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Generalized 1 + 0-dimensional Liouvillean dynamics describing deformations of the Sachdev-Ye-Kitaev (SYK)
model, as well as the various 1 + 1-dimensional dilaton and Horava-Lifshitz gravity theories, can all be mapped onto
the single-particle quantum mechanics of a non-relativistic charge propagating in a (generally, curved) 2d space and
subject to a (generally, non-uniform) magnetic field. The latter description sets a stage for the phenomenon of quan-
tum Hall effect (QHE), thereby elucidating the intrinsically topological nature of the pertinent gravity theories and
demystifying their (pseudo)holographic connection to a broad class of the SYK-like models.
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1. Holographic mirages

In light of the slower-than-desired progress in
understanding of the great many quantum many-
body systems there has long been a dire need for
finding a universal geometric (or, possibly, hydro-
dynamic) description of interacting quantum (fer-
mionic) matter in terms of some semi-classical col-
lective field variables.

Historically, that idea was first implemented in
the framework of classical kinetic theory formulat-
ed in terms of the Wigner distribution function and
its moments, the description of which could then
be further advanced to the (formally exact) phase
space path integral over the corresponding field
variable. Conceptually, such a construction can be
classified as Kostant-Kirillov co-cycle quantization
on the orbits of a given system’s dynamical symme-
try group.

However, the intrinsic complexity of work-
ing with such exact, yet intractable formalism
brought out a variety of approximate techniques,
and the best known one is ‘ad hoc’ bosonization by
which the quantum dynamics of interacting matter
would be accounted for in terms of the shape fluc-
tuations of the corresponding Fermi surface [].

Albeit being quite different in its appearance,
the more recent conjecture of holographic duality
has been pursuing a similar goal. In this novel pro-
posal, the equivalent bosonic variables would be
assumed to organize into multiplets reminiscent of
the metric, vector, and scalar fields in one higher
dimension and governed by some local Einstein-
Maxwell-scalar type of action (see Refs. [P 4]
and references therein).

Although vigorous attempts to put the general
holographic conjecture on a solid ground have
been continuing for over two decades, a satisfac-
tory proof still remains elusive. This fact notwith-
standing and putting the general burden of proof
aside, much of the massive effort exercised under
the auspices of the so-called AdS/CMT (Anti-de-
Sitter/condensed matter theory) branch of applied
holography has been devoted to the heuristic ‘bot-
tom-up’ approach [R0-24].

This approach unequivocally postulates the va-
lidity of the holographic conjecture in its broadest
interpretation while making the specific choice of
a dual gravity theory and its bulk metric largely on
the basis of technical convenience. However, judg-
ing by the mere number of publications [@], this
straightforward approach has been undergoing
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a notable demise, as of lately. Thus, the time may
has come to pursue the holographic endeavour in
a better grounded and more systematic approach.

To that end, the attempts to construct a gen-
eral holographic picture from the first principles
of quantum information (e.g. tensor networks)
implementing the popular ‘IT from QUBIT’ para-
digm [], so far, have not proceeded beyond
the exploratory level. In most cases where the bulk
metric was definitively ascertained, it was found
to be of the basic AdS type, thus casting doubts on
the possibility of constructing anything as exotic as,
e.g. the helical ‘Bianchi VII’ geometry that has been
repeatedly invoked in the AdS/CMT scenarios of
the so-called ‘strange metallic’ normal state of cu-
prates [@, @].

Also, the previous attempts to derive hologra-
phy directly from the scale-dependent renormali-
zation group (RG) flow, thus implementing the ho-
lographic ‘RG=GR’ principle [- remain
largely inconclusive and, thus far, produced either
the plain AdS or, else, unrecognizable bulk geom-
etries. Likewise, the attempts [@, @] to establish
a holographic correspondence between the bulk
AdS gravity (in the Lorentz signature) and an ordi-
nary superconductor (even a weakly coupled BCS
one) hinge on a formal similarity between the 2d
d’Alembertian operator acting in the so-called kin-
ematic space and the mixed second derivative of
a bilocal function (see, e.g. Eq. (19) below), thus
falling short of providing any actual ‘proof” of ho-
lography.

As compared to all the questionable (and, for
its most part, easily refutable []) evidence
that was purportedly consistent with AdS/CMT,
the recent studies of the holography-like corre-
spondence [] between the ensemble-aver-
aged quantum mechanical SYK model [56-64] in
1 + 0 dimensions and Jackiw-Teitelboim (JT) grav-
ity [- ] in 1 + 1 dimensions may seem to have
finally delivered a strong argument supporting
the holographic conjecture (albeit in the form that
is quite different from all the earlier ‘ad hoc’ AdS/
CMT constructions []).

At the very minimum, the following discus-
sion aims at extending the list of the holographi-
cally dual 1 + 0- and 1 + 1-dimensional problems
beyond the extensively studied case of SYK-JT. It
will be argued that this specific example represents
the more general equivalence between a whole class

of the deformed SYK models and a certain family
of generalized 2d gravities.

Even more importantly, taken at its face value
the SYK-JT duality raises an important question as
to whether or not any (or all) instances of actually
proven - as opposed to the merely assumed - cases
of holo-graphic correspondence would be limited
to those situations where the bulk theory appears to
be of a (possibly, implicit) topological nature?

In the specific case of SYK-]JT, the bulk system
does happen to be intrinsically topological, akin
to quantum Hall effect (QHE). Therefore, should
the answer to the above question happen to be
affirmative, it would naturally explain the other-
wise rather baffling duality between some systems
of (ostensibly) different dimensionalities, as per
the central holographic conjecture. Also, it would
prompt one to look for the hidden ‘Hallness’ in
those situations where some holographic features
may have been observed.

