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The problems of open classical systems usually correspond to a motion of a test particle that interacts with a large 
number of bath oscillators. Often, the test particle itself can be considered a harmonic oscillator. For such compos-
ite systems, exact numerical solutions are available, but they can become increasingly costly for a large number of 
bath oscillators. Here we take inspiration from the recent work on open quantum systems and investigate the ap-
plicability of the frozen-modes approximation to such classical systems. This approach assumes that some part of 
the low-frequency bath modes are frozen, thus only their initial values need to be considered. We show that by apply-
ing the frozen-modes approximation one can significantly increase the accuracy of the perturbative multiple-scales 
solution, especially for slow baths. This approach provides a good accuracy even for strong system–bath couplings, 
a regime that is not accessible to straightforward applications of the perturbation theory. We also suggest a rule for 
the splitting of spectral density to the fast and slow bath modes. We find that our approach gives excellent results for 
the ohmic spectral density, but it could be applied for other similar spectral densities as well.
Keywords: classical oscillators, multiple-scales method, frozen modes

1. Introduction

Open systems constitute one of the cornerstones of 
modern physics. Though it is open quantum sys-
tems that are often in the forefront of the current 
research [1–3], open classical systems remain rele-
vant to this day [4]. This is because the classical de-
scription is accurate enough for a large number of 
problems and, additionally, it is sometimes the only 
description feasible for larger systems. Indeed, clas-
sical mechanics is the  foundation for molecular 
dynamics simulations  [5]. In addition, classical 
treatment can give identical results to quantum 
treatment for some problems considering a  mol-
ecule interacting with a solvent [6].

In typical problems of open classical systems, 
a test particle moving in some potential V(X) is as-
sumed to interact with an infinite set of harmon-
ic oscillators, which constitute the  environment. 
The  test particle is then considered the  system of 
interest. In some cases, more than one test particle 

is considered  [7]. Usually, the  entire supersystem 
(system+bath) is described by the  Caldeira–Leg-
gett [8] or the Ford–Kac [9] models. The choice of 
V(X) depends on the problem under consideration.

Often the  system of interest can also be con-
sidered as a  harmonic oscillator  [6, 7, 10]. Re-
markably, it has been demonstrated that quantum 
states can be mapped to classical harmonic oscil-
lators [11, 12]. In addition, it has been shown that 
a classical model reproduces many qualitative fea-
tures of a quantum description for energy transfer 
problems [13].

For a  composite system of coupled harmonic 
oscillators, an exact solution is available by trans-
forming the problem to the normal mode repre-
sentation. In such a case, the bath is described by 
a  finite number of oscillators. For larger baths, 
however, diagonalization of the  relevant matri-
ces leads to a  prohibitive computational cost. 
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Therefore, a straightforward numerical solution of 
the systems of ordinary differential equations is of-
ten performed instead, using Runge–Kutta or simi-
lar methods. Even so, calculations for very large 
baths (hundreds of oscillators) become expensive. 
For this reason, it is worthwhile to investigate ap-
proximate methods that could provide good accu-
racy at a fraction of the computational cost, at least 
for some parameter regimes.

In the  case of open quantum systems, a  very 
interesting theoretical approach was proposed in 
Ref.  [14]. It was shown in that work that freez-
ing some of the  bath modes, i.e. disregarding 
their dynamical evolution, could lead to a signifi-
cantly increased range of validity for a second-or-
der quantum master equation. Such an approach 
then involves sampling the  initial conditions of 
the  frozen modes by a Monte-Carlo (MC) proce-
dure, which is trivially parallelizable. In this way, 
the couplings of the frozen modes to the system of 
interest are taken into account non-perturbatively. 
Later, similar ideas were utilized for simulations of 
linear and nonlinear optical spectra [15]. More re-
cently, the  frozen-modes approximation was used 
to increase the  applicability of the  small polaron 
quantum master equation  [16]. Here we take in-
spiration from these works and apply the  frozen-
modes approximation to the case of a classical sys-
tem. We present a detailed theoretical framework 
that combines the perturbative method of multiple 
scales with the frozen-modes approximation. Our 
numerical investigations show that application of 
the  frozen-modes approach can significantly in-
crease the  accuracy of the  perturbative solution 
even for strong system–bath couplings. This ap-
proach is especially useful for slow baths, but can 
be beneficial for faster baths as well.

