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GRASP package is based on the relativistic configuration interaction in which accurate calculations, ac-
counting for valence, valence-valence, core-valence, core and core-core electron correlations, often rely
on massive CSF expansions. This paper presents a further development of the method based on the sec-
ond-order perturbation theory for finding the most important CSFs that have the greatest influence on
the core-valence, core and core-core correlations. This method is based on a combination of the relativistic
configuration interaction method and the stationary second-order Rayleigh-Schrédinger many-body per-
turbation theory in an irreducible tensorial form [G. Gaigalas, P. Rynkun, and L. Kitoviené, Second-order
Rayleigh-Schrodinger perturbation theory for the GRASP2018 package: Core-valence correlations, Lith.
J. Phys. 64(1), 20-39 (2024), https://doi.org/10.3952/physics.2024.64.1.3, and G. Gaigalas, P. Rynkun, and
L. Kitoviené, Second-order Rayleigh-Schrédinger perturbation theory for the GRASP2018 package: Core
correlations, Lith. J. Phys. 64(2), 73-81 (2024), https://doi.org/10.3952/physics.2024.64.2.1]. In this exten-
sion, the perturbation theory takes into account electron core-valence, core and core-core correlations,
where an atom or ion has any number of valence electrons, for calculation of energy spectra and other
properties. Meanwhile, the rest of the correlations are taken into account in a traditional way. This allows
a significant reduction of the space of the configuration state function for complex atoms and ions. We also
demonstrate how this method works for calculations of the energy structure and E1 transition properties
of Fe XV ion.
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1. Introduction

This paper describes the method, an extension to
the approach presented in Refs. [, ], that allows
atomic structure calculations to be performed fast-
er and with the use of less resources in the frame-
work of relativistic atomic theory. The method is
based on a combination of the relativistic con-
figuration interaction (RCI) method [, H] and on
the stationary second-order Rayleigh-Schréding-
er many-body perturbation theory (for the non-
relativistic version of this perturbation theory in

* Dedicated to the memory of professor Adolfas Jucys (1904-1974),
pioneer of contemporary theoretical physics in Lithuania, initiator of
the ‘Lithuanian Physics Collection, on the occasion of his birth and death

anniversaries.

determinants, see Ref. [E]) in an irreducible ten-
sorial form (for the non-relativistic version of this
perturbation theory in an irreducible tensorial
form, see Refs. [dﬂ). In this extension, the per-
turbation theory takes into account electron core-
valence (CV), core (C) and core-core (CC) cor-
relations where an atom or ion has any number of
valence electrons, meanwhile the rest of the corre-
lations are taken into account in a traditional way.

GRASP [E, ] is based on the relativistic con-
figuration interaction, and the wave functions of
the targeted states are given as expansions over
configuration state functions (CSF) built on rela-
tivistic one-electron orbitals []. Accurate RCI
calculations, considering valence, valence-va-
lence, core-valence, core and core—core electron
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correlations, often rely on massive CSF expan-
sions obtained from single- and double (SD) exci-
tations from a multireference (MR) consisting of
the most important configurations [H]. Our pro-
posed approach uses the second-order perturba-
tion theory to find the most important CSFs that
have the greatest influence on the core-valence,
core and core-core correlations. This reduces
the CSF base, on the one hand, while, on the other
hand, it allows the calculation of the energy struc-
ture, transition characteristics and other proper-
ties of atoms and ions to be carried out without
loss of accuracy. Since Grasp uses the formalism of
tensorial algebra [], only Rayleigh-Schrédinger
many-body perturbation theory (RSMBPT) in an
irreducible tensorial form can be used in it. This
makes the work unique and makes it necessary to
have the expressions for the Feynman diagrams
in an irreducible tensorial form. It is possible to
obtain them by using the combination of the an-
gular momentum theory, the concept of irreduc-
ible tensorial sets, the generalized graphical ap-
proach and the second quantization in a coupling
tensorial form [B, @]. All these expressions for
the Feynman diagrams corresponding to core-
core correlations in the relativistic atomic theory
are first presented in Section 2. In order to be able
to use the spin-angular program library [] with-
out any further modification, these formulas have

first been adapted in a way that is aligned with
GRraAsp [E, @]. They are given in Section 3. Mean-
while, a similar study on core-valence and core
correlations was first done in our previous work [m,
]. Both studies make a full use of Racah algebra
including a quasispin [] for the integration of
spin-angular part of all these types (core-valence,
core and core-core) of correlations. The validity
and efficiency of the presented method is demon-
strated in Section 4, where the energy spectrum
and E1 transition properties of the Fe XV ion are
theoretically studied.

2. Relativistic second-order effective
Hamiltonian of an atom or an ion in an
irreducible tensorial form for core-core
correlations

All possible core-core correlations can be treat-
ed perturbatively including all of them via
the RSMBPT method. All types of CC correla-
tions are described below in separate subsections
in more detail.

2.1. The first type of core—core correlations

Here we will discuss the first type of core-core corre-
lations which are expressed through vacuum Feyn-
man diagrams CC, from Fig. Il and CC, from Fig. 2:

Fig. 1. The CC Feynman diagram of the second-order effective Hamiltonian for the direct part of
excitation (n £ )j¥a! (n,£,) j7e™ (n € ) j*m (n €) j*n > (n ) j7a (nL,) jib (n € ) j¥m (n € ) j*n (nf) j.

(ne)j,wherea#bora=bands#rors=r.

Fig. 2. The CC Feynman diagram of the second-order effective Hamiltonian for the exchange part
of excitation (n € )j%a*' (n,£,)j7v*" (n € ) j¥m (n € )jn > (n L) jHa(ne,) jio (n € )jrm(ne)jn(ne)j.

(nf)j,wherea#bora=bands#rors=r.
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(n8)j7a" (n,£)jv" (n, £ ) jum (nL) jur

> )i () (n € )jm (€ )i (n€)] (n€)j, (1)
(n8)je" (n,€,)je*t (n, € ) jum (n,€) jun
>(ne)jra(ne)jie (n € )jum(ne)jim(ne)f, (2)
(nL)j7e" (n,e,) jim (n,e) jin

>ne) st (n e )jm(ne)jn(ne)j(ne)j, (3)
(n€)ja" (n € ) jum (ne) jin

> (ne)jrt (n, L) jrm (ne)jm (ne)ji  (4)

These two Feynman diagrams CC, and CC, are
vacuum diagrams without any spin-angular part,
therefore the spin-angular program library []
from Grasp is not needed. They have the same im-
pact on those CSFs that have the same configura-
tion. The diagram CC, describes the direct part of
excitations (1-4) and CC, describes the exchange
part of the same excitations.

Each second-order Feynman diagram’s ex-
pression of Rayleigh-Schrodinger many-body
perturbation theory as described in Ref. [EI] has
the energy denominator D = X (¢, - ¢,), where
€oun (&) 18 the single-particle eigenvalue associ-
ated with the down-(up-) orbital lines to (from)
the lowest interaction line of the diagram. For
example, the denominators for CC, and CC, dia-
grams are

D= (sa + sb - Sr - es)’ (5)

where indexes a and b belong to the F set, and , s
belong to the G set of orbitals [EI].

Also, the following notations are used in the ex-
pressions of these diagrams (see Figs. [l and 2):

X (i, i) = € jIIC¥II €, ji)
(EHNCON € i) RiCn o m iy g, ) ©

where R¥(n. j. n.j,n,j,n,j,) is the radial integral of
electrostatic interaction between electrons [H, (89)
and (90)] and (£ j||C®|| €,j.) is the reduced matrix
element of the irreducible tensor operator C% in
the jj-coupling.

The exchange diagram CC, additionally has
a 6j-coefficient. The summation in the expresions
of CC, and CC, are running over the closed lines
of Feynman diagrams and over the ranks k and k’
of the irreducible tensor operators C% and C*, re-
spectively.

2.2. The second type of core—core correlations

This type of core—core correlations is expressed
through the Feynman diagrams CC, from Fig. 3
and CC, from Fig. 4, where all lines with a double
arrow of diagrams are renamed m, i.e. m’ = m:

(ne )iz (mg)j;™ (n,£,) jm (n,€,) jn

>ne)ja(ne)jie(n € )jmt (ne)jmne)j, (7)

(n )i (n,L,) jim (n,€,) jm

> ()it (n,8,) g (n ) i (nt) . (8)

These diagrams CC, and CC, are single particle
Feynman diagrams where their tensorial part is ex-

pressed through the tensorial product of annihila-
tion a%” and creation a' operators

Fig. 3. The CC Feynman diagram of the second-order effective Hamiltonian for
the direct part of excitation (n € ) j¥a*' (n,¢,) ¢ (n € ) jum (n£) jin > (n£) jia
(n,t,) jfjb (n€)jmt(ne)jn(ne)j,wherea#bora=b.
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Fig. 4. The CC Feynman diagram of the second-order effective Hamiltonian for
the exchange part of excitation (n € ) j%a*' (n,€,) jiv*' (n € )j¥m (n € )jn> (n L ) jie
() jiv(n € )jrm (n€)jn(ne)j,wherea#bora=b.

These two operators of the second quantization act
on the same subshell m and represent the scalar
operator. Therefore, this operator can be expressed
through the operator of subshell occupation num-
ber N on which it acts,

[ x g ® = [Jw]l= N, (10)

[Jn]

or through the hole operator Nhol of this subshell,

’

A

hol m

N

[d(jm) x a(jm)](o) —

. (11)

Therefore, as for the first type of core-core corre-
lation (see Subsection 2.1), there is no need to use
the spin-angular program library [] to calculate
these diagrams, as the spin-angular coefficients
are expressed through a simple multiplier (see
diagram A3 in Ref. [@]). This is one of the ad-
vantages of the methodology proposed in this

paper.