2. From SYK to Liouville via Schwarzian

Extensions of the original SYK model are described
by a generic Hamiltonian

:ZZJ:', 4.1'4721].4.7214?, (1

g hedg

which combines the products of some even num-
ber g of the N-coloured Majorana or Dirac fermion
operators x (1), where i = 1,..., N []. In turn,
the independent Gaussian-distributed classical

random amplitudes J, B of the all-to-all g-body en-
tanglement are characterized by the variances

i i, —JZH L )

The analysis of the model (1) typically starts
by integrating the fermions out, thereby arriv-
ing at the action in terms of the bilocal field G(z,,

7,), which represents the fermion propagator and
the corresponding self-energy 2(z,, 7,) []

N
SIG.2]=— [dr,[de,[In@7,8(, —7,) -2(z,,7,))
+Z(TI,TZ)G(TI,‘L’2)]—F[G(‘L'I,TZ)], (3)
where the functional F[G] results from the Gauss-

ian averaging. Moreover, Eq. (2) can be further pro-
moted to a retarded and/or non-uniform disorder
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correlation function, thus introducing a notion of
spatial dimensions and space/time-dependent (re-
tarded and/or nonlocal) entanglement-like cou-
plings [@ @

Solving for the self-energy X = JF/dG,
the Schwinger-Dyson equation derived from
Eq. (3) can be cast in the form

oF
J.dT (815(‘[1 —T)+m] G(Tl,Tz) =
=06(1,—7,). (4)
In the original SYKq model with F[G] = G4,

Eq. (4) remains invariant under the infinite group
Diff(S') of reparametrizations (diffeomorphisms)
of the thermal circle 7 > f(1) with the periodicity
condition f(t + B) = f(t) + 3, as long as the deriva-
tive term is neglected and provided that G and 2
transform as

G, (r, 1) = [9, fir) 0, f(7,)I°G(f(r)), (7)),

%, (1, 7,) = 9, fir) 0, fir)](fr), Ar,). (5)

The above properties of Eq. (4) single out
a translationally-invariant ‘conformal’ mean-field
solution (hereafter, 7= 7, - 7, and  are the inverse

temperature) []

. 2A
—j : (6)
Psin(rr/f)

In the zero-temperature limit and for Jz > 1,
it demonstrates a pure power-law behaviour
G,(t, 1,) ~ 1/(Jr)** with the fermion dimension
A=1/q.

This solution spontaneously breaks the full
reparametrization symmetry down to its three-di-
mensional subgroup SL(2, R) implemented through
the Mobius transformations 7 > (ar + b)/(ct + d),
where ad - bc = 1, under which the solution (6) and
the action (3) remain invariant.

The reparametrization transformations out-
side the SL(2, R) subgroup modify the functional
form of G, thus exploring the entire coset Diff(S')/
SL(2, R) and providing it with the structure of a co-
adjoint Virasoro orbit.

The deviations from Eq. (6) are controlled by
the short-time expansion

Go(z'pfz):[

SG;’(TUTZ) =

:%rzSch{f(T),T}Gé(rl,rz)+.... (7)
Hereafter T= (t, + 7,)/2 and Sch denote the Schwar-
zian derivative, Schif, x} = f"If - 2 (f'/f)* (here
f = dfldx), which obeys the differential ‘composi-
tion rule’ Sch{F(f), x} = Sch{E(f), fif* + Schif, x}.
The dynamics of the variable f(7) is then governed
by the non-reparametrization invariant, yet mani-
festly geometrical and SL(2, R)-invariant, action

N T
S,[f1= W j dzSchitan 7f 7} (8)
that stems from the trace of the (infrared-irrelevant
in the RG sense) time derivative 0 G in the gradient
expansion of the first term in Eq. (3).

The mean-field (‘large-N’) SYK solution (6) is
only applicable for 1/] < 7, f < N/J, and under such
conditions the fluctuations dG about the saddle
point G, remain small. By contrast, in the ‘Schwar-
zian’ (long-time, low-temperature, N/J < 7, 8) limit
these fluctuations can grow strong, thereby signifi-
cantly altering the mean-field behaviour [B8-5].

Namely, upon the Langer transformation
d f = e’ the Schwarzian action (8) reduces to
the ostensibly free expression in terms of the un-
bounded variable ¢(7), S [¢] ~ d7(d ¢)*>. However,
the true Liouvillean action remains strongly non-
Gaussian, as follows from the analysis of the prod-
ucts of propagators:

(Gf(z'l,rz)...Gf(rzpfl,r2p)) =

P oA# (1) +e(72y))
— J.D¢efs"[¢]

T
i=1 (Lz dre"’)”
2i-1

Computing such amplitudes requires the de-
nominator to be promoted to the exponent in
the form of the 2p consecutive quenches under
the action of the local ‘vertex’ operators e,
The resulting effective action,

©)

Sle]=

(%(@qﬁ)z +J2e2¢j, (10)

then acquires the exponential 1d Liouville poten-
tial V, (¢) = e (hereafter, V_,(¢) denotes a po-
tentlal which behaves as e@"9 in the limits ¢ - %oo,
respectively).
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The action S[¢] can be quantized by switching
to the Hamiltonian picture and further substituting
the momentum 7 = §5/60_¢ with -id,.