2. Methods

In this work, we consider a  case where the  main 
(system) oscillator is coupled to a large number of 
bath oscillators. The composite system is described 
by the Hamiltonian of Caldeira–Leggett type [8]:
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Here (–P,  –X) denote the momentum and the coordi-
nate of the main oscillator with frequency Ω and 
mass M, while (–pj, 

–xj) denote the  momenta and 
the coordinates of the bath oscillators that interact 
with the main oscillator. The masses and frequen-
cies of the bath modes are mj and –ωj, respectively. 
The parameters cj are the  interaction coefficients 
between the main oscillator and the bath modes. 
The  number of bath modes is N. To simplify 
the  theoretical description, we hereafter switch 
to dimensionless variables: / ,P P M= Ω  

/ / ,X X M= Ω   / ,j j j jp p m ω=   / ,j j j jx x m ω=   
3 , / , .j j j j j jd c m M tω ω ω τ= Ω = Ω = Ω  

We further assume that the  distribution of 
the  couplings with the  bath is determined by 
the dimensionless spectral density function, which 
is defined as
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dimensionless reorganization energy that defines 
the overall coupling strength between the system 
and the bath, and ωc is the cut-off frequency. Such 
type of spectral density is widely used in the simu-
lations of open quantum systems [17–20].

After having switched to non-dimensional vari-
ables and parameters, the dimensionless Hamilto-
nian, defined as H = –H /(ℏΩ), is expressed in the fol-
lowing way:

 (4)
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tem of equations is obtained:
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Here dots denote the full derivative with respect to 
the dimensionless time τ. We suppose that the ini-
tial conditions are the following: X(0) = X0, P(0) = 0, 
xj (0)  =  xj0, pj (0)  =  pj0. We will be interested in 
the mean squared displacement for the main oscilla-
tor, ⟨D(τ)⟩ = ⟨(X(τ) – X0)

2 ⟩, with averaging done over 
the initial conditions of the bath oscillators.

Assuming that the  interaction coefficients are 
small, in other words, supposing that there is 
a  small parameter ε ≪  1 next to dj, we use per-
turbation theory to solve the system of equations 
given in Eq. (5). Perturbation theory is a method 
for solving problems that is based on the expan-
sion of the  desired solution in terms of a  power 
series in a small parameter. In our case, we want to 
find an expression for the coordinate of the main 
oscillator as X(τ) = X(0) (τ) + εX(1)  (τ). As a  result, 
the following expression is obtained:
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Note that here and in all the  solutions presented 
later we immediately set back ε  =  1. In order to 
achieve more accurate results, the second-order so-
lution for X(τ) can be obtained:
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Here A, B, Cj and Dj are constants that can be deter-
mined using the initial conditions of the problem. 
However, terms multiplied by τ appear in the sec-
ond-order solution. Thus, for larger values of τ, 

the solution increases without a bound, which is an 
unphysical result. This means that the  perturba-
tion theory has a rather limited range of validity 
for this problem.