2.3. The third type of core—core correlations

This type of core-core correlations is expressed
through the one-particle Feynman diagram CC,
from Fig. 5 and through the two-particle Feynman
diagram CC_ from Fig. 6, where all lines with a dou-
ble arrow of diagrams are renamed m, i.e. m' = m
for CC,and m’=n=n"=mfor CC_

(£ )i (m)j;™" (n,€,) jum (n,,) jm

> (naga) juzja (nhgb) jzjb (nmgm) j::/thrz (nnen) j;"n’ ( 12)
(n6 )i (n,8,) jym () jy
> (ne)jdat (n € )2 (ne)jmn. (13)

The CC, diagram has the same tensorial part
as the diagrams CC, and CC,, therefore its spin-
angular part can be handled in the same way as for
the CC, and CC, diagrams.

The CC, is a two-particle Feynman diagram
where its tensorial part is expressed through the ten-
sorial product of annihilation 4% and creation a%
operators and represent the scalar operator for this
type of core-core correlations

Fig. 5. The CC one-particle Feynman diagram of the second-order effective Hamil-
tonian for the third type (n £) j7a*' (ng,) jie*' (n £ ) jm (n ) jon > (n ) j7a (nt,)
je (n £ ) j¥m? (n £ ) j*» and the fourth type (n ) ' (n€,) jiv*' (n € ) j¥m (n € )
jin>(n ) ja(ne,)jie (n € )t (n € ) j*n' of core-core correlations.
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Fig. 6. The CC two-particle Feynman diagram of the second-order effective Hamiltonian for
the third type (n £) j7a*! (n,£) jie™ (n € ) j¥m (n €) jun > (n £ )j%a (n,) jio (n € ) j*m™ (n €)
jvnand the fourth type (n € ) %! (n,£,) jiv*' (n € ) j¥m(n €) jrn> (n ) j7a (n,e,) j7o (n € ) jrm!

(ne ) j =" of core-core correlations.
[[a"(fm’) X a(jm)](jlz) X [d(fn’) X a(jn)] 012)](0)' (14)

For this CC, diagram, unlike for the other Feyn-
man diagrams considered above, there comes
the additional summation, where the summation
parameter j , relates the tensor product (14) to
the two 6j-coeflicients. This summation parameter
is the intermediate rank of this tensor product.

All operators of the second quantization act on
the same subshell m, therefore the tensorial op-
erator (14) can be expressed through simple N and
Nhol operators in the case of j , = 0:

[[d“m) x @ O x [GUn x a(jm>]<0>](°) _

_(Lul-N)

(15)
L/.]
or
[[dum) x @ O X [GUn x a(jm>]<0>](°) _
Nz
- [hjﬂi" _ (16)
Im

In that case, for the calculation of CC_ diagram, we
also do not need to use the spin-angular program
library []. Meanwhile, the program library [12]
from Grasp supports the calculation of spin-angular
part (14) of the CC_ Feynman diagram in the case
of j,, > 0 after some simple modifications similar
to that of Ref. [] performed in Section 3. After
this modification, the full Racah algebra including
a quasispin [@] is available for the integration of
spin-angular part of this Feynman diagram. This is
another advantage of the methodology proposed in
this paper.

2.4. The fourth type of core-core correlations

This type of core-core correlations is presented
through the Feynman diagram CC_, where all lines
with a double arrow of diagrams are renamed in
the following way: m’' = mand n’' = n,

(ne)jzet (n8)j7e*t (n € ) jum (n8) jin

> (nL) e (nt,) ji (n,€,)jrr (n,e) jit, (17)
(n2)jda" (n, ) jum(n L) jrn
>(ne)jdat (n£) jumtt (n.e) jrn. (18)

In this case, the tensorial part of the CC, diagram
has the form

[[d(jm) > a(jm)](le) %

[ x a(.f”)]mz)]‘o’ (19)

b

which can be expressed in the case of j , = 0 as

[[5(1;» x @m0 x [Gn) a(m](m](o) _

Ul =N) =N,
A

(20)

or
i : (i : (0)
[[a(/m) x aVm @ x[GU) x a(zn)]w)] -

S9 (21)
_ Nhol mNhol n

[/ Ji]
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So, for this case we also do not need to use the spin-
angular program library [] for the calculation
of the CC, diagram. Meanwhile, the program li-
brary [] from Grasp supports the calculation of
the spin-angular part (19) of the CC, Feynman
diagram in the case of j, > 0 after some simple
modifications similar to that of Ref. [] performed
in Section 3. After this modification, the full Ra-
cah algebra including a quasispin [@] is available
for the integration of the spin-angular part of this
Feynman diagram.

2.5. The contribution of core—core correlations to
off-diagonal matrix elements

The main contribution of core—core correlations to
off-diagonal matrix elements is in the matrix ele-
ment <(nm€m) ]Zm (nngn) ];"’n ||%(2)Eﬁective||(nm€m) j::,’m‘z
(n ¢ ) j¥n?). The above contribution is derived from
the excitation

(n )7 (ng) jvt (n €) jim (n,€,) jn

>(nt)j¥a(ne)jiv(n £ )jm(ne)jn  (22)
and can be described through the same two-parti-
cle Feynman diagram (Fig. 6) as above. This type of
core—core correlations is presented through the Fey-
nman diagram CC_ where all lines with a double ar-
row of diagrams are renamed in the following way:
m = n, m’ = m, and n’ = m. Thus, the tensorial part
of the CC, diagram has the following form:

[[d(jm) o a(.i,,):l(j“) y
(0
~(j iy G)
[ @0 a0 " } .

In this case, after some modifications made in Sec-
tion 3, the Racah algebra [@] and the software li-
brary [] are also fully available.

(23)

3. PT implementation in the GRAsP2018 [9, 10]

Similar to the CV and C correlations [, ], the ad-
mixed configurations from CC correlations can
be added to the usual energy E (K) of the term
xJ of the configuration K and can be expressed as
the energy A€ (KJ), which does not depend on
the term, and the sum of the product of Slater in-

tegrals and spin-angular coefficients, describing
the interaction within open subshells and between
them,

EKyJ)=
=E,(KJ)+Ag,(KJ)+

I AN SISE

nlj k>0

x[FA(ntf, ntj) + AF (nlj, ntj) |+

> {Zﬂ G0 K g ) x

ntj n'l'j'>ntj Lk>0
X [:Fk(nﬁj, n'l'j") + AF (ntj, nlf,j')} +
G K DG )+
+AG (ntj, 00" |+
D VGO G K g JK ) %
k

x ER “(nl jntj, n'0'j'n' 0"y +
+ AR ntjntj, n' 0] 0], (24)
where f,, g and v, are spin-angular coefficients
from which submatrix elements (¢j|| C® ||€j)
are extracted. Therefore, the summation over k
runs over all possible values instead of the values
which satisfy the triangular condition (£€’k) as
it is in the ordinary case. F* (n¢j, n'€’j’), G* (n¢j,
n't’j’) and Rk (n€jntj, n'€’j'n’t’j’) are the gener-
alized integrals of the electrostatic interaction
between electrons. The definition of R*(néjntj,
nei'n’e’) is

R, i)
= {1+ 86, )] [1+8(% )" Rnjim j, n.jnj)

<(ElICON € 0elICPNIE ), (25)
where R¥(n, Jinjsn.j,n,j,)is the same radial integral
asin Eq. (6). Definitions F* (néj, n'¢’j’), G* (néj,n’t';’)
straightforwardly follow from Eq. (25).

The contribution coming from the CC correla-
tions of the configurations K’ to E(KyJ) in the sec-
ond order of the perturbation theory can be written
from Eq. (24) as
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AE ey = A& ((KT) +
3 Fo (4" K g ))AF (nlf, nlj)+
nlj k>0

+>.>) {ka(zm " Ky J)x

nlj n'l'j'>nlj (k>0
xAF (ntj, n'0'j") + (26)
+Z (0" Ky J) NG (nlj, 0’0"y +

+Z P T Ky T Ky T) %
k

AR (ntjnlj, n'0j'n'l'j")}.

The contribution of the first two types of CC
correlations in the second order of the perturba-
tion theory is expressed only over A€ (KJ) (see Ta-
ble I) The contributions AF* (n¢j, n€]) AFX(ntj,

¢'j"), and AG*(n¢j, n't’j’) are equal to zero in these
cases. The contrlbutlons A& (KJ) can be expressed
through A and C coeﬁiaents (see Table |1 ) which
have the following expressions:

A1) =
0t
Ji Ji Jr

C (x.ij, 1] Z{

where

}(kk’ i,ify, @7

Ji s }Q(xk if,i'7"), (28)

j/’

Pk, 37, 17 =R, i’ j) RE (@5, ) 0K, K), (29)

QUK j,1'j) = RE G, 1)) RE (@', ji) OK', K), (30)

and

OK',K)= !

(K- E(K) 1
where E(K) is the averaged energy of the state for
which calculations are performed. E(K’) is the av-
eraged energy for the admixed configuration K.
For how to find E(K) and E(K’), see Section 3 in
Ref. [Iil]. We would like to emphasize that the ener-
gy denominator (31) is defined differently/opposite

Table 1. Expressions for the first (where a # bor a=b and s # r or s = ) and second (where a # b or a = b) types
of core—core corrections to the energy in Eq. (24), independent of the term.

A&, corrections

core subshells valence subshells

core subshells

valence subshells virtual subshells

(n,0 )2 () 7y (m,0,) jur (n, 0 ) o = (n, ) j2 (0, " (n,0,) e (n, ) jir (n, €

SYAURISN

~Jii [\/F A0, ab, sr)+ 1), 1A(0,ab, rs)J (1) 3 [k, ab, rs) +C(k, ba, rs)]

from CC, Feynman diagram

from CC, Feynman diagram

core subshells valence subshells

core subshells valence subshells

virtual subshells
/—J\'ﬁ

(0 ) j2 () ji ™ (m, 0, (n 0 ) e = (n )2 (ml ) ji (m,0,) o  (n, 0 )

Wy, =[]
(/]

(nrgr )]r

J [\/ﬁcﬂ(o, ab,rm) +\[[7,FA(0.ba,rm) |

from CC; Feynman diagram

+(71)ju+jh+jr+jnl Z[C(k’ ab, rm) +C(k, ba, rm)]
k

from CC4 Feynman diagram
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to the expressions of Feynman diagrams (see, for
example, Fig. , Egs. (29), (30)).