Converting the action (10) to the 1d Hamiltoni-
an and further quantizing it by virtue of the stand-
ard substitution d ¢ > -id ,one arrives at the (static)
eigenvalue equation

—afbl// +V,,(p)y=Ey. (11)

The spectrum of Eq. (11) is continuous, E,_ = k?,
and consists of the eigenstates y,(z) ~ K,,(22),
where z = JBe?. These exact wave functions can
be used to compute the various matrix elements
(0]e*?|k) explicitly. This calculation reveals a uni-
versal behaviour of the averaged products of an
arbitrary number of propagators in the long-
time/low-temperature regime (N/J < 1, 8) where
one finds (G*. (7, 0)) ~ 1/(Jr)*? for any p > 1 and
q=2 [EI, @] This behaviour is markedly differ-
ent from the (non-universal) mean-field one at
short times/high temperatures (1/] < 7, f < N/J),
(G (7)) ~ (Gh() ~ 1/]rr"a,

The intrinsically non-Gaussian nature of the ac-
tion (10) is manifest. Otherwise, the latter ampli-
tude would have been governed by the logarithmic
correlator (¢(7)$(0)),. ~ Jz, thus demonstrating an
exponential, rather than algebraic, decay, (Gi(7)),, ~
Go(1) exp(-3p’AX(p(1)$(0)),), which is also non-
universal as a function of p and q.

Notably, the 1d action (10) is for a single vari-
able representing the fluctuations of a single soft
(energy) mode. It can be readily extended to in-
clude other degrees of freedom - as, e.g. in the case
of the complex-valued (‘Dirac;, as opposed to ‘Ma-
jorana’) variant of the SYK model, the additional
scalar field corresponding to the charge fluctua-
tions [p6-64].

3. SYK deformations

A deformation of the ‘potential’ part of the Liou-
villean action (10) can generally be represented in
terms of a two-time integral with the kernel

FIG]=Y ¢, [d7,[d7,G"(z;,7,), (12)
where ¢~ NJ */q* which results from the ensem-
ble-averaged partition function and generalizes
the original SYK model described by the single

n = q term. Additional powers of G could also
emerge if random amplitudes of the n- and m-par-
ticle terms developed some (physically quite plau-
sible) cross-correlations, resulting in J J # 0.

Beyond the Liouville point in the multi-dimen-
sional Hamiltonian parameter space, the previous
analyses of the action given by Eqgs. (3) and (12)
have been largely limited to the SYK -SYK , model
with only two non-zero coefficients, ¢ = J’N/2¢’
and ¢, = 2I”N/q*. For q = 4, it has been rather ex-
tensively discussed in the context of random tun-
nelling between two SYK quantum dots [],
the amplitude T being a variance of the tunnelling
amplitude. This action also finds its applications
in theoretical cosmology (‘traversable wormhole’)
and discussions of the 1 + 1-dimensional analog of
the Hawking-Page curve [, ].

Moreover, in most of the previous analyses
the terms with n = q/2 and n = g would be treated,
respectively, as small perturbations of one another.
Specifically, at relatively short times 1/] < 7 < J/T?,
the value of the fermion dimension A = 1/q would
be determined by the n = g term, while for 7 >> J/T?
the n = g/2 term takes over, thus causing a faster
decay governed by A = 2/q.

Such analysis can be potentially misleading, as it
focuses on the soft (‘angular’ or ‘along-the-valley’)
fluctuations about a chosen mean-field solution,
while under a perturbation the mean-field solution
itself might undergo a significant change which
would then require a tedious account of the hard
(‘radial’ or ‘out-of-the-valley’) fluctuations. It can
be avoided, though, by using the proper solution
of the mean-field equation derived for the entire
functional (12).

Of a particular interest are the crossovers be-
tween different conformal fixed points where all
pertinent coupling constants are of the same or-
der. Such ‘SYK transits’ are not directly amenable
to perturbation theory in the vicinity of the fixed
points in question but can still be explored in
the large-q limit (see the next Section). To that end,
one can utilize the already available and seek out
new - non-perturbative (in general, non-confor-
mal) mean-field solutions which interpolate be-
tween different conformal regimes [,].

By analogy with the pure Liouvillean action
(10), the canonical quantization procedure applied
to the action S, + AS given by the sum of Egs. (8)
and (12) substitutes its non-Gaussian part with
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the ordinary single-time integral AS(¢) = [ d7V(¢),
where

V(g)=> c,e™. (13)

For one, the aforementioned two-term action

with the non-zero coefficients ¢ and c  features
the Morse potential [, , ]
V,(9) = Aqez¢ + Cq/Ze¢' (14)

For both c, and ¢, bositive the potential (14) fea-
tures a continuous positive definite spectrum,
E =v*+ A*+ 1/4, with the eigenstates

W, () ~ /v sinhRrv)[(1/2— A +iv)

xW, ., (22e"), (15)

where A = ¢ /c and W, is the Whittaker func-
tion. For Cn= 0 Eq. (15) reduces to the eigenstates
of the Liovillean potential given by the modified
Bessel functions.

By contrast, for ¢, negative the potential de-
velops a minimum and the spectrum includes
N = [A - 1/2] bound states at the negative energies
E =A+1/4-(n-\A+1/2)% where n =0,..., V.
The corresponding eigenstates are given by the as-
sociated Laguerre polynomials

1//,1((/5) ~ e(A—n—1/2)¢—e¢/2Ln2/\—2n—l (Z)Legb). (16)

At low temperatures (I?f/] > 1), the number
NN of bound states increases and they become
nearly equidistant, as in the harmonic oscillator
potential.

Notably, for J = 2I' the aforementioned
monotonic and non-monotonic Morse poten-
tials organize into a doublet of super-partners
V(¢) = W(¢) £ 9,W(¢) with W(¢) ~ e, which
conspire into one supersymmetric potential.
The ground state of the binding potential V' then
takes on the form v, (¢) ~ exp(-/Wd¢).