As a consequence, we chose to use the multiple 
scales method to find X(τ) instead of the regular 
perturbation theory. The  multiple scales method 
is a technique used to construct approximate solu-
tions for perturbation problems, in which the so-
lutions depend simultaneously on widely different 
scales 21–23]. For a considered oscillator system, 
we can expect that one scale would be related to 
the frequency of the unperturbed main oscillator, 
while another scale would correspond to the fre-
quency shift due to the interaction with the bath. 
In order to find the second-order solution for X(τ), 
we postulated three time scales: τ0  =  τ, τ1  =  ετ, 
τ2 = ε2τ. We assumed that a solution we are look-
ing for is of the form X = X(0) (τ0, τ1, τ2) + εX(1) (τ0, 
τ1, τ2) + ε2X(2) (τ0, τ1, τ2). This approach results in 
the solution for the system of equations given in 
Eq. (5) that is not unique. This implies that more 
conditions have to be imposed to completely de-
termine the  solution. This freedom allows us to 
prevent the occurrence of the  linearly increasing 
secular terms. The resulting solution reads as
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 (8)

This expression can be used for calculations. It 
is desirable, however, to express the  final an-
swer in terms of integrals over the  spectral den-
sity function. To this end, further approxima-
tions were made. First of all, it was assumed 
that ωj ≪ 1. This essentially means that the  fre-
quency of the  system oscillator is much greater 
than the  frequencies of the  bath modes. Thus, 
the  terms in which 1  –  ωj

2 appear, ωj
2 was ne-

glected. This approximation is necessary in order 
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to avoid divergence when ωj  →  1. Additionally, 

the  term 
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cos arguments was simplified in the following way: 
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the expression of X(τ) turns to
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The accuracy of the last expression is considerably 
greater than the  solution of the  regular perturba-
tion theory given in Eq. (6) – this is illustrated in 
Fig. 1.

Next, we averaged the  squared displace-
ment of the  system oscillator’s coordinate, 
D(τ) = (X(τ) – X0)

2, over the initial coordinates and 
momenta of the bath modes,
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Fig. 1. Comparison of the  exact numerical solution 
of the time-dependence of the coordinate of the main 
oscillator and solutions obtained using the  regular 
perturbation theory (Eq. (6)) and the method of mul-
tiple scales (Eq. (9)). Here N = 5, X0 = –1, ωj = 0.25, 
dj = 0.3, xj0 = 1, pj0 = 1.

where we have introduced the  dimension-
less inverse temperature β  =  ℏΩ/(kBT). Here 
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is the  partition function of the  bath. The  inte-
grals are over all the coordinates and momenta of 
the bath oscillators. Thus, we obtain
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Here we used the definition of the reorganization 
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sion for the  ⟨D(τ)⟩ obtained using the method of 
multiple scales.

The goal of our paper is to investigate the applicabil-
ity of the frozen-modes approximation. Therefore, in 
the next step we assume that Nfrozen bath modes are fro-
zen, which in essence means that their coordinates and 
momenta do not change in time. Thus, the total num-
ber of modes is Nfrozen + Nfast = N. For the notational 
clarity we renamed the  interaction coefficients of 
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the frozen modes from dj to gj and once again applied 
the method of multiple scales to solve the system of 
equations given in Eq. (5), which  transforms to
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As a result, the following expression was obtained:
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Here λslow and λfast are defined as the  reorganiza-
tion energies for slow and fast modes, respectively, 
and slow1 2 .W λ= +  This last expression was used 
in further numerical calculations, and it is one of 
the  main results of the  present paper. Moreover, 
it can be rewritten in terms of the  dimensionless 
spectral density as
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The mode-freezing approximation is expected 
to improve the accuracy of the pure multiple-scales 
solution at least in some parameter regimes, because 
the interaction coefficients of the frozen modes are 
included non-perturbatively to all orders.

3. Results

The system of equations given in Eq. (5) was nu-
merically solved in Python with the  Scipy.inte-
grate package using the  ODEINT function. To 
obtain the  initial conditions and numerically 
estimate the value of the  integral in Eq. (10), we 
used the  Monte Carlo method, with the  initial 
conditions for the bath oscillators being sampled 
from the  Gaussian distribution. We have discre-
tized the  bath into 200 modes. This number of 
modes was sufficient for convergence since the re-
sults do not change if the  number of modes is 
increased. The  frequencies of the  bath were de-
fined as ωj  =  j  ·  ∆ω. Here ∆ω  =  ωmax/N and ωmax 
is the  maximum frequency of the  bath, that was 
chosen according to the cut-off frequency ωc such 
that the condition ωj < 1 holds for all j = 1, 2, ..., N. 
This implies that the considered values of the cut-
off frequency ωc must be chosen in such a  way 
that ωmax <  1. Let us now define the  parameters 
dj. Having in mind the  frequency dependence of 
the spectral density function in Eq. (2), we can de-
fine the  unnormalized interaction coefficients as 

