionariosios Reléjaus ir Srédingerio daugiadalelés
trikdymy teorijos (RSMBPT) metody deriniu. Si nauja
metodo versija leidzia jtraukti ankstesniame darbe miné-
tas kamieno-valentines ir Siame darbe pridétas kamieno

* Skiriama Siuolaikinés teorinés fizikos Lietuvoje pradininko, ,Lietuvos
fizikos rinkinio® iniciatoriaus akad. Adolfo Jucio (1904-1974) gimimo ir

mirties sukaktims paminéti.

koreliacijas atomui ar jonui su bet kokiu atviry sluoks-
niy skai¢iumi, randamas pasinaudojus antraja trikdymy
teorijos eile. O likusios koreliacijos (kamieno-kamieno
ir valentinés—valentinés) jtraukiamos jprastai, t. y. kon-
figiracijy superpozicijos metodu. Tai leidzia gerokai su-
mazinti sudétingiems atomams ir jonams konfigiiraciniy
biseny erdve ir kartu palengvina skai¢iavimus, paremtus
vien tiktai daugiakonfigiiraciniu Dirako, Hartrio ir Foko
bei reliatyvistiniu konfigiiracijy superpozicijos metodais.
Taip pat parodyta, kaip $is metodas veikia apskaiciuojant
Fe XV energijos struktira.
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