As we can see, the expression of the second
type of core—core correlations (see Table EI), unlike
the first type of core—core correlations, depends on
the occupation number w,_of subshell m (number
of electrons in the subshell m). This is due to the fact
that the second type of core-core correlations is de-
scribed by the CC, and CC, Feynman diagrams, the
angular part of which is expressed via the operator
N of subshell occupation number (see Eq. (10)).
Meanwhile, the first type of core—core correlations
is described by vacuum Feynman diagrams CC
and CC,, which do not have any tensorial part in
their expressions (see Subsection 2.1).

The contribution of the last two types of CC corre-
lations in the second-order of the perturbation theory
is expressed over AE, (K]), AF* (n€ j, né j), AF* (né j,
n't’j’) and AG* (n€j, n'€’j') (see Tables E and E). These
formulae are additionally expressed via the quantities

A (x,i],1") =

{k k’x} k k'x PUK' .77
= . . . . . . 7U’l.] b
kK ]1‘ J,‘ Ji' .]j ]/' .]_/’ (32)

B (x,ij,ij') =

kKx ||k kKx
= O ... Q(kklalfal"]’)
kK ]j Ji Jr Ji ]j Jj’

As we can see, the expression of the last two types
of core-core correlations (see Table @) for the con-

(33)

tribution A€ depends on different combinations
U1=% of the subshells m and n. This is due to

J
the fact that these types of core—core correlations are
described by the CC, and CC, Feynman diagrams,

the angular part of which is expressed via the com-

bination [/];N

Jii
and/or m subshell (see Subsections 2.3, 2.4).

The contribution of CC correlation in
the second order of the perturbation theory
coming from the off-diagonal matrix element
(n,,) jun (n,8) jor ||H2, Nl(n,8,) i (n.8)
j¥n*?) is described by the diagram CC_. Refor-
mulation of the expressions of this diagram into
the form suitable for the Grasp gave these cor-
rections only to the radial integral ARK(mm,
nn) (see Table @). This formula is expressed via
the quantity

of the operator acting on the n

Table 2. Expressions for the third (where a # b or a = b) and fourth (where a # b or a = b) types of core-core
corrections to the energy in Eq. (24), independent of the term.

A&, corrections

core subshells valence subshells

core subshells valence subshells

(naga)jjju-*—I (nbfb)jszhﬂ (nmgm)‘];:m (nnfn)j:;vn - (naga)jjia (nbgb)]szb (’/lmgm)jnv:m+2 (nngn)j:/n

L Wind= W)U =% =D g1 . apy+ 2 =2 S (1) (k1A (k, mm, ab)

(/] [/]

k>0

from CC5 and CC4 Feynman diagrams

core subshells valence subshells

core subshells valence subshells

(n 0 ) j2" (n, ) i (0 ) o (n, 0 )70 = (n,0,) 7 (ny ) ji (n, 0, jor ™ (n 0 ,) jo

_ L= ) 1= w,) (A’ (0,mn,ab)+ A'(0,mn, ba))

NTIA

from CC5 and CC¢ Feynman diagrams

~ (_1)./'m+j,,+.iu+jb (([Jm]_zwm) N ([jn]_zwn)J

2 (/] [J.]

k

> (C(k,ab,mn)+ C(k ,ab,nm))

from CCs and CCy4 Feynman diagrams
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Table 3. Expressions for Slater integrals AF* (m, m), AF* (m, n) and AG* (m, n) (see Eq. (24)) corresponding to
the third type (n £ ) j%a*' (n,£,) j7v*' (n € ) j¥m(n £ ) j*n > (n ) j7a (n,e,) j7e (n € )j m** (n € ) j*+(where a # b or
a = b) and the fourth type (n € ) j%a* (n,,) j*' (n € ) j'm (n £ ) j*n > (n ) e (n,L,) jb (n £ ) jum*t (n £ ) jin!

(where a # b or a = b) of core—core correlations.

Corrections

Slater integral k values

core subshells valence subshells

core subshells valence subshells

(ndlea)jjju-'-l (nbgb)j;jl7+l (nmfm)‘j}:lvm (nl’lgﬂ )jltl/vn % (naga)jazla (nbgb)‘jszh (n”‘lgm)j":m-'-z (nngn )‘j:l/vn

-4 kLAa'(k,mm,ab)

from CCq Feynman diagram

AF (m, m) k>0

core subshells valence subshells

core subshells valence subshells

(00" () 7" (€, )  (, €)= (L) J2 7 () 7 (1, 0,) o () 7

—k](Ak,mn,ab)+A'(k,mn,ba))

from CC¢ Feynman diagram

—2[k]B(k,mn,ab)

from CC4 Feynman diagram

AFH(m, n) k>0

AGK(m, n) k>0

Table 4. Expressions for the Slater integral AR(mm, nn) (see Eq. (24)) corresponding to the core-core (n £ )
Patt (ne,) jer (n £ ) jvm(n € )jn>(ne)j% (ng,)jr (n £ )j*m(n L) j** correlations coming from the off-

diagonal matrix element ((n € ) j*m(n € ) j*n ||}[ @ e (1€ ) j2m72 (1 € ) j*2).

Corrections

Slater integral k values

—4A[k]1 X (k,nn,ab,mm)

from CC4 Feynman diagram

ARYmm, nn) k>0

X, 17)") =

') [k K (34)
:ZﬁéfH"?F“MW%ﬁ%
ok e Jide ) \ I Jidy
where
S!(kk/, ij, l'/j!’ l'//j//) —
=R, YRG0 (KL, KK)  (35)
and
O(K',Kle)z
1 1 1
=—l=—r—=—Tt=—"= , (36)
2\ E(K')-E(K)) E(K)-E(K,)

whereE(Kl) corresponds to the averaged energy of
the configuration K, from the bra function of oft-
diagonal matrix element and E(K,) corresponds to
the averaged energy of the configuration K, from

the ket function of off-diagonal matrix element.
For details on how to find them, see Ref. [m],
Section 3.

This theory in an irreducible tensorial form is
more suitable to be included in such version of
the Grasp which is based on configuration state
function generators (CSFGs) [@]. This is related to
the fact that this version of the package allows us
to distinguish the F, F” and G sets of orbitals very
easily in the process of computing atomic data. In
the following section, we will present a test case of
this implementation.

4. Calculation of core-valence, core and core-
core correlations with a new approach

The method, which is based on the Rayleigh-
Schrodinger perturbation theory in an irreducible
tensorial form [EI, ], has now been extended to
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include CC correlations. In this work, the RSMBPT
method is used to include CV, C and CC corre-
lations for the calculation of the Fe XV energy
structure and E1 transition properties. The en-
ergy levels of the 3s? 3p? 3s3d, 3d% 3p3d, 3s3p
configurations and the El transition properties
between the states of these configurations are
computed. The results are compared with those
obtained by the regular RCI in the Grasp [].
The radial wave functions are taken from the ear-
lier study [] where the computational scheme is
described in detail. The RCI calculations are per-
formed, including the Coulomb and Breit inter-
actions and leading quantum electrodynamic ef-
fects — the vacuum polarization and self-energy
corrections. Meanwhile, the estimation of cor-
relations was done using the stationary second-
order Rayleigh-Schrodinger many-body pertur-
bation theory in an irreducible tensorial form for
the Coulomb interaction.

Regular RCI results are marked as RCI with
the correlations, which were included in the cal-
culations, e.g. valence-valence (VV) (VV RCI).
In this computational scheme, single-double (SD)
substitutions are allowed from the 3s, 3p , 3p, 3d ,
3d valence orbitals to the orbital set (OS) OS, ...,
0S, (see Ref. [A]). In the VV+CV+C RCI com-
putational scheme, SD substitutions are allowed
from the 3s, 3p , 3p, 3d , 3d valence orbitals and
single (S) substitutions are allowed only from
the 2s or 2p and 2p core orbital to the orbital set
0S,, ..., OS.. In the VV+CV+C+CC RCI computa-
tional scheme, SD substitutions are allowed from
the 3s, 3p, 3p, 3d, 3d valence orbitals and from
the 2s, 2p and 2p core orbitals to the orbital set
OS,, ..., OS,. The multi-reference (MR) set con-
sists of the 3s?, 3p? 3s3d, 3d* even and 3p3d, 3s3p
odd configurations. The strategies marked as ‘int’
mean that only CSFs that have non-zero matrix
elements in the sets of spin-angular integration
with the CSFs belonging to the configurations in
the MR are retained.

The CSF space in RSMBPT computations is
divided into three sets: F, F’ and G (see Ref. [EI]
for details). Thus, the 1s is defined as an inactive
core subshell, 2s, 2p and 2p subshells are defined
as active core subshells (that correspond to F set),
3s, 3p, 3p, 3d , and 3d as valence subshells (that
correspond to F’ set), and subshells belonging
to OS,, ..., OS, as virtual ones (that correspond

to G set). This distribution of space is consistent
with regular GRAsp2018 calculations and allows
the use of a combination of RCI and RSMBPT
methods. The results including CV, C and CC
correlations according to the RSMBPT method
are marked as CV+C+CC RCI (RSMBPT). In
this case, the contribution of each K’ configura-
tion of the CV, C and CC correlations for CSF for
which energy needs to be calculated according to
the Rayleigh-Schrodinger perturbation theory
in an irreducible tensorial form according to Eq.
(22) of Ref. [[[], Eq. (6) of Ref. [f]] and Eq. (26) is
computed. The total contribution of the CV, C and
CC correlations is also computed. K’ configura-
tions are sorted in a descending order according
to the impact of the CV, C and CC correlations for
each level.

Further, K’ configurations are selected by
the impact of CV, C and CC correlations with
a specified fraction (expressed in the percentage:
95, 99, 99.5, 99.95 and 100%) of the total CV, C
and CC contribution, and RCI computations are
performed including them. These CSFs bases are
also reduced by removing from the list the CSFs
that have zero spin-angular coefficients for ma-
trix elements with the CSFs belonging to the con-
tigurations in the MR set. Later, RCI computa-
tions are performed for the reduced CSFs base.
These results are marked as ‘int’ in the further
description. Note that the program gives the con-
tribution of the CV, C and CC correlations of K’
configuration with a value greater than 1.0E-11,
smaller contributions are neglected. The C and
CV correlations (Egs. (3, 4) of Ref. []), which
are not included in the RSMBPT method, were
added to RCI calculations in a regular way, to-
gether with the valence and valence-valence
correlations.