Conceivably, the effective action S(¢) may de-
velop other interesting regimes at the points of still
higher symmetry. Albeit being special, the integra-
ble potentials may also provide insight into the gen-
eral behaviours. A similar situation has long been
known in the physics of integrable 1d spin chains of
arbitrary on-site spin.

In particular, below we demonstrate the emer-
gence of the Toda-like action (in cosmology, a.k.a.
‘oscillatory tracker model’) described by the classi-
cally solvable two-term potential

v, (@)= cqez‘*’ + c_qe‘z“’, (17)
which has only discrete levels. Its linearly independ-
ent solutions are given by the approximate formulas
v.(¢) ~ exp(+e? — ¢/2). Notably, both Egs. (14) and
(17) belong to the still broader family of ‘quasi-solv-
able’ potentials V(¢) = c e* + c, S0+ c, €0 +c e

In the problem of tunnelling between two SYK
quantum dots, going into the strong-coupling re-
gime and taking into account multiple tunnelling
processes can be achieved by replacing G computed
to zeroth order in tunnelling with the all-order ex-
pression G/(1 +i0G), where o is the tunnelling con-
ductance [].

The corresponding potential V(¢) can then
consist of an infinite number of terms. In that
regard, especially interesting is the ‘hypersym-
metric’ Hulten potential VO’1(</>) ~ e?/(1 - e?) with
all the coefficients ¢, = c for all n > 1. It devel-
ops the ~ 1/¢ behaviour at small ¢, reminiscent of
the Coulomb potential. Unlike the latter, though, it
features only a finite number ([A]) of bound states
at E = - [(A* - n?)/2An]".

Another interesting (‘variable scaling’) model was
proposed in Refs. []. It includes an infinite
number of terms with the coefficients € ~ 1 Per-
forming an approximate summation over n one ob-
tains a power-law potential V. o(@) ~ Z ” n' e ~ j
generalizing the Coulomb one.

4. Large q limit

An alternate approach to the generalized SYK-like
models and a further justification of substituting
Eq. (13) for Eq. (12) exploits the large-q approxi-
mation to the propagator []

G(z,,7,) :%sgnr(l+§g(rl,rz)+...). (18)

The higher order terms O(1/4*) can also be evaluat-
ed, albeit at increasingly prohibitive costs. The path
integral over the field g is governed by the action

N 1
S(g)= ?Idflfdfz (551, g0, g+ V(g)j, (19)
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where the potential is given by Eq. (13) as a func-
tion of the bilocal field g(7 , 7,).

A complete theory (19) is genuinely two-
dimensional, the relative 7 and ‘center-of-mass’
T = (z, + 7,)/2 time variables playing the roles of
the effective ‘radial’ and ‘temporal’ coordinates in
the 2d ‘kinematic space, respectively [].
So it is only by focusing on the former dependence
and neglecting the latter can one reduce the low-
energy sector of Eq. (19) to the 1d action akin to
that given by Egs. (8) and (13).

This way, one arrives at the equation of motion

3g(r) = -3 Vi(g(r), (20)
the solutions of which correspond to the mean-
field configurations, thus yielding the mean-field
propagator G (1) = exp(2¢(1)/q).

A solution to Eq. (20) provides one with
the means to probe the system’s thermodynamics.
To that end, by solving Eq. (20)

(21)

=] —8
“ V(g -V (2)
and putting 7 = /2 one computes the mean-field

energy [[109]
E= | (a2 as Vio) |, 22

where g < 01is the turning point of the potential V(g).
In the case of the Morse potential (14) with g

substituted for ¢, the explicit saddle point solution
of Eq. (20) reads []
2 A4sin’6

) (23)
cos(Qwr/f — w)+cos b

g(7)=1In

where A=/(w/pJ) +(T/])*, 6=tan"(w)/Br?), and

the w obeys the equation 2w* = (BI)* + A(f])* cos w.

It takes the values w = 7/2 - O(1/f]) and w =

n/2 - O(I*B/]) for f < 1/T and 3 >> 1/T, respectively.
In the zero-temperature limit, Eq. (18) yields

1 sgnt
21+ +4AD 4 T2 7)Y
As compared to the approximate conformal propa-

gator characterizing the original SYK model, this
expression is UV-finite and naturally regularized at

G,(7) = (24)

7 S min [1/], 1/T]. Also, in contrast with the per-
turbative results of Refs. [] , the saddle-point
solution (24) is applicable at all I'/J, large and small.

Gaussian fluctuations dg(7) about the saddle-
point solution of Eq. (20) are governed by the action

58 =22 [drl(6,59)° + W (2,(r)dg"] (25)
2q

featuring the potential W(g(7)) = 9:V(g) = Z. c n’e™,
which is functionally similar to V(g) given by
Eq. (13) and has to be evaluated at the solution g (7)
of Eq. (20).

In contrast to the Schwarzian action (10),
the fluctuations are scale-invariant and their
strength is independent of temperature, being in-
stead controlled by the numerical parameter N/g
and decreasing/increasing with increasing N and g,
respectively. As opposed to the fluctuations about
the mean-field solution (6), those associated with
the one given by g (1) correspond to the pseudo-
Goldstone excitations about the fixed ‘valley’ in
the space of field configurations, which no longer
needs to be adjusted.