2( ) / ,j j jd I ω ω= where I (ωj) is the chosen spectral 
density function evaluated at ωj. In order to prop-
erly normalize the interaction coefficients, we use 
the definition of reorganization energy:

 (15)
2 2
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Collecting terms next to every ωj gives 
2 2 2

1
2 / .

N

k k j j
k

d d dλ ω
=

  = 
 

∑    Substituting 2( ) / ,j j jd I ω ω=

and taking the square root we find that the normal-
ized interaction coefficients are given by

2

1

2 ( )
.

( ) /

j
j N

j k k
k

I
d

I

λ ω

ω ω ω
=

=

∑
 (16)

For the MC averaging we used 2000 realizations, 
as increasing the  number of realizations further 
barely changes the results. Note that for all calcu-
lations we set X0 to 0, which simplifies the analy-
sis. In addition, in such a case ⟨D(τ)⟩ ~ 1/β, thus 
the β parameter just sets the overall scale of ⟨D(τ)⟩. 
The  behaviour of the  system is then determined 
only by two parameters of the  spectral density, 
λ and ωc.

To separate the  high-frequency (fast) and 
the low-frequency (slow) modes, we used a splitting 
function S(ω, ω∗). Thus, the spectral density is writ-
ten as I(ω) = Ifast (ω) + Islow (ω), where Islow (ω) = S(ω, 
ω∗) I(ω) and Ifast (ω)  =  (1  –  S  (ω, ω∗)) I(ω). Here 
the  parameter ω∗ controls how many of the  bath 
modes will be frozen. We analyzed two splitting 
functions. First, following the  literature  [14–16, 
24], we defined the splitting function as follows:

22
*

* *

*

1– , ;
( , )

0, .

S
ω ω ω

ω ω ω

ω ω

   <   =     


≥

  (17)

The second splitting function we analyzed was 
a simpler one:

S (ω, ω∗) = θ (ω∗ – ω). (18)

This type of splitting essentially means that the spec-
tral density is cut vertically and all the modes that 
have a frequency smaller than a certain chosen fre-
quency ω∗ are frozen, see illustration in Fig. 2. Even 
though the  splitting function in Eq. (17) is being 
widely used in literature, no significant difference 
in the accuracy of the solutions was noticed for dif-
ferent splitting functions. Therefore, in further cal-
culations the function in Eq. (18) was used owing 
to its simplicity.

The first point to consider is whether the fro-
zen-modes approach indeed improves the  ac-

curacy of the  multiple-scales solution. This is 
demonstrated in Fig.  3, which shows a  com-
parison between the exact numerical results and 
the results obtained by using the method of mul-
tiple scales and the  mode-freezing method. We 
observe that excellent accuracy can be obtained 
using the  frozen-modes approximation. Similar 
improvements were observed for other parameter 
values, once a  suitable value of ω∗ is chosen. In-
deed, the  quality of the  results strongly depends 
on the value of ω∗.

For each specific parameter value set, there is 
a value ω∗

best, for which the most accurate results are 
obtained. The utility of the mode-freezing approach 
would be greatly increased, however, if a  suitable 
value for ω∗ could be identified a priori. After hav-
ing analyzed numerous sets of parameters, we de-
veloped a  simple rule for choosing the parameter 
ω∗, which was defined as follows:

* 0.03, 0.3,
0.05, 0.3.