4.1. Calculations of the energy structure

Table E presents the comparison for 35 energy
levels from regular Grasp2018 calculations with
NIST ASD (Atomic Structure Database) [@]. In
the regular Grasp2018 calculations, VV, CV, C and
CC electron correlations are included. The number
of CSFs (N_,) from each calculation and the root-
mean-square (rms) with NIST data are given in
the last lines of the table. It is seen from the ta-
ble that the CV and C correlations are important,
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Table 5. The energy levels (in cm™) and differences (in cm™) between RCI and NIST energies (AE (RCI)_(NIST)) for
Fe XV are given when computations are performed in a regular way including VV, CV, C and CC correlations.

AE(RCI)-(NIST)

No. State NIST
VV | VV4CV4Cint | VV+CV4C | VVHCVACHCCint | VV4+CV+CHCC
1 35215, 0
2 3s3p°Pj 233842  -746.91 8.17 7.82 -296.32 -301.68
3 3s3p°PY 239660  -717.57 27.93 27.91 -285.97 -284.90
4  3s3p°Ps 253820  -798.57 23.34 23.28 -306.04 -303.93
5 3s3p!'Py 351911  2925.87 211.45 211.19 -8.53 -12.67
6 3p*°P, 554524  1959.20 156.46 156.46 450.57 444.78
7 3p*'D, 559600 286.67 295.66 295.62 342.25 341.33
8 3p?°P, 564602  1840.29 121.10 121.05 401.73 394.75
9 3p*°P, 581803 1442.72 173.83 173.81 375.78 373.70
10 3p* 'S, 659627  3045.02 511.51 511.51 715.39 703.60
11 3s3d °D, 678772  1684.31 331.01 329.60 68.52 52.91
12 3s3d °D, 679785 1672.03 350.25 349.51 81.77 73.14
13 3s3d °*D; 681416  1606.31 344.63 343.41 84.60 75.61
14 3s3d 'D, 762093  4112.22 547.93 545.30 673.85 647.50
15 3p3d°Fs 928241 876.83 485.29 485.01 -125.90 -126.07
16 3p3d°Fg 938126 722.00 503.29 502.30 -114.13 -113.47
17 3p3d'Ds 948513 1621.09 408.50 408.06 -176.90 -176.70
18 3p3d°Fg 949658 609.19 493.11 489.87 -135.80 -139.09
19 3p3d°D¢ 982868  3141.47 34941 348.96 -114.34 -120.13
20 3p3d-Ps 983514  2811.54 399.78 398.42 -94.87 -99.81
21 3p3d°Dg 994852  3254.23 381.16 379.36 -81.04 —-85.84
22 3p3d°P§ 995889  2550.57 467.52 461.29 -58.85 -78.33
23 3p3d Py 996243  2747.52 439.25 438.84 -78.90 -83.97
24 3p3d°Ds 996623  2939.80 408.62 407.89 -91.96 -94.83
25 3p3d 'F§ 1062515  4046.73 783.97 776.35 666.63 650.87
26 3p3d 'Py 1074887  3603.75 944.60 941.74 728.85 701.36
27 3d*°F, 1370331  2834.22 795.74 795.41 159.05 151.58
28 3d?°F; 1372035  2752.53 776.22 775.43 148.44 139.34
29 3d?°F, 1374056  2713.16 804.78 804.19 176.26 171.07
30 3d?'D, 1402592  2813.26 1079.22 1077.95 458.53 442.70
31 3d?°P,
32 3d*°P,
33 3d*'Gy 1407058  2385.95 1141.81 1139.46 737.52 726.46
34 3d*°P, 1407773  3038.87 932.00 931.75 195.23 187.31
35 3d?'S, 1487054  2379.42 1975.89 1975.89 1143.47 1120.02
Nesgs 4485 372043 430629 2241061 5864226
rms (in cm™) 2438.25 653.16 652.01 401.16 392.76
the rms deviation obtained for the energy levels Table E shows the total energies from regu-

from the NIST data is 653.16 cm™'. By including lar Grasp2018 calculations (VV+CV+C+CC
CC correlations the rms deviation decreases to RCI int) for 35 computed states. These ener-
401.16 cm™. gies are computed after the CSF base reduction
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Table 6. The total energies (in a.u.) from the VV+CV+C+CC RCI int calculations and differences (in
au.) between the VV+CV+C+CC RCI energies and VV+CV+C+CC RCI int energies (AEg verimo =

) and differences (in a.u.) between CV+C+CC RCI (RSMBPT) and

(VV+CV+C+CC RCI)-(VV+CV+C+CC RCI int)

VV+CV+C+CC RCI int energies (AE(RCI (RSMBPT))-(RCI int) = A'E(CV+C+CC RCI (RSMBPT))-(VV+CV+C+CC RCI int)) for Fe XV are
given when CV, C and CC correlations are included in the computations.
. it VV+CV+C+CCRCI AE rc1 (RsMBPT))-(RCLing)
int | AE ey et 100%int | 100%
1 3§25, -1182.73096327 —-0.00003815 0.00000009 -0.00001565
2 3s3p°Py -1181.66685085 —-0.00006259 0.00000051 -0.00001094
3 3s3p°Py -1181.64029495 —-0.00003326 0.00000046 -0.00001510
4  3s3p°P3 -1181.57586867 -0.00002856 0.00000019 -0.00001482
5 3s3p'PP -1181.12757765 —-0.00005702 0.00000065 -0.00003104
6 3p’°P, -1180.20231307 —0.00006452 0.00000010 -0.00001675
7  3p*'D, -1180.17967864 —-0.00004235 0.00000035 -0.00002700
8 3p?°P -1180.15661687 —-0.00006994 0.00000018 -0.00001747
9 3p*P, -1180.07836156 —-0.00004763 0.00000015 -0.00003757
10 3p* 'S, -1179.72222197 —-0.00009184 0.00000008 -0.00004238
11 3s3d°D, -1179.63793828 —-0.00010929 0.00000111 —-0.00002709
12 3s3d °D, -1179.63326232 -0.00007751 0.00000230 -0.00004417
13 3s3d°D; -1179.62581805 —-0.00007913 0.00000064 -0.00001844
14 3s3d 'D, —-1179.25554176 —-0.00015821 0.00000409 —-0.00008186
15 3p3d°F -1178.50215971 —-0.00003895 0.00000326 -0.00001497
16 3p3d°K -1178.45706670 —-0.00003518 0.00000132 -0.00001109
17 3p3d'D3 -1178.41002605 —-0.00003725 0.00000086 -0.00001810
18  3p3d°F; -1178.40462181 —-0.00005311 0.00000020 -0.00000916
19 3p3d°Dy -1178.25320812 —-0.00006454 0.00000245 -0.00002416
20 3p3d°Ps -1178.25017600 -0.00006067 0.00000054 -0.00002796
21  3p3d°Ds —-1178.19845329 —-0.00006000 0.00000102 -0.00002579
22 3p3d°P§ -1178.19362723 —-0.00012693 0.00000128 -0.00002239
23 3p3d°PP -1178.19210564 —-0.00006127 0.00000281 -0.00003106
24 3p3d°Ds -1178.19043378 —-0.00005120 0.00000183 —-0.00002695
25 3p3d 'K -1177.88675130 -0.00010997 0.00000806 -0.00003279
26 3p3d 'P§ -1177.83009684 —-0.00016344 0.00000423 -0.00006022
27  3d*°F, -1176.48655116 —-0.00007218 0.00000319 —-0.00004057
28 3d*°F, -1176.47883548 -0.00007960 0.00000059 -0.00001869
29  3d?°F, -1176.46950039 —-0.00006180 0.00000028 —-0.00003522
30 3d’'D, -1176.33819466 —-0.00011029 0.00000238 —-0.00005909
31 3d*°P, -1176.32567236 —-0.00009761 0.00000009 -0.00003160
32 3d*°p, -1176.32276134 —-0.00009015 0.00000057 -0.00002843
33 3d*'Gy -1176.31657493 —-0.00008852 0.00000109 -0.00004105
34 3d*°P, -1176.31578797 —-0.00007427 0.00000043 -0.00004825
35 3d* 'S, -1175.95023666 —-0.00014501 0.00000009 —-0.00006050
Nesrs 2241061 5864226 2166376 3033360

mentioned in the previous section. Next to thiscol-  are obtained before a base reduction. The changes
umn are the differences of the total energies from in total energies are small when reduction is ap-
the VV+CV+C+CC RCI computations, which plied, but the size of the CSF base decreases more
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than twice. In the same Table, the energy differ-
ences between the CV+C+CC RCI (RSMBPT)
when 100% of CV, C, CC correlations are includ-
ed, and regular VV+CV+C+CC RCI int results
(AE(CV+C+CC RCI (RSMBPT))-(VV+CV+C+CC RCI int)) are given.
This comparison shows that the total energies
using the RSMBPT method (with a reduction col-
umn 100% int and without a reduction column
100%) reproduce the regular Grasp2018 results. In
the case of ‘int, we have the negligible difference
(to 8.0E-06 a.u. or 0.0000000068%) which could
be due to omitted CV, C and CC correlations with
a very small contribution (1.0E-11).