Another uniquely simple (and previously unex-
plored) situation is the case of the Toda potential
which, upon a global anisotropic coordinate rescal-
ing, reduces to V, (g) = J* cosh 2¢ and coincides with
its second derivative up to a factor. Its classical equa-
tion of motion assumes the form of the celebrated
sinh-Gordon equation, 0’g = -J* sinh g, the solution
of which satisfying the initial condition g(0) = 0 reads

g,(r)=—In tan (Jz' + %j (26)

Other known (quasi)solvable potentials are like-
ly to provide novel mean-field solutions, alongside
the associated actions for their fluctuations.

A complete boundary theory might also contain
additional matter fields, such as an additional U(1)
scalar field in the case of the charged (Dirac instead
of Majorana) SYK model.

5. Particle in magnetic field

The Hamiltonians akin to those in the previous
section routinely arise in the problem of a non-
relativistic particle subject to a certain 2d static
geometry g.(x, y) and a vector potential A (x, y).
By exploiting this analogy one can then replace
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a field-theoretical path integral over the fluctuat-
ing variable ¢(7) with a worldline one governed by
the single-particle action

Six1=] dr(%gij@fX '0.x’ +57X,A’)a (27)

where X = (x, y). This equivalence is limited to
the contributions of all single-valued (non-self-in-
tersecting) curves which indeed dominate for low
temperatures.

In the hyperbolic plane (H?) geometry such
a connection between the ‘particle-in-magnetic-
field’ (PMF) problem and the SYK model has been
utilized before []. It can be further extended
towards a broader class of metrics and magnetic
field configurations. As a technical simplification
one can first explore the class of diagonal bulk met-
rics, & (x, y) = diag[g_(x), gyy(x)], and vector poten-
tials in the Landau gauge, A (x, y) = (0, Ay(x)), with
these choices facilitating a separation of variables
in the corresponding Schrodinger equation with
the Hamiltonian

I w1,
Hyyp==8 ”f"‘ggy“ (”y_Ay)za (28)

2
where 7, is the conjugate momentum.
For the sake of the following discussion,
the background fields can be further restricted to
the power-law functions of the x coordinate (here

below [ is a characteristic length scale akin to
the ‘AdS radius’)

g% = (x/1)*, g7 = (x/)*,

A =0,A =Bllx)V, (29)
so that the interval in this (Euclidean and, in general,
anisotropic) metric reads ds® = P*dx?/x**+ PFdy?/x**.

In general, the Hamiltonian dynamics described
by Eq. (29) develops in the 4d phase space spanned
by two pairs of canonically conjugated variables,
(x, m) and (y, ny). However, in the above gauge
the y variable becomes cyclic and the conjugate
momentum 7z, = k is conserved, as in a translation-
ally-invariant plane wave-like solution propagating
along the 1d boundary of a 2d region.

By comparison, the y variable can be parallelled
with the aforementioned ‘center-of-mass’ time T.
In contrast, dynamics in the x direction remains

non-trivial and is analogous to the dependence on
the ‘relative’ time 7.
The magnetic flux through the semi-space x > 0,

dxdy

® = J.dXdy\/g(arAy 7ayAx) = BIW’

(30)
scales with the area provided that y + 1 = a + f3.

A uniform magnetic field in the flat space cor-
responds to & = f = 0 and y = -1, while its much-
studied counterpart on a hyperbolic plane H* can
be attained fora ==y =1.

Quantizing the PMF Hamiltonian (28) and fac-
torizing its eigenstates, ¥(x, y) = w(x)e™, one ar-
rives at the Schrodinger equation with the quasi-1d
Hamiltonian

H =lx2“ﬂj +
2

+%(x2ﬁk2 —2x*P7 Br_+ B*x*P), (31)
which contains a triad of terms governed by the ex-
ponents 23, 23 — y and 23 - 2y.

Moreover, the Hamiltonian (31) could acquire
still higher powers of x stemming from the relativis-
tic corrections proportional to (77, - A ) with n > 1.

For « = 1 and with the use of a logarithmic
reparametrization x = e one can cast Eq. (31) in
the form of the ordinary 1d Schrédinger equation
in the flat space with the potential V(z) given by
Eq. (13). Incidentally, the metric takes the form
ds? = dz* + e?«dy”.

In contrast, for « # 1 the corresponding 2nd or-
der differential equation would exhibit the power-
law potential V(z) = X, c,2" after the reparametriza-
tion z = x'"*/(1 - &) and rescaling y > y(1 — a)#/(1-%,
in which coordinates the metric takes the form
dSZ - dZZ + Z—Zﬁ/(l—a)dyz

Moreover, for « = 1 and non-zero k and B
the three-term potential in Eq. (31) reduces to only
two terms, provided that the other two exponents
are related as § =0, S =y, or § = y/2.

In the first two cases, one obtains the Morse
potential (14) with A = kl/2y and A = BI’/2y, re-
spectively. Thus, the Morse scenario extends be-
yond the well-known case of a constant field and
the H? space of a constant negative curvature for
a = f3 =y = 1. Nonetheless, the magnetic flux ® can
only be proportional to the area | dxdy for B =y,
but not in the other two cases.
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By contrast, the third combination of the para-
meters yields the Toda potential (17) with c,= B}
and ¢ = k*’, which conforms to the symmet-
ric potential cosh2az upon a uniform re-scaling

z—>z +%ln(kl/B).

For a given PMF Hamiltonian much informa-
tion can be inferred from its resolvent, which al-
lows for a spectral expansion over its 2d eigenstates

D,(x,y|x',y")=(x, ] | X',y =

E—-H+i0

— Idkz eik(x—x') l//k,v (y)l//lt,v (y,)
- E-E,, +i0

, (32)

where coshd = 1 + ((x - x")* + (y - ¥")?)/2xx" and
the sum/integral ¥ is over the discrete and/or
continuous parts of the spectrum.