λ
ω

λ
<

=  ≥
 (19)

To illustrate the applicability of this rule, we ana-
lyzed various combinations of λ and ωc values. Fig-
ures 4–6 show the results corresponding to ωc equal 
to 0.035, 0.05 and 0.1, respectively. In all the calcu-
lations using the mode-freezing approximation, ω∗ 
was selected based on the rule of Eq. (19).

Let us first consider the  case of ωc  =  0.035, 
which is demonstrated in Fig.  4. This corre-
sponds to the slow bath regime – the system os-
cillator interacts mostly with the  low-frequency 

Fig. 2. Spectral density and its decomposition via 
rectangular splitting. All the  low-frequency modes 
(green region) are frozen. Here ωc  =  0.07, λ  =  0.1, 
ωmax = 0.6, ω∗ = 0.06.
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Fig. 3. Comparison of the exact numerical solution and solutions for ⟨D(τ)⟩ obtained using the method of mul-
tiple scales (Eq. (11)) and the mode-freezing method (Eq. (13)) for two parameter value sets.

Fig. 4. Comparison of the exact numerical solution and solutions for ⟨D(τ)⟩ obtained using the method of 
multiple scales (Eq. (11)) and the mode-freezing method (Eq. (13)). Here X0 = 0, ωc = 0.035, β = 1, ωmax = 0.3.
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Fig. 5. Comparison of the exact numerical solution and solutions for ⟨D(τ)⟩ obtained using the method of 
multiple scales (Eq. (11)) and the mode-freezing method (Eq. (13)). Here X0 = 0, ωc = 0.05, β = 1, ωmax = 0.4.
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bath modes. For small reorganization energies 
(λ = 0.1), the method of multiple scales provides 
a reasonable accurate solution. However, it over-
estimates the  amplitude of the  oscillations. On 
the other hand, the mode-freezing approximation 
provides an excellent accuracy, since its solution 
is barely distinguishable from the exact numerical 
solution. As the reorganization energy increases, 
the accuracy of the method of multiple scales over-
estimates the  amplitude of the  oscillations even 
more. Application of the frozen modes approach 
results in a very good accuracy for all considered 
λ values, but the  accuracy decreases slightly as 
λ increases.

Next, we consider the  case of a  slightly faster 
bath with ωc = 0.05, which is illustrated in Fig. 5. It 
can be seen that a faster bath results in a somewhat 
faster decay of the oscillation amplitude for ⟨D(τ)⟩. 
The method of multiple scales results in a solution 

that is reasonably accurate only for the  small-
est considered reorganization energy value. 
The larger the reorganization energy is, the more 
this approach overestimates the  amplitude of 
the  oscillations. The  frozen-modes approach 
gives accurate results for all considered reorgani-
zation energies. Nonetheless, it can be observed 
that it is slightly less accurate than in the case of 
slower bath.

Finally, we will consider the case of an even fast-
er bath with ωc = 0.1, shown in Fig. 6. The overall 
tendencies are similar to the cases of slower bath. 
In this case, however, the frozen-modes approach 
no longer gives an excellent accuracy when the re-
organization energy is large (see Fig.  6(c, d)). 
Nonetheless, it is still considerably more accurate 
than the method of multiple scales.

For the sake of simplicity, in Figs. 3–6 we set 
the initial coordinate of the main oscillator to be 
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equal to zero. However, the  frozen-modes ap-
proach not only gives accurate results for X0 = 0 
but also for any other value of X0, see Fig.  7. 
For small values of λ both the  method of mul-
tiple scales and the  frozen-modes approxima-
tion gives excellent results as the blue, green and 
orange lines are almost indistinguishable. As 
the reorganization energy increases, the oscilla-
tion frequency of the solution of the method of 
multiple scales starts to differ from the frequen-
cies of the exact numerical solution and the os-
cillation amplitude is overestimated. Meanwhile, 
the  frozen-modes approximation gives signifi-
cantly more accurate results than the method of 
multiple scales even for large λ values.