In Table ﬁ, the energy levels from the regular
GRrasp2018 calculations VV+CV+C+CC RCI and
from the calculations using the RSMBPT method
(CV+C+CC RCI (RSMBPT)) are compared.
The calculations using the RSMBPT method are
carried out in five steps, including 95, 99, 99.5,
99.95 and 100% of CV, C and CC correlations.
In the last line of the table, the root-mean-square
(rms) with the results of regular Grasp2018 cal-
culations (VV+CV+C+CC RCI int) are given. By
adding the most important K’ configurations of
CV, C and CC correlations step by step, the results
converge to the results of regular Grasp2018 cal-
culations and, in the case of ‘100% int, are in an
excellent agreement with them. The difference in
this case is only up to 2 cm™', which may be due
to the omission of CV, C and CC correlations with
a contribution less than 1.0E-11 (as mentioned
in the discussion of Table H). When CSFs with
a smaller impact of the CV, C and CC correlations
are omitted, the energy levels are similar to these
from the regular computations. For example, if
99% (case 99% int) of the CV, C and CC corre-
lations are included in the computations, the rms
with VV+CV+C+CCRClI int results is 68.93 cm™,
and the largest difference between the results of
these calculations is only up to 200 cm™. Mean-
while, the space of CSFs decreases almost twice
comparing to the space in the VV+CV+C+CC
RCI int computations.

4.2. Calculation of E1 transition properties

We computed the transition properties of El
transitions between the abovementioned levels.
The calculations are done in a regular way by in-
cluding different types of correlations and using

the RSMBPT method. Below we present a com-
parison of the line strengths using different com-
putational schemes (Table E and Figs. [7, 8). We
also give the statistics for all computed transitions
(Figs. 9, 10). The uncertainties of the line strengths
obtained in this work are estimated based on
the quantitative and qualitative evaluation (QQE)
method described in Refs. [, @].

Table E shows the comparison of the line
strengths, cancellation factors (CF) [@], the G_,
parameters [@, @], and the estimated accuracy
for few strongest and for few weaker El transi-
tions using different computational schemes.
The Table also includes lines for each transition
marked with ‘NIST” as these data are critically
evaluated by the NIST [@]. These lines con-
tain the observed wavelength and line strength
with the critically evaluated accuracy. As seen
from the Table, using the regular computational
scheme, the CV and C correlations have the larg-
est impact on the line strengths, adding the CC
correlations the line strengths change a little. By
using the RSMBPT method it is seen that by in-
cluding the most important K’ configurations
of CV, C and CC correlations, the line strengths
agree with the regular Grasp2018 calculations
when CV, C and CC correlations are included. Ex-
cluding the CV, C, CC correlations with the small-
est impact (cases 99.95, 99.5, 99 and 95% in Ta-
ble E), we see that the line strength almost does
not change compared to the results when all these
correlations are included. From Table E we also see
that the CFs in both (Babushkin and Coulomb)
gauges change when a new group of correlations
is added to the regular Grasp2018 calculations.
Using the RSMBPT method, the values of CF are
stable when the most important configurations of
CV, C and CC correlations in a different amount
are included and the configurations of CV, C and
CC correlations with the smallest impact are ne-
glected. The change in the values of CFs indicates
the importance of added correlations in the cal-
culations. By using a regular method for inclu-
sion of a new group of correlations we can have
such cases (as the last transition in Table E) when
the values of line strength from two computation-
al strategies disagree more than the accuracy class
assigned to transition. This situation was observed
for some transitions assigned to the best accuracy
classes. For example, the line strength of the 3s3p
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Table 7. The energy levels (in cm™) and differences (in cm™) between the CV+C+CC RCI (RSMBPT) and

VV+CV+C+CC RCI int energies (AE

CC correlations are included in the computations.

(CV+C+CC RCI (RSMBPT))-(VV+CV+C+CC RCI int)

) for Fe XV are given when CV, C and

VV+CV+C+CC RCI AE(cvicoc RCIRSMBPT))-(VV+CV+C+CCRCT int)
No. | State ) . . 99.5% 99.95% 100%
int 95% 95% int 99% 99% int | 99.5% it 99.95% it 100% int

1 3821S, 0.00 0.00
2 3s3p°P§ 23354032 233545.68  269.24  268.63 9871  97.70  86.10 85.17 2891 28.03 1.04 0.09
3 3s3p°P¢ 239375.10  239374.03 26.84 2650 -7.13  -751 3.96 3.70 1.67 1.67 0.12 0.08
4 3s3p°P3 253516.07 25351396 107.85 107.63  30.50  30.16  19.82 19.50 6.30 6.19 0.18 0.02
5 3s3p'PY 351898.33  351902.47 -27.93 -25.84 -28.78 -26.15 -1529 -12.44  -3.59 -0.11  -3.38 0.12
6 3p’ Py 554968.78  554974.57 95.62 95.68 22.36 22.31 24.60 24.59 11.46 11.55 -0.24 0.00
7 3p*'D, 559941.33  559942.25 -20.74 -19.25 -27.95 -26.27 -31.06 -29.26 -11.44 -9.34 249 0.06
8 3p?°P, 564996.75  565003.73  138.27  138.53  42.76 4284 18.54 18.66 4.03 428  -0.40 0.02
9 3p*°P, 582176.70  582178.78 -66.36  -6291 -73.46 -69.68 -58.10 -54.15 -1552 -11.27 -4.81 0.02
10 3p* 'S, 660330.60  660342.39 65.22 69.98 7.13 1231 1.12 6.44 0.21 572 =587 0.00
11 3s3d °D, 67882491  678840.52 67.36 68.47 27.54 29.14 -1.80 -0.05 -5.67 -3.55 -2.51 0.22
12 3s3d°D,  679858.14  679866.77 -149.64 -146.78 -6498 -61.02 -49.64 -4530 -23.87 -1862 -6.26 0.49
13 3s3d°D;  681491.61 681500.60 130.96  130.78  36.85  36.83  23.13 23.19 =937 -8.87  -0.61 0.12
14 3s3d 'D, 762740.50  762766.85 -111.94 -105.07 -65.59 -5596 -52.66 -42.20 -27.10 -14.63 -14.53 0.88
15 3p3d°F 928114.93 92811510 113.06 112.34 5694 56.38  39.81 39.68 4.38 4.85 0.15 0.70
16 3p3d°Fs 938012.53  938011.87 326.85  325.85 109.11 108.03  67.58 66.59 13.83 13.08 1.01 0.27
17 3p3d'D§  948336.30  948336.10 70.58 7043 1500  14.99 3.96 413 -3.70 -3.08 -0.53 0.17
18 3p3d °F§ 94951891  949522.20  491.20  489.86 184.61 183.15 10942 10798  21.67 20.32 1.42 0.02
19 3p3d°Dy 982747.87  982753.66  167.53 167.81 35.77 36.50 28.10 29.35 0.41 2.38 -1.87 0.52
20 3p3d°Ps  983414.19  983419.13 93.92 9479 2646 2794  10.51 1216  -3.24 -0.81  -2.70 0.11
21 3p3d°D§  994766.16 99477096  227.51 22831  80.34 81.70  51.84 53.48 3.12 537 -223 0.20
22 3p3d°P;  995810.67 995830.15 357.05  358.06 190.21 191.71 105.13 106.82  27.32 2911 -1.47 0.27
23 3p3d°*Py  996159.03  996164.10 83.70 8484 -246 -044 512 -219 -6.24 -248  -3.38 0.60
24 3p3d°D§ 996528.17  996531.04 10.93 11.81 -4.60 -3.05 -6.93 -5.06 -7.33 -4.61 -2.48 0.38
25 3p3d'F§ 1063165.87 1063181.63  250.48  252.57 9345 96.76  61.00 64.93 6.67 11.86  -3.75 1.76
26 3p3d 'Pf 1075588.36 1075615.85 114.33  117.36  36.38  42.97  16.88 2445  -823 1.69  -9.78 0.91
27 3d?°F, 1370482.58 1370490.05 -144.36 -14248 -70.01 -66.81 -52.54 -48.78 -23.73 -19.12 -5.47 0.68
28 3d*°F; 1372174.34 1372183.44 21740 21720 52.82 5280  25.63 2574  -5.82 -550  -0.66 0.11
29 3d*°F, 1374227.07 1374232.26  121.04  122.80 766 1051 -19.51 -16.53 -13.99 -1042 -4.30 0.04
30 3d*'D, 1403034.70  1403050.53 -209.47 -205.43 -90.09 -83.82 -68.86 -62.04 -30.38 -22.18 -9.53 0.51
31 3d?°P, 1405785.81 1405798.86  143.08  145.54 3499  37.82  22.03 25.00  -0.39 285  -3.50 0.00
32 3d*°P, 1406426.34 1406437.76  171.29 173.07 40.32 42.53 8.35 10.72 -9.14 -6.58 -2.81 0.10
33 3d*'G, 1407784.46 1407795.52 -15.12 -1090 3856  40.54  10.65 1284 -8.82 -5.68  -5.58 0.22
34 3d?°P, 1407960.31 1407968.23 -13.82 -13.14 -91.34 -85.61 -73.08 -67.10 -30.13 -2350 -7.15 0.08
35 3d*'S, 1488174.02 1488197.47 113.10  120.88 27.43 3589 1596 2461  -6.97 221 -9.84 0.00

Neses 5864226 2241061 1030900 717523 1777303 1227367 2033820 1413852 2607682 1840752 3033360 2166376

rms (in cm™) 174.40 174.39 69.49 68.93 45.63 44.70 14.69 12.35 491 0.46

°P9 - 3p* 'D, transition in both (VV+CV+C RCI
int and VV+CV+C+CC RCI int) strategies is as-
signed to the AA accuracy class. In the regular
Grasp2018 calculations in the VV+CV+C RCI
int strategy, the line strength in the Babushkin

gauge is 9.14394E-02 a.u., meanwhile when CC
correlations were added (VV+CV+C+CC RCI
int strategy), the line strength in the Babushkin
gauge is equal to 8.99187E-02 a.u. Whereas using
the RSMBPT method when the CV, C and CC
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Table 8. Comparison of the computed wavelengths (A in A), line strengths (S in a.u.), cancellation factors,
and the G_, parameters using different strategies. S, is the line strength in the Babushkin gauge, S_ is the line
strength in the Coulomb gauge. The name of the computational scheme CV+C+CC RCI(RSMBPT) is marked

as RCI (RSMBPT) in the Table.