In the case of the 1d Morse potential, Eq. (32)
can be computed in a closed form

2iv-1
DE(X,_)/ | x'ay,) ~ (COSh Ej

T(1/2+ A —iv)[(1/2 = A —iv)
T'(1-2iv)

1
WF|= +b—ivi-2iv— |,
(2 cosh’ d/2j (33)

where F is the hypergeometric function.

Fourier transforming (33), one obtains a fun-
damental solution for the Morse potential for
positive

dg (¥,)") =
I(/2-2-iJE) §

kT (1-2iE) (34)
X~/ xx'WMJE (kx )M, _, (kx!)
(here E =v* + 1/4 + 1?), as well as negative
dE,k (6, x") ~ N xx' K (kx, ) (ke ) (35)

energies.

In the zero-field limit, v=+E—-1/4 and
Egs. (34) and (35) reduce to

D,(x,y|x',y") ~Q_,,..(cosh d) (36)

and

dE,k (y’ y,) ~ [—i«/ﬁ (IQC)K]\/E(]CX’)’ (37)

respectively.
Also, in the flat space limit, kI > oo, Eq. (36) re-
produces the well-known results

F(B4E)
2B W

and E = b(2n + 1) for the degenerate Landau levels,
as all the scattering states are pushed to infinity.

Another important calculable is the thermody-
namic propagator (‘heat kernel’)

Dy(x,y|x',y") = (Br?/2) (38)

Ky (e, y) = (x,y [ X, ) =
= [dky " ey (0, () -

n/v

(39)

At zero field (i.e. in the case of the Liouville po-
tential) it simplifies to

Kﬁ(x’y‘x,’yl)N

2
~exp| 4P | L o
[~ B )pB \isinhr/l

and can be used for studying the system’s thermo-
dynamic properties.

(40)

6. Thermodynamics and chaos

A partition function for the (generalized) SYK ac-
tion given by Egs. (8) and (13) is given by the field-
theoretical path integral

]

Zsvk (8= J.d¢.[¢(ﬁ):¢ D ¢(T)6_J. . Ssyk[#(7) .

41
$(0)=¢ (1)

Alternatively, it can be computed in terms of the ei-
genfunctions/values v, (¢) and E  of the corre-
sponding 1d Schrodinger equation

ZSYK (ﬂ) - J.d¢z| W (¢) |2 eiﬁEn’v .

nlv

(42)

Likewise, the PMF partition function is represent-
ed by the world-line path integral

ZPMF (ﬁ) =
]

- Jaxdy [ Da@Dyre T, )



90 ISSN 1648-8504 eISSN 2424-3647

D.V. Khveshchenko / Lith. ]. Phys. 64, 82-100 (2024)

where S, is constructed from the same Hamil-
tonian (28). With the use of the eigenfunctions
Y, () =1y, M(x)e“‘y it can be cast in the form

similar to Eq. (42),

PMF(,B) =
= [dxdy" [dk W, (6 0) F e,

nlv

(44)

thus establishing a (pseudo)holographic equiva-
lence between the (generalized) SYK and PMF
problems.

Alternatively, instead of performing a direct
spectral summation the partition function can
be deduced from the density of states (DOS),
Z(B) = | dEp(E)e -,

In turn, the (many-body) DOS of the SYK-like
system can be read off from its single-particle PMF
counterpart (32):

p(E)=——1m D, (x. v | x,7). (45)
27

In the Morse case, using the exact resolvent Eq. (33)
one obtains the DOS in a closed form [|118-125]

sinh 27[@

. (46)
cosh 27z\/f +cos27A

Pu(E) ~

For A = 0, one then finds the well-known low-en-
ergy behaviour of the DOS in the SYK model p(E)
sin VE []. In contrast, for A = 1/2 the DOS
diverges as p(E) ~ 1VE. Notably, this behaviour is
reminiscent of that found in the SUSY version of
the SYK model []. On the other hand, a pe-
riodic dependence on A could be spurious and re-
mains to be better understood.

For A = 0, by performing an (inverse) Laplace
transformation on Eq. (46) one reproduces the low
temperatures partition function of the Liouville
model Z (B) ~ exp(O(P/B))/3** for B] >> 1, while for
BJ < lityields Z (B) ~ exp(O(F/f3))/B. Thus, the spe-
cific heat defined as C = 8°0 /InZ(f) decreases with
increasing temperature from C = 3/2 down to C = 1.

In contrast, the thermodynamic properties of
the Morse model appear to be markedly differ-
ent. Namely, for A = 1/2 the specific heat rises from
C=1/2for fJ > 1to C =1 for f] K 1. Together
with the aforementioned behaviour of the density
of states this might be suggestive of a phase transi-
tion at A_=2.

Such a conductor-to-insulator transition in
the SYK double-dot system has been studied,
both, without [ | and with @ @ such
a realistic factor as Coulomb blockade taken into
account. Conceivably, it is a bulk counterpart of
the transition predicted to occur between the SYK
non-Fermi liquid and disordered Fermi liquid in

a granular array of randomly SYK -coupled SYK,
clusters [].

A difference between the states on the opposite
sides of this purported transition can be elucidat-
ed with the use of out-of-time-order correlators
(OTOC). Generically, the OTOC amplitudes are
expected to demonstrate some initial short-time/
high temperature exponential growth

<Gf(TlaT3)Gf(T2;T4)> _ _OKQ] e)"Lt, (47)
(G, (B]2,0)) N

revealed by summing the ‘causal’ ladder series and
controlled by the chaotic Lyapunov exponent A, .