Although we have mostly focused on the ohmic 
spectral density (Eq. (3)), it is interesting to see if 
our results can be generalized. Thus, a  few other 
forms of the spectral density were analyzed, albeit 

in less detail. Using the super-ohmic spectral den-
sity defined as

3

( ) exp – ,
2 c c

I πλ ω ωω
ω ω
   

=    
   

 (20)

the frozen-modes approach results in a good accu-
racy for small values of parameter ωc (not shown). 
As can be seen in Fig.  8, when ωc is increased, 
the accuracy is worse not only for the rule of Eq. 
(19), but also for the best possible choice of ω∗.

A similar situation was observed in the case of 
the spectral density defined as

2

c c

2( ) exp – .I πλω ωω
ω ω

  
 =  
   

 (21)

It is illustrated in Fig. 9 that for large ωc values 
the rule of Eq. (19) does not result in an accurate 

Fig. 6. Comparison of the exact numerical solution and solutions for ⟨D(τ)⟩ obtained using the method of mul-
tiple scales (Eq. (11)) and the mode-freezing method (Eq. (13)). Here X0 = 0, ωc = 0.1, β = 1, ωmax = 0.8.
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Fig. 7. Comparison of the exact numerical solution and solutions for ⟨D(τ)⟩ obtained using the method of mul-
tiple scales (Eq. (11)) and the mode-freezing method (Eq. (13)) when X0 ≠ 0. Here ωc = 0.05, β = 1, ωmax = 0.4.

Fig. 8. Results for ⟨D(τ)⟩ in the case of super-ohmic spectral density (Eq. (20)) when choosing the best ω∗ (left) 
and choosing ω∗ according to the rule of Eq. (19) (right). Here X0 = 0, ωc = 0.07, λ = 0.5, β = 1, ωmax = 0.8.
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solution using the  frozen-modes approach. Using 
the  ω∗

best
  gives somewhat more accurate results, 

which are still worse than for the  ohmic spectral 
density.

On the  other hand, if we consider a  spectral 
density defined as

 (22)
c c

( ) exp – ,
2

I πλω ωω
ω ω

 
=   

 

quite accurate results can be achieved for all val-
ues of ωc for both choosing the best ω∗ and using 
the rule of Eq. (19), as illustrated in Fig. 10.

It must be noted, however, that a  comparison 
of different spectral densities is not straightfor-

ward. Due to different functional forms, different 
numerical values of the cut-off frequency ωc must 
be used to guarantee that the spectral densities de-
cay enough for ω values approaching 1, which is 
the limit considered in this work. This is the reason 
for the at first glance surprising results that better 
accuracy using the  frozen-modes approximation 
can be obtained for the spectral density that decays 
slower (see Fig 10) than for the spectral density that 
decays faster (see Fig. 9) for larger ωc values.

4. Discussion

In this work, we have investigated the application 
of the frozen-modes approximation to the classical 

Fig. 9. Results for ⟨D(τ)⟩ in the case of the spectral density of Eq. (21) when choosing the best ω∗ (left) and 
choosing ω∗ according to the rule of Eq. (19) (right). Here X0 = 0, ωc = 0.3, λ = 0.5, β = 1, ωmax = 0.8.

Fig. 10. Results for ⟨D(τ)⟩ in the case of the spectral density of Eq. (22) when choosing the best ω∗ (left) and 
choosing ω∗ according to the rule of Eq. (19) (right). Here X0 = 0, ωc = 0.003, λ = 0.5, β = 1, ωmax = 0.6.

τ (a.u.)τ (a.u.)

⟨D
(τ

)⟩
 (a

.u
.)

⟨D
(τ

)⟩
 (a

.u
.)

ω*best = 0.135 ω* = 0.05

(a) (b)

τ (a.u.)τ (a.u.)

⟨D
(τ

)⟩
 (a

.u
.)

⟨D
(τ

)⟩
 (a

.u
.)