Strategy | A | S | Sc | CF; | CF¢ | Gs_o | Acc.
3s3p 'PP - 3s3d'D,
VV RCI 243.09 1.50687E+00 1.58586E+00 7.07E-01 7.98E-01 5.60659E+01 B+
VV+CV+CRCI int 243.59 1.43765E+00 1.43571E+00 6.59E-01 3.83E-01 -2.09378E+03 AA
VV+CV+C RCI 243.60 1.43765E+00 1.43577E+00 6.59E-01 3.83E-01 -2.15614E+03 AA
VV+CV+C+CC RCI int 243.39 1.44376E+00 1.44403E+00 6.60E-01 3.83E-01 1.48600E+04 AA
VV+CV+C+CC RCI 243.40 1.44367E+00 1.44383E+00 6.59E-01 3.82E-01 2.59365E+04 AA
RCI (RSMBPT) 100% 243.40 1.44367E+00 1.44370E+00 6.60E-01 3.82E-01 1.44867E+05 AA
RCI (RSMBPT) 100% int 243.39 1.44376E+00 1.44402E+00 6.60E-01 3.83E-01 1.55237E+04 AA
RCI (RSMBPT) 99.95% 243.40 1.44371E+00 1.44386E+00 6.60E-01 3.83E-01 2.62284E+04 AA
RCI (RSMBPT) 99.95% int 243.40 1.44380E+00 1.44420E+00 6.60E-01 3.83E-01 1.00242E+04 AA
RCI (RSMBPT) 99.5% 24341 1.44379E+00 1.44434E+00 6.60E-01 3.83E-01 7.46809E+03 AA
RCI (RSMBPT) 99.5% int 24341 1.44389E+00 1.44471E4+00 6.60E-01 3.84E-01 4.96748E+03 AA
RCI (RSMBPT) 99% 24341 1.44392E+00 1.44493E+00 6.60E-01 3.84E-01 4.04749E+03 AA
RCI (RSMBPT) 99% int 243.41 1.44401E+00 1.44530E+00 6.60E-01 3.85E-01 3.15843E+03 AA
RCI (RSMBPT) 95% 243.44 1.44460E+00 1.44562E+00 6.60E-01 3.88E-01 4.03134E+03 AA
RCI (RSMBPT) 95% int 243.44 1.44470E+00 1.44599E+00 6.60E-01 3.89E-01 3.16669E+03 AA
NIST [18] 243.794 1.5E+00 D
3p*°P, - 3p 3d °Ds
VV RCI 241.04 1.20534E+00 1.28606E+00 5.05E-01 5.42E-01 4.43456E+01 B+
VV+CV+C RCI int 241.98 1.11498E+00 1.10652E+00 4.57E-01 2.59E-01 -3.70647E+02 AA
VV+CV+C RCI 241.98 1.11499E+00 1.10653E+00 4.57E-01 2.59E-01 -3.70698E+02 AA
VV+CV+C+CC RCI int 242.37 1.12568E+00 1.12684E+00 4.60E-01 2.60E-01 2.76724E+03 AA
VV+CV+C+CC RCI 242.37 1.12551E+00 1.12672E+00 4.60E-01 2.60E-01 2.64286E+03 AA
RCI (RSMBPT) 100% 242.37 1.12557E+00 1.12677E+00 4.60E-01 2.60E-01 2.66400E+03 AA
RCI (RSMBPT) 100% int 242.37 1.12569E+00 1.12684E+00 4.60E-01 2.60E-01 2.76393E+03 AA
RCI (RSMBPT) 99.95% 242.36 1.12575E+00 1.12637E+00 4.60E-01 2.61E-01 5.16207E+03 AA
RCI (RSMBPT) 99.95% int 242.36 1.12586E+00 1.12647E+00 4.60E-01 2.61E-01 5.21141E+03 AA
RCI (RSMBPT) 99.5% 242.31 1.12621E+00 1.12583E+00 4.60E-01 2.63E-01 -8.45922E+03 AA
RCI (RSMBPT) 99.5% int 242.31 1.12631E+00 1.12595E+00 4.60E-01 2.63E-01 -8.81998E+03 AA
RCI (RSMBPT) 99% 242.28 1.12673E+00 1.12562E+00 4.60E-01 2.64E-01 -2.87810E+03 AA
RCI (RSMBPT) 99% int 242.28 1.12684E+00 1.12575E+00 4.60E-01 2.64E-01 -2.94103E+03 AA
RCI (RSMBPT) 95% 242.20 1.12779E+00 1.12878E+00 4.61E-01 2.67E-01 3.22883E+03 AA
RCI (RSMBPT) 95% int 242.20 1.12789E+00 1.12891E+00 4.61E-01 2.67E-01 3.13652E+03 AA
NIST [18] 242,100 1.1E+00 D
353d 'D, - 3p 3d 'F3

VV RCI 332.94 2.21030E+00 2.22678E+00 7.54E-01 3.54E-01 3.81508E+02 AA
VV+CV+C RCI int 332.60 2.11114E+00 2.12236E+00 7.04E-01 1.93E-01 5.34174E+02 AA
VV+CV+C RCI 332.61 2.11102E+00 2.12186E+00 7.04E-01 1.93E-01 5.53027E+02 AA
VV+CV+C+CC RCI int 332.87 2.12945E+00 2.20008E+00 7.10E-01 2.00E-01 8.73887E+01 B+
VV+CV+C+CC RCI 332.86 2.12925E+00 2.19992E+00 7.10E-01 2.00E-01 8.73377E+01 B+
RCI (RSMBPT) 100% 332.86 2.12938E+00 2.20043E+00 7.10E-01 2.00E-01 8.68847E+01 B+
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Table 8. (Continued)

Strategy | 2 Ss S | CRy | CFc Gso | Acc.
RCI (RSMBPT) 100% int 332.87 2.12948E+00  2.20021E+00  7.10E-01 2.00E-01 8.72685E+01 B+
RCI (RSMBPT) 99.95% 332.84 2.12948E+00  2.19936E+00  7.10E-01 2.00E-01 8.83069E+01 B+
RCI (RSMBPT) 99.95% int 332.84 2.12957E+00  2.19922E+00  7.10E-01 2.00E-01 8.85934E+01 B+
RCI (RSMBPT) 99.5% 332.75 2.12964E+00  2.19978E+00  7.11E-01 2.01E-01 8.79876E+01 B+
RCI (RSMBPT) 99.5% int 332.75 2.12973E+00  2.19970E+00  7.11E-01 2.01E-01 8.82038E+01 B+
RCI (RSMBPT) 99% 332.70 2.12982E+00  2.19981E+00  7.11E-01 2.01E-01 8.81840E+01 B+
RCI (RSMBPT) 99% int 332.70 2.12991E+00  2.19976E+00  7.11E-01 2.01E-01 8.83611E+01 B+
RCI (RSMBPT) 95% 332.47 2.13084E+00  2.19738E+00  7.11E-01 2.04E-01 9.26952E+01 B+
RCI (RSMBPT) 95% int 332.48 2.13093E+00  2.19740E+00  7.11E-01 2.04E-01 9.27792E+01 B+
NIST [18] 332.854 2.3E+00 D
3s3d°D, - 3p 3d°F;
VV RCI 374.19 1.30935E+00  1.26293E+00  8.84E-01 4.79E-01 -7.76641E+01 B+
VV+CV+C RCI int 372.59 1.26123E+00  1.28633E+00  8.20E-01 2.31E-01 1.44239E+02 A+
VV+CV+CRCI 372.59 1.26107E+00  1.28489E+00  8.20E-01 2.30E-01 1.51858E+02 A+
VV+CV+C+CC RCI int 373.10 1.26785E+00 1.31118E+00  8.26E-01 2.36E-01 8.48785E+01 B+
VV+CV+C+CCRCI 373.10 1.26760E+00  1.31038E+00  8.26E-01 2.35E-01 8.59229E+01 B+
RCI (RSMBPT) 100% 373.10 1.26782E+00 1.31121E+00  8.26E-01 2.36E-01 8.47539E+01 B+
RCI (RSMBPT) 100% int 373.10 1.26785E+00  1.31117E+00  8.26E-01 2.36E-01 8.49020E+01 B+
RCI (RSMBPT) 99.95% 373.06 1.26783E+00  1.31075E+00  8.26E-01 2.36E-01 8.56675E+01 B+
RCI (RSMBPT) 99.95% int 373.06 1.26786E+00  1.31071E+00  8.26E-01 2.36E-01 8.57989E+01 B+
RCI (RSMBPT) 99.5% 372.98 1.26787E+00  1.31123E+00  8.26E-01 2.37E-01 8.48162E+01 B+
RCI (RSMBPT) 99.5% int 372.99 1.26790E+00  1.31124E+00  8.27E-01 2.37E-01 8.48627E+01 B+
RCI (RSMBPT) 99% 372.90 1.26795E+00 1.31118E+00  8.27E-01 2.38E-01 8.50709E+01 B+
RCI (RSMBPT) 99% int 372.90 1.26798E+00  1.31119E+00  8.27E-01 2.38E-01 8.51050E+01 B+
RCI (RSMBPT) 95% 372.60 1.26875E+00  1.30879E+00  8.28E-01 2.45E-01 9.17442E+01 B+
RCI (RSMBPT) 95% int 372.61 1.26877E+00  1.30885E+00  8.28E-01 2.45E-01 9.16625E+01 B+
NIST [18] 372.798 1.4E+00 C
353d°D? -3d? °F,