The latter can be deduced directly from Eq.
(11) for a general potential V , upon restoring
a dependence of the fluctuating normal mode
0g(t, T) ~ eMTy(7) on the ‘center-of-mass’ time Tand
then contlnulng it analytically, 7> it + 3/2 [-

This way, one arrives at the eigenvalue equation
in terms of the variable u = 7/f3

[—65+W<go(u/ﬂ)>]z=—[w ] 7 s

where W(g(7)) was defined after Eq. (11).
In the case of the Morse potential, one obtains
the equation

5 [ cos
_all% - - = +
coshu +cos@

2sin’ 6 ]
7| X =

(coshu +cos8)
(%ﬂjx,
2r
where the effective potential crosses over from
Wq = 2/cosh’u in the pure SYKq limit (6 > 7/2)
with the ground state X, ~ 1/coshu to W, = 1/2
cosh?(u/2) in the pure SYKq/2 one (8 > 0). In

both limits, the Lyapunov exponent approach-
es its maximal value A™ = 27/f [] as

(49)
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AJAP =1 — O(min[IB/], J/T?B]) for high/low
temperatures [].

In the special case of g = 4, though, the fixed-
point SYK, behaviour corresponds to the disor-
dered but non-chaotic Fermi liquid where A, is ex-
pected to vanish.

In the intermediate regime and for g > 4, the ex-
ponent appears to take lower, yet non-zero, val-
ues [, ]. It does not vanish at any finite tem-
perature, though, thus calling for a closer look at
any scenario of a genuine finite-temperature phase
transition - or a zero-temperature one predicted to
occur at a critical ratio I'/J vanishing at large N as
a power of 1/N []. In that regard, it would
be particularly interesting to compute A, at the su-
per-symmetric point J = 2I.

In the aforementioned ‘variable scaling’ mod-
el [], some non-maximal and non-univer-
sal, yet temperature-independent and growing with
the increasing integer parameter 7, values of A, were
reported on the basis of the numerical solution of
Ref. (48). In turn, the Hulten potential falls some-
where in between the ‘super-symmetric’ point at
the SYK -SYK , model and the ‘variable scaling’ one.

As an interesting consistency check, the eigen-
function equation for the Toda potential V, , evalu-
ated on the solution (26) satisfies the same Eq. (49)
apart from the constant shift, W = -2/cosh’*u + 1.
This constant shift raises the ground state energy to
zero, thus implying A, = 0, consistent with the dis-
crete nature of the spectrum consisting only of
the bound states.

7. Dual gravities

In 2d, a powerful gauge invariance under local co-
ordinate diffeomorphisms eliminates any bulk de-
grees of freedom, thereby making such theories lo-
cally quantum trivial in the absence of matter. Such
bulk theories appear to be topological and allow for
explicit classical solutions, thereby providing nat-
ural candidates for testing out the foundations of
the holographic principle.

Moreover, the gauge symmetry leaves only one
independent metric component (e.g. g = g,, = 0,
8, = 1/g,,), thus reducing (up to a conformal factor)
all the (Euclidean) metrics to the set ds? = e¥#®d7 +
e ®dx? parametrized by a single function ¢.

However, a 2d gravity theory can still develop
a non-trivial boundary behaviour as a result of in-

troducing either an additional dilaton, Liouville, or
scalar matter field. Alternatively, it requires aniso-
tropic space vs time scaling, ¢ ~ x%, characterized by
a dynamical critical index z. Thus, such extensions
can be sought out not only in the context of gener-

alized JT but also the Horava-Lifshitz (HL) [
] theories.

The original (ostensibly 2d) JT model is well
known to be described by the Schwarzian bound-
ary action providing a natural holographic connec-
tion to the edge modes propagating along the 1d
boundary [67-8]. Indeed, the Schwarzian can
be directly related to the extrinsic curvature of
a fluctuating closed 1d boundary of a 2d region,

f

K =1+ Sch tan”—,f +.... Therefore, from the for-

mal mathematical standpoint Eq. (8) represents the
action of the Virasoro group on its coadjoint orbits.

In practical terms, establishing a generalized ho-
lographic duality with a given Liouville-type theory
described by Egs. (8) and (13) can be formulated as
a task of constructing the bulk theory, the bound-
ary dynamics of which is governed by the same
1d Hamiltonian as that of the purportedly dual 1d
quantum system.

In that regard, the boundary actions of SUSY
and higher spin extensions of the 2d dilaton gravi-
ties were argued to represent certain specific limits
of the generalized JT model, including its non- and
ultra-relativistic variants []. Alternatively,
the complex SYK model was argued to have a pos-
sible flat space bulk dual.

The most complete action incorporating a dy-
namical dilaton reads

S = j dxd7,[g[RD + U (D)(6D)* +V(D)], (50)

parametrized in terms of the functions U and V
of the dilaton field ®. Such generalized dilaton
gravities have been encountered among the defor-
mations and compactifications of higher-dimen-
sional theories. Among them, there is an impor-
tant two-parameter family of potentials U = a®
and V = b®*"*, among which the one-parameter
subset with a + b = 1 possesses the AdS, ground
state [].