ω*best = 0.036 ω* = 0.05
(a) (b)



ISSN 1648-8504   eISSN 2424-3647  J. Vaičaitytė et al. / Lith. J. Phys. 64, 162–176 (2024)173

harmonic oscillator systems. Our results show that 
it can increase the accuracy of the solution obtained 
from the  method of multiple scales significantly. 
Now we would like to discuss the  applicability of 
the  present approach and general considerations 
arising from its application.

The first point is that the frozen-modes approxi-
mation is justified only for slow baths. Physically, 
the freezing of the bath modes can be expected not 
to influence the dynamics of the system oscillator 
if the  coordinates and momenta of these modes 
barely change in the time interval under considera-
tion. For this to be the case, the frequency of such 
modes have to be much smaller than the character-
istic frequency of the system motion. Here we have 
restricted our consideration to this limit by analyz-
ing only the spectral densities that decay to zero for 
frequencies approaching the frequency of the sys-
tem oscillator. For such situations the  frozen-
modes approximation can provide very accurate 
results even for very large reorganization energy 
values (see Fig. 4(d)), which would not be possible 
by straightforward applications of the perturbative 
approaches. For faster baths, however, the accuracy 
of this approach decreases, even though it remains 
much more accurate than the method of multiple 
scales (see Fig. 6(d)).

The application of the  frozen-modes approach 
involves choosing a value for ω∗, which determines 
the splitting of the spectral density to fast and slow 
modes. For ω∗  →  0, the  solution of the  multiple-
scales method is recovered, while for ω∗  →  ∞ all 
the bath modes are frozen. The accuracy of the fro-
zen-modes approach is strongly dependent on 
a suitable choice of ω∗. In this work, we investigated 
the choices for ω∗, but this required the availability 
of the exact solution. If such a solution is not avail-
able, it is not possible to select the value of ω∗ with-
out any additional considerations. Therefore, we 
suggested a simple rule of selecting this value that 
is given in Eq. (19). For the ohmic spectral density 
that was mostly considered here, this rule resulted 
in a very good accuracy for the frozen-modes so-
lution in most cases. Such types of rules were also 
suggested in the  application of the  frozen-modes 
approach for open quantum systems [14–16].

It must be noted that the  requirement that 
the bath frequencies should not approach the fre-
quency of the system oscillator limits the possible 
types of spectral densities, for which the  present 

approach could be useful. Another point to con-
sider is that the super-ohmic spectral densities also 
lead to less accurate solutions, because of small 
couplings with the low-frequency bath modes (see 
Fig. 8).

It is also worthwhile to consider the full frozen-
modes limit when all the  bath modes are frozen. 
In such a case, the expression for ⟨D(τ)⟩ reduces to

 (23)
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Two main points are of interest here. The first one 
is that the solution oscillates only with a single fre-
quency 1 2λ+  (and its second harmonic), which 
represents the renormalized frequency of the main 
oscillator. The second one is that the oscillation am-
plitude remains constant in time. This means that 
there is no energy exchange between the  system 
and the bath, and thus no relaxation or thermaliza-
tion effects.

Another interesting point is that the  mode-
freezing approximation is postulated in an ad hoc 
manner. To analytically motivate the mode-freez-
ing approximation, we have applied the  meth-
od of multiple scales for the  system of equations 
given in Eq. (5), supposing that the  frequencies 
ωj, rather than the couplings dj, are multiplied by 
a  small parameter ε. This essentially means that 
the frequencies of the bath modes are much smaller 
than the frequency of the main oscillator and thus 
should correspond to the frozen-modes limit. Con-
sequently, the following second-order solution was 
obtained:
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As can be seen, terms that are proportional to time 
τ appear, thus the solution diverges when time goes 
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to infinity. Therefore, this type of approach does 
not allow us to recover the frozen-modes approxi-
mation.