VV RCI 264.09 1.77897E+00  1.86728E+00  6.83E-01 4.99E-01 5.90906E+01 B+
VV+CV+CRCl int 263.42 1.71766E+00  1.70682E+00  6.36E-01 2.63E-01 -4.46079E+02 AA
VV+CV+CRCI 263.42 1.71761E+00  1.70689E+00  6.36E-01 2.63E-01 -4.51378E+02 AA
VV+CV+C+CC RCI int 263.53 1.72784E+00  1.73836E+00  6.41E-01 2.68E-01 4.66749E+02 AA
VV+CV+C+CCRCI 263.53 1.72755E+00  1.73736E+00  6.41E-01 2.68E-01 5.00049E+02 AA
RCI (RSMBPT) 100% 263.53 1.72767E+00  1.73759E+00  6.41E-01 2.68E-01 4.94699E+02 AA
RCI (RSMBPT) 100% int 263.53 1.72784E+00  1.73834E+00  6.41E-01 2.68E-01 4.67579E+02 AA
RCI (RSMBPT) 99.95% 263.54 1.72770E+00  1.73812E+00  6.41E-01 2.68E-01 4.71248E+02 AA
RCI (RSMBPT) 99.95% int 263.54 1.72785E+00  1.73874E+00  6.41E-01 2.68E-01 4.50894E+02 AA
RCI (RSMBPT) 99.5% 263.58 1.72787E+00  1.73975E+00  6.42E-01 2.70E-01 4.13263E+02 AA
RCI (RSMBPT) 99.5% int 263.58 1.72798E+00  1.74031E+00  6.42E-01 2.71E-01 3.98493E+02 AA
RCI (RSMBPT) 99% 263.58 1.72811E+00  1.73756E+00  6.42E-01 2.71E-01 5.19328E+02 AA
RCI (RSMBPT) 99% int 263.58 1.72822E+00  1.73814E+00  6.42E-01 2.72E-01 4.94635E+02 AA
RCI (RSMBPT) 95% 263.61 1.72863E+00  1.73934E+00  6.43E-01 2.75E-01 4.58395E+02 AA
RCI (RSMBPT) 95% int 263.60 1.72870E+00  1.73975E+00  6.43E-01 2.75E-01 4.44366E+02 AA
NIST [18] 263.685
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Table 8. (Continued)

Strategy A Sk Sc | CF; | CF¢ Gs-o Acc.
3p3d 'Fo-3d G,
VV RCI 291.65 2.47785E+00  2.50553E+00  7.86E-01 3.61E-01 2.55295E+02 A+
VV+CV+C RCI int 289.94 2.39937E+00  2.39099E+00  7.42E-01 2.20E-01 -8.08404E+02 AA
VV+CV+CRCI 289.93 2.39926E+00  2.39116E+00  7.42E-01 2.20E-01 -8.35282E+02 AA
VV+CV+C+CCRCl int 290.18 2.41917E+00  2.47806E+00  7.51E-01 2.28E-01 1.18305E+02 A
VV+CV+C+CC RCI 290.18 2.41869E+00 2.47617E+00  7.50E-01 2.28E-01 1.21141E+02 A
RCI (RSMBPT) 100% 290.18 2.41894E+00 2.47673E+00  7.50E-01 2.28E-01 1.20497E+02 A
RCI (RSMBPT) 100% int 290.18 2.41918E+00  2.47796E+00  7.51E-01 2.28E-01 1.18529E+02 A
RCI (RSMBPT) 99.95% 290.19 2.41910E+00  2.47727E+00  7.50E-01 2.28E-01 1.19762E+02 A
RCI (RSMBPT) 99.95% int 290.19 2.41924E+00 2.47797E+00  7.51E-01 2.28E-01 1.18630E+02 A
RCI (RSMBPT) 99.5% 290.22 2.41940E+00  2.47670E+00  7.51E-01 2.30E-01 1.21529E+02 A
RCI (RSMBPT) 99.5% int 290.22 2.41950E+00  2.47729E+00  7.51E-01 2.30E-01 1.20526E+02 A
RCI (RSMBPT) 99% 290.23 2.41970E+00  2.47552E+00  7.51E-01 2.30E-01 1.24713E+02 A
RCI (RSMBPT) 99% int 290.23 2.41979E+00  2.47612E+00  7.51E-01 2.30E-01 1.23607E+02 A
RCI (RSMBPT) 95% 290.26 2.42061E+00  2.48296E+00  7.51E-01 2.32E-01 1.11922E+02 A
RCI (RSMBPT) 95% int 290.26 2.42065E+00  2.48329E+00  7.51E-01 2.32E-01 1.11417E+02 A
NIST [18] 290.239
3s*'S, -3s3p 'P¢
VV RCI 281.82 7.56430E-01  7.73811E-01 6.96E-01 9.16E-01 1.25218E+02 A
VV+CV+C RCl int 283.99 7.29184E-01 7.38054E-01 6.49E-01 3.85E-01 2.34642E+02 A+
VV+CV+CRCI 283.99 7.29185E-01  7.38056E-01 6.49E-01 3.85E-01 2.34601E+02 A+
VV+CV+C+CCRCl int 284.17 7.31169E-01 7.40656E-01 6.51E-01 3.87E-01 2.20107E+02 A+
VV+CV+C+CC RCI 284.17 7.31146E-01  7.40965E-01 6.51E-01 3.87E-01 2.12736E+02 A+
RCI (RSMBPT) 100% 284.17 7.31157E-01  7.40734E-01 6.51E-01 3.87E-01 2.18044E+02 A+
RCI (RSMBPT) 100% int 284.17 7.31169E-01 7.40655E-01 6.51E-01 3.87E-01 2.20131E+02 A+
RCI (RSMBPT) 99.95% 284.17 7.31158E-01  7.40735E-01 6.51E-01 3.87E-01 2.18053E+02 A+
RCI (RSMBPT) 99.95% int 284.17 7.31170E-01 7.40660E-01 6.51E-01 3.87E-01 2.20060E+02 A+
RCI (RSMBPT) 99.5% 284.18 7.31194E-01  7.41184E-01 6.51E-01 3.88E-01 2.09130E+02 A+
RCI (RSMBPT) 99.5% int 284.18 7.31206E-01  7.41113E-01 6.51E-01 3.88E-01 2.10878E+02 A+
RCI (RSMBPT) 99% 284.19 7.31229E-01 7.41656E-01 6.51E-01 3.89E-01 2.00463E+02 A+
RCI (RSMBPT) 99% int 284.19 7.31241E-01  7.41586E-01 6.51E-01 3.89E-01 2.02046E+02 A+
RCI (RSMBPT) 95% 284.19 7.31539E-01 7.41170E-01 6.52E-01 3.95E-01 2.16958E+02 A+
RCI (RSMBPT) 95% int 284.19 7.31549E-01 7.41128E-01 6.52E-01 3.95E-01 2.18128E+02 A+
NIST [18] 284.164 7.75E-01 B
3s*'S, -3s 3p P9

VV RCI 418.51 4.45691E-03  4.76312E-03  4.90E-03 3.14E-03 4.32771E+01 B+
VV+CV+CRCl int 417.21 4.62691E-03  4.88159E-03 5.00E-03 1.91E-03 5.34981E+01 B+
VV+CV+CRCI 417.21 4.62689E-03  4.88153E-03  5.00E-03 1.91E-03 5.35056E+01 B+
VV+CV+C+CC RCl int 417.76 4.61939E-03  4.88880E-03 5.00E-03 1.92E-03 5.06082E+01 B+
VV+CV+C+CCRCI 417.75 4.62086E-03  4.89484E-03  5.00E-03 1.92E-03 4.98157E+01 B+
RCI (RSMBPT) 100% 417.76 4.61967E-03  4.88114E-03 5.00E-03 1.92E-03 5.20843E+01 B+
RCI (RSMBPT) 100% int 417.76 4.61935E-03  4.88875E-03 5.00E-03 1.92E-03 5.06101E+01 B+
RCI (RSMBPT) 99.95% 417.75 4.61863E-03  4.88024E-03  5.00E-03 1.92E-03 5.20462E+01 B+
RCI (RSMBPT) 99.95% int 417.75 4.61834E-03  4.88798E-03 5.00E-03 1.92E-03 5.05559E+01 B+
RCI (RSMBPT) 99.5% 417.75 4.60860E-03  4.83438E-03  4.99E-03 1.91E-03 5.98457E+01 B+
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Table 8. (Continued)

Strategy | A | Sk Sc | CF; | CF¢ Ggy Acc.
RCI (RSMBPT) 99.5% int 417.75 4.60837E-03  4.84216E-03  4.99E-03 1.91E-03 5.78640E+01 B+
RCI (RSMBPT) 99% 417.77 4.61154E-03  4.83255E-03 4.99E-03 1.91E-03 6.11318E+01 B+
RCI (RSMBPT) 99% int 417.77 4.61139E-03  4.84048E-03  4.99E-03 1.91E-03 5.90466E+01 B+
RCI (RSMBPT) 95% 417.71 4.60610E-03  4.77256E-03  4.99E-03 1.91E-03 8.03799E+01 B+
RCI (RSMBPT) 95% int 417.71 4.60598E-03  4.77933E-03  4.99E-03 1.91E-03 7.72679E+01 B+
NIST [18] 417.258 4.4E-03 E
3s3p°PS - 3p*'D,

VV RCI 311.58 8.23087E-02  8.38464E-02  4.22E-02  3.80E-02 1.53516E+02 A+
VV+CV+C RCI int 312.30 9.14394E-02  9.21971E-02  4.68E-02  2.51E-02 3.43440E+02 AA
VV+CV+C RCI 312.30 9.14393E-02  9.21978E-02  4.68E-02  2.51E-02 343121E+02 AA
VV+CV+C+CC RCI int 311.95 8.99187E-02  9.02371E-02  4.58E-02  2.44E-02 8.00907E+02 AA
VV+CV+C+CC RCI 311.95 8.99279E-02  9.02746E-02 4.58E-02 2.44E-02 7.35835E+02 AA
RCI (RSMBPT) 100% 311.95 8.99269E-02  9.02691E-02  4.58E-02  2.44E-02 7.45469E+02 AA
RCI (RSMBPT) 100% int 311.95 8.99186E-02  9.02377E-02  4.58E-02  2.44E-02 7.99079E+02 AA
RCI (RSMBPT) 99.95% 311.96 8.99048E-02  9.02339E-02  4.58E-02  2.44E-02 7.74715E+02  AA
RCI (RSMBPT) 99.95% int ~ 311.96 8.98970E-02  9.02085E-02  4.58E-02  2.44E-02 8.18511E+02 AA
RCI (RSMBPT) 99.5% 311.98 8.98396E-02  9.03289E-02 4.58E-02 2.44E-02 5.21358E+02 AA
RCI (RSMBPT) 99.5% int 311.98 8.98320E-02  9.02995E-02  4.58E-02  2.44E-02 5.45616E+02 AA
RCI (RSMBPT) 99% 311.97 8.97719E-02  9.04057E-02  4.57E-02  2.45E-02 4.02754E+02 AA
RCI (RSMBPT) 99% int 311.96 8.97646E-02  9.03791E-02  4.57E-02  2.45E-02 4.15255E+02 AA
RCI (RSMBPT) 95% 311.99 8.97523E-02  9.00675E-02  4.58E-02  2.48E-02 8.07672E+02 AA
RCI (RSMBPT) 95% int 311.99 8.97460E-02  9.00471E-02 4.58E-02 2.48E-02 8.45346E+02 AA
NIST [18] 312.556 8.3E-02 E

correlations are included, the line strength in
the Babushkin gauge is close to the 8.9E-02 a.u.
value. Therefore, using the RSMBPT method to
include the CV, C, and CC correlations is more
efficient than the regular method because it al-
lows one to estimate the impact of the correla-
tions and include the most important correlations
types rather than the whole group of correlations.
The use of the RSMBPT method for the inclusion
of CV, C, and CC correlations also significantly re-
duces the CSF space and therefore for a more com-
plex atom or ion allows inclusion of all types of
correlations which is not always possible in regu-
lar Grasp2018 calculations. Thus, the QQE method
provides a more accurate estimate of the errors in
the case when the RSMBPT method is used.