Moreover, the so-called F(R)-gravities with
the action SF(R) = | dxdtF(R) have been argued
to be all equivalent to the ‘minimal’ JT action
with F(R) = OR - V(®), the expectation value of
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the dilaton field being related to the Ricci curva-
ture, as per the equation R = dV/0® [[145-147 [m

Alternatively, the intrinsically topological na-
ture of the JT gravity can be made manifest with
the use of its 1st order formulation []

S = '[drdx[CD e, d"o" +
+W (D) e’e, e'e)

u Ya

+X%€,, de'+X€ w,e'], (51)
in terms of the vielbein e* and spin-connection w*
which is independent of the background metric
8 = qabel‘iei (here 7 is the flat space metric). No-
tably, the action (51) shares its topological nature
with the 3d gravity that can be cast in terms of
the (twinned) Chern-Simons theory [].
Another viable candidate to the role of a 2d grav-
ity dual to a generalized SYK model can be sought
out in the form of the (Lorentz non-invariant) Hor-

ava-Lifshitz action []
S = j dxdz\[gN(aK> +bA+c(N'IN)), (52)

where a, b and c¢ are numerical parameters, N and
N are the lapse and shift functions, h = \/_ and
K= —(h/h N//h* + N h'/l*)/N, the dots and primes
standing for the time and space derivatives, respec-
tively. In contrast to the dilaton gravity (51) Eq. (53)
is only invariant under the foliation-preserving dif-
feomorphisms 7> 7’ (7) and x > x" (x, 7).

Certain previously proposed F(R)-HL theories
provide the Lifshitz-type black hole solutions with
a constant negative curvature R = -2z%/*.

Under the projectability condition []
one can choose N = N(7) to be a global (spatially
uniform) variable which then gives rise to K' = 0
(hence, K = K(1)). Furthermore, by using the coor-
dinate gauge symmetry one can fix N=1and N_=0.
The number of primary and secondary Hamilto-
nian constraints equals the dimension of the phase
space, thus reducing the number of dynamical bulk
degrees of freedom to zero. This observation sug-
gests that the conjugate momentum p = p(7) is in-
dependent of the spatial position either.

Canonically quantizing the action (52) one then
arrives at the effectively 1d PMF-like Hamiltonian

P
H, = aqp2 +bAq+c—W, (53)
q

where q(7) = | dxh(x, 7) and p(7) constitute a pair
of conjugate canonical variables while the 2nd vari-
able Q(7) is cyclic and paired up with a conserved
conjugate momentum P(7) = P.

In the context of Friedmann-Robertson-
Walker (FRW) cosmology, the Hamiltonian (53)
emerges in the Wheeler-DeWitt equation, the pa-
rameter w taking values 1, 0 and -1 for radiation,
matter, and dark energy, respectively. Contrasting
Eq. (53) against Eq. (31) one finds that the essential
terms in the two expressions match for, e.g. a = 1/2,
B=-w-1/2andy=-1-w

Adding matter to Eq. (53) introduces another
pair of conjugate variables, similar to the formula-
tion of the PMF problem in a non-separable gauge.
In particular, the projectable HL action with an
additional scalar field Q(x, 7) = Q(7) governed by
a potential V(Q) and paired with a conjugate mo-
mentum P( T) reduces to the generic 2d PMF Ham-

11t0n1an[ 42-144]

2

P
Hy.s = aqp’ +bAg+c—+qV (Q). (54)
q
8. Summary
The orthodox holographic scenario requires

a bulk gravity to have non-trivial dynamics that
gets quenched and turns classical only in a certain
(‘large-N’) limit [].

In that regard, the SYK-JT duality would often
be referred to as a genuine case of low-dimensional
holographic correspondence. It is generally agreed,
though, that such equivalence does not quite rise to
the level of the aforementioned full-fledged holo-
graphic duality, as the JT bulk dual is non-dynam-
ical and determined by the boundary degrees of
freedom, thus making both systems effectively 1d.

This note argues that similar (pseudo)holo-
graphic relationships can be established between
the various extensions of the original SYK model
and more general (JT, F(R)-, HL, etc.) 2d gravities.
The correspondence between their low-energy sec-
tors presents a form of equivalence between differ-
ent realizations of the co-adjoint orbits of the (chi-
ral) Virasoro group.

Formally, both sides of such duality can be de-
scribed in terms of some 1d Liouvillean quantum
mechanics, thus generalizing the pure Schwarzian
action, the description of which can also be mapped
onto an equivalent (single particle) PMF problem.
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From the practical standpoint, certain analytically
solvable quantum-mechanical potentials can then
be related to the physically relevant SYK deforma-
tions, such as the action given by Egs. (8) and (14)
for a double SYK quantum dot.

The PMF analog picture allows for direct access
to the resolvent D, and heat kernel K, functions,
thus allowing one to compute the density of states
p(E), partition function Z(f3), and other thermody-
namic properties of the boundary SYK-like system
of interest. By further utilizing this approach one
can also study various quantifiers of entanglement,
quantum chaos, and even more subtle n > 2-body
correlations.

Furthermore, the tangle of (pseudo)holograph-
ic relationships between the SL(2, R)-symmetric
boundary (Schwarzian/Liouville-like) and bulk
(JT/HL-like) models can be viewed as different
forms of embedding (at fixed radial and angular
vs temporal and angular coordinates, respective-
ly) into the global AdS, space []. Impor-
tantly, a similar relationship also exists between
the 1 + 2-dimensional gravity with its Banados-
Teitelboim-Zanelli black hole backgrounds and
various (e.g. Korteweg-de Vries) families of solv-
able 1 + 1-dimensional quantum systems [
@]. Among other things, such equivalence can
be utilized to study nonlinear hydrodynamics

of the soliton-like edge states of generalized bulk
QHE systems [].

Thus, when seeking out genuine implementa-
tions of the central holographic IT from QUBIT’
paradigm one might first want to make sure that
the conjectured duality does not appear to be of
the ALL from HALL variety. Indeed, discovering
a (possibly, hidden) topological origin of holograph-
ic correspondence would greatly help to demystify
this otherwise fascinating, yet baftling, concept.
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