Finally, let us discuss the  more general ap-
plicability of the  frozen-modes approximation. 
Clearly, analytical solutions are possible only for 
the harmonic potentials of the system. Nonethe-
less, it is possible to apply the  frozen modes ap-
proach even for non-harmonic potentials. This 
could be done when solving the resulting system 
of equations numerically. When the bath is discre-
tized, the  lowest frequency modes could be fro-
zen, thus reducing the number of dynamical vari-
ables. It must be noted that this makes sense only 
when using the rectangular splitting of the spec-
tral density. Indeed, using the  splitting function 
given in Eq. (17) would not result in a reduction 
of bath modes needed to be included explicitly 
in the  calculations. For the  rectangular splitting 
of the spectral density, a comparison of the exact 
numerical solution for ⟨D(τ)⟩ and the  numeri-
cal solution when the  low-frequency modes are 
frozen is shown in Fig.  11. In the  numerical so-
lution with frozen modes, the  coordinates and 
momenta of the oscillators with frequencies lower 
than ω∗ = 0.05 are treated as constants (taken from 
the Gaussian distribution), while the rest are dy-
namical variables. As can be observed, the oscilla-
tion amplitude of the exact solution decays faster 
than the  one of the  solution with frozen modes. 

However, the numerical solution with frozen low-
frequency modes has a lower computational cost 
than the  exact one. Therefore, the  frozen-modes 
approximation provides a  controllable trade-off 
between the accuracy and the computational cost.

5. Conclusions

In this paper, we investigated the  applicability of 
the  frozen-modes approximation to the  classical 
harmonic oscillator systems. Our results show that 
for slow baths, freezing some of the  bath modes 
can increase the accuracy of the perturbative mul-
tiple-scales solution significantly. For faster baths, 
the frozen-modes solution is less accurate, but it re-
mains more accurate than the pure multiple-scales 
solution. To facilitate the  applicability of the  fro-
zen-modes approach, we devised a  rule for split-
ting the spectral density into slow modes that are 
frozen and fast modes that are not. While we have 
mostly focused on the ohmic spectral density, this 
approach could be useful for other similar spectral 
densities as well. For super-ohmic spectral densi-
ties, however, the frozen-modes approach does not 
provide a  considerable gain in accuracy. Finally, 
we have suggested that the frozen modes approach 
could also be useful for numerical simulations, as it 
provides a controllable trade-off between accuracy 
and computational cost. We believe that our con-
tribution will stimulate the application of the fro-
zen-modes approximation to the classical oscillator 
systems.
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Santrauka
Atvirųjų klasikinių sistemų uždaviniai dažniausiai 

yra susiję su dalelės, sąveikaujančios su dideliu skai-
čiumi aplinkos osciliatorių, judėjimu. Gana dažnai 
nagrinėjama dalelė irgi gali būti laikoma harmoniniu 
osciliatoriumi. Tokių sistemų uždavinį galima skai-
tiškai išspręsti tiksliai, bet reikalingi skaičiavimo pa-
jėgumai smarkiai auga didėjant aplinkos osciliatorių 
skaičiui. Pastaraisiais metais pasirodė darbų, kuriuose 
užšaldytų modų artinys buvo pritaikytas atvirosioms 
kvantinėms sistemoms. Šiame darbe mes pritaikome šį 
metodą atvirosioms klasikinėms sistemoms. Taikant šį 
artinį laikoma, kad dalis žemo dažnio aplinkos modų 

yra užšaldytos, todėl reikia įskaityti tik jų koordinačių 
ir judesio kiekių pradines vertes. Parodome, kad užšal-
dytų modų artinio taikymas gali gerokai praplėsti trik-
džių teorija paremto daugelio skalių metodo taikymo 
ribas. Gaunamas geras tikslumas net esant stipriai sis-
temos osciliatoriaus sąveikai su aplinkos osciliatoriais, 
ką yra sunku pasiekti taikant įprastus artutinius meto-
dus. Taip pat pasiūlome taisyklę, kaip padalinti aplin-
kos spektrinį tankį į greitas ir lėtas modas. Pasiūlytas 
metodas veikia itin gerai, kai sistema aprašoma ominio 
tipo spektriniu tankiu, bet jis yra tinkamas ir kitiems 
aplinkos modeliams.