The line strengths from the present computa-
tions are similar to those provided by NIST. Most of
theline strengths agree better when only V'V correla-
tions are included (VV RCI strategy), and not when
all types of the correlations are taken into account.
Also it should be mentioned that the line strengths

given in the NIST are assigned with a worse accu-
racy class than in the present computations.

Figure [/ presents the comparison of all line
strengths from the regular Grasp2018 calculations
(VV+CV+C+CC RCI int) with the results from
the CV+C+CC RCI (RSMBPT) int strategy when
100% of the CV, C and CC correlations are in-
cluded. The line strengths are compared in the Ba-
bushkin gauge. It is seen that the line strengths
obtained using the RSMBPT method reproduce
the results of the regular calculations. The line
strengths between the two calculations fully agree
for most of the transitions, and differ only to with-
in 0.18% for some of the weakest transitions.

Figure 8 presents the comparison of all line
strengths from the regular Grasp2018 calcula-
tions (VV+CV+C+CC RCI int) with the results
from the CV+C+CC RCI (RSMBPT) int strategy
when 99.95 and 99% of the CV, C and CC cor-
relations are included. The weakest transition
(S = 1.07E-08) is excluded in the case of 99%, as
the natural logarithm ratio for this transition is
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Fig. 7. Comparison of all line strengths from the regular Grasp2018 calculations
(VV+CV+C+CC RCI int) with the results from the CV+C+CC RCI (RSMBPT)
int strategy when 100% of the CV, C and CC correlations are included. The line
strengths are compared in the Babushkin gauge.
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Fig. 8. Comparison of all line strengths from the regular Grasp2018 calculations
(VV+CV+C+CC RCI int) with the results from the CV+C+CC RCI (RSMBPT)
int strategy when 99.95 and 99% of the CV, C and CC correlations are included.
The line strengths are compared in the Babushkin gauge.

equal to 0.36. The line strengths between the reg-  tions is only up to 1.5%, except for two transitions
ular Grasp2018 calculations and the calculations  where it reaches 2.8 and 5.2%. In the case of 99%,
using the RSMBPT method (cases 99.95 and 99%)  the strongest transitions agree very well between
agree well for most of the transitions. In the case two calculations, the discrepancy for weaker tran-
of 99.95%, the discrepancy between two calcula- sitions reaches up to 12% for some lines.
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Figure 9 shows the statistical distribution of all
computed E1 transitions by accuracy classes accord-
ing to the computational schemes using the regular
Grasp2018 method. It can be seen that the inclusion
of the CV and C correlations improves the agree-
ment between the Babushkin and Coulomb gauges.
By adding the CC correlations, the number of tran-

80 VV RCI
VV+CV+C RCI int
VV+CV+C RCI

60 VV+CV+C+CC RCI int
VV+CV+C+CC RCI

4
40
20
0
E D D+ C C+

sitions assigned with the AA accuracy class slightly
reduces, and in the B+ accuracy class it increases.
Figure 10 shows the statistical distributions of all
computed E1 transitions by accuracy class when CV,
C and CC correlations with a different percentage of
correlations is included using the RSMBPT method
and using the regular Grasp2018 computational

B B+ A A+ AA

Accuracy class

Fig. 9. Distribution of E1 transitions over the accuracy classes ac-
cording to the computational schemes.

70
VV+CV+C+CC RCI
VV+CV+C+CC RCI int
60 CV+C+CC RCI(RSMBPT) 100%
CV+C+CC RCI(RSMBPT) 100% int
CV+C+CC RCI(RSMBPT) 99.95%
50 CV+C+CC RCI(RSMBPT) 99.95% int
CV+C+CC RCI(RSMBPT) 99.5%
40 CV+C+CC RCI(RSMBPT) 99.5% int
> CV+C+CC RCI(RSMBPT) 99%
CV+C+CC RCI(RSMBPT) 99% int
30 CV+C+CC RCI(RSMBPT) 95%
CV+C+CC RCI(RSMBPT) 95% int
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C+
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Fig. 10. Distribution of E1 transitions over the accuracy classes according to
the computational schemes. The results from regular Grasp2018 calculations are
compared with the results using RSMBPT when a different amount of CV, C and

CC correlations are included.
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scheme. It is seen that the transition distributions
by accuracy classes are similar in both these me-
thods, and remain similar when the configurations
of CV, C and CC correlations with the smallest im-
pact are neglected.

5. Conclusions

The method based on the Rayleigh-Schrodinger per-
turbation theory in an irreducible tensorial form is
extended to take into account the CC correlations,
providing the expressions for the estimation of these
correlations. This extended RSMBPT method allows
one to estimate the contribution of any K’ configura-
tion of the CV, C and CC correlations with a preferred
core and virtual orbitals sets for any atom or ion.

The combination of RCI and the RSMBPT meth-
ods works perfectly for the calculations of energy and
transition parameters when the CV, C and CC cor-
relations are included using the RSMBPT method,
as shown in the examples. The developed method
has an advantage over the regular method because it
allows the selection of the most relevant CV, C and
CC correlations and significantly reduces the CSF
space. Furthermore, the RSMBPT method allows
the inclusion of correlations that cannot be included
using the regular Grasp2018 calculation scheme.
The abovementioned advantages of the RSMBPT
method over the regular method would be useful
and beneficial for calculations involving complex at-
oms and ions.

The change in CFs was observed when anew group
of correlations was added to the regular Grasp2018
calculations. Meanwhile using the RSMBPT me-
thod, the values of CF are stable when the most im-
portant configurations of CV, C and CC correlations
with a different amount of these correlations are in-
cluded. This indicates that the most important cor-
relations are included in the calculations and the line
strengths would not change. Thus, the QQE method
should provide a more accurate estimate of the un-
certainties when the RSMBPT method is used. This
is another advantage of the developed method over
the regular Grasp2018 approach.
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ANTROSIOS EILES RELEJAUS IR SREDINGERIO TRIKDYMU TEORIJA GRASP2018
PROGRAMINIAM PAKETUI: KAMIENO-KAMIENO KORELIACIJOS*

G. Gaigalas, P. Rynkun, L. Kitoviené

Vilniaus universiteto Teorinés fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

GRASP programinis paketas grindZiamas reliatyvisti-
nés superpozicijos metodu, kuriuo tikslas skai¢iavimai
atliekami, kai j juos jtraukiamos valentinés—valentinés,
kamieno-valentinés, kamieno ir kamieno-kamieno
elektrony koreliacijos per konfigtiraciniy baseny funk-
cijas (KBF). Tai veda prie didelés KBF erdvés, todél
pagal §] metodg sunkiau atlikti pacius skaic¢iavimus.
Darbe pristatomas tolesnis antrosios eilés trikdymuy
teorija gristo metodo (G. Gaigalas, P. Rynkun, L. Kito-
viené, Second-order Rayleigh-Schrodinger perturba-
tion theory for the Grasp2018 package: Core-valence
correlations, Lith. J. Phys. 64(1), 20-39 (2024), https://
doi.org/10.3952/physics.2024.64.1.3) ir (G. Gaiga-
las, P. Rynkun, L. Kitoviené, Second-order Rayleigh-
Schrédinger perturbation theory for the GrRAsp2018
package: Core correlations, Lith. J. Phys. 64(2), 73-81
(2024), https://doi.org/10.3952/physics.2024.64.2.1),

* Skiriama Siuolaikinés teorinés fizikos Lietuvoje pradininko, ,Lietuvos
fizikos rinkinio® iniciatoriaus akad. Adolfo Jucio (1904-1974) gimimo ir

mirties sukaktims paminéti.

skirto svarbiausioms KBF, turin¢ioms didziausig jtaka
kamieno-valentinéms, kamieno ir kamieno-kamieno
koreliacijoms, surasti, tobulinimas. Sis metodas pa-
remtas reliatyvistinés superpozicijos ir stacionariosios
antrosios eilés Reléjaus ir Srédingerio daugelio kiiny
trikdymy teorijos neredukuotinéje tensorinéje formoje
metody deriniu.

Darbe pateiktame trikdymy teorijos i$plétime at-
sizvelgiama j elektrony kamieno-valentines, kamieno
ir kamieno-kamieno koreliacijas, kai atomas ar jonas
turi bet kokj valentiniy elektrony skai¢iy. O | kitas
koreliacijas jame atsizvelgiama tradiciniu badu. Tai
leidzia gerokai sumazinti KBF erdve skai¢iuojant su-
détingy atomy ir jony jvairias charakteristikas. Taip
pat darbe pateikiamas pavyzdys, parodantis, kaip Siuo
metodu atlikti Fe XV jono energijos spektro struktiiros
ir E1 Suoliy charakteristiky skai¢iavimus.



