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Special polynomials (e.g. Hermite polynomials) are very important for the development of physics and math-
ematics. As a further extension of ordinary Hermite polynomials, we introduce new generalized Hermite polynomi-
als with three variables and find their generating functions using the operator ordering method in quantum optics.
Also, some new operator identities and integral formulas are obtained. As applications, the normalization, Wigner
functions and evolutions for certain quantum states are analytically presented. These analytical results can provide
conveniences for numerically studying the properties and applications of such quantum states.
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1. Introduction

As a kind of familiar special polynomials, Hermite
polynomials play a key role in physics and math-
ematics aspects. Generally, single-variable Hermite
polynomials H (x) possess the power-series expan-
sions [[1i]

2] p1(—1Y -
H,(0= 3 %m) , o

and the differential representations

n

0" _fiow
Hn(x)=§e | cos (2)

where their generating functions read
—%42xt S tz
e => —H, (x). 3)
n=0 "t-

Indeed, Hermite polynomials H (x) are treated as
eigenstates for the Hamiltonian in a harmonic oscil-
lator system [ﬁ]. Alternatively, two-variable Hermite
polynomials Hn)m(x, y) can be expressed as [E, H]

n+m

Hn,m (x, )= W I lierm0=
min(n,m) (4)
e
~ Nn-D)(m-1)! ’
—tt'+ix+t'y S tnt,m
C = Z n'm'Hn,m(x’ y)’ (5)
n,m=0 ¢+ .

where H  (x, y) can be interpreted as the transi-
tion amplitudes of number states for an evolving
forced Harmonic oscillator [E] and exist in light
propagating plane waves in graded-index media,
which helps to show the Talbot effect [E].

In this paper, as a further generalization of
the usual two-variable Hermite polynomials
H  (x, y), making the substitutions (-1)'> ¢’ and
x”*,lym’lé H (x/2)H (y/2) in the summation of
Eq. (4), where ¢ is an arbitrary real parameter, we
have

min(n,m) ]
¢'n'm!
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Thus, similar to Eq. (4), can the summation (6)
correspond to new interesting special polynomials?
If yes, what is their generating function and what
are some useful applications in quantum optics?
To tackle these problems, we shall make full use of
the operator ordering method in quantum optics to
find that the summation (6) is just a new general-
ized Hermite polynomial with three variables and
to present their specific generating functions. Also,
we discuss some important applications including
the normalization, Wigner function and the evolu-
tion of certain quantum states in quantum optics.

2. Deriving new generalized Hermite
polynomials and their generating function

To calculate the summation (6), we now make
the substitutions x—> X =~/2 (a+a") and
y—Y =2(b+b") in Eq. (4). Since [X, Y] = 0,
we can introduce the following identity defined as
Hmm(X, Y; ¢) (see the Appendix) that is

n+m

H, (X, Y;c)=
nan 2 Os" 0T

min(n,m)

_ z ¢'n\m!

= Nn—D)(m—1I)!

exp(gst+sX +7Y) | _, o=

Xy, (7)

Specially, when ¢ = -1, H (X, Y; ¢) becomes
the ordinary two-variable Hermite polynomials
H (X, Y). Using the normal ordering products of
the operators X" and Y", i.e.

X" =(-)":H, [%j LY = (=) H, (19 (8)

where normal ordering products refer to all the cre-
ation operators located on the left of all the annihi-
lation operators, marked with the symbol : [],

we thus obtain

min(n,m

N )t )
Mon X T30)= 3 e i

x:H, , [1£j H, , [1Z) . ©)
2 2

On the other hand, using the Glauber operator for-
mula, that is eA*? = efeBe 14 B2 = eBede-IB 412 gybject-
ing to [[A, B], A] = [[A, B], B] = 0, we give the nor-
mal ordering product of exp(¢st + sX + 7Y) as

exp(gsT+sX+ 1Y) =:exp(s+ T+ ¢sT+sX + 1Y) 1. (10)

So, substituting Eqs. (9) and (10) into Eq. (7), we
naturally have

n+m

os"ot"
+osT+sX + XY _,=

cexp(s’ +1° +

'y e ntmiciy
~ W(n-D)(m-1)!

x:H,, i£ H, , i£ .
2 2

Noting that two sides of Eq. (11) are in normal
ordering, by making the substitutions X - x and
Y > yin Eq. (11), we obtain

(11)

n+m

os"ot"
+GSTHSX+TY)| =

exp(s’ +1° +

|y oY mtmi™
= Nn-D(m-1)!

<H iz |0 [iZ].
2 2

Further, letting ix > x, iy > y, -is > sand -it > 1,
Eq. (12) therefore becomes

(12)

n+m

2 2
PR exp(—s" =7  +gsT+sx+7y)|_ =

(g (3o

Comparing with Eq. (4), thus we can define
new generalized Hermite polynomials H  (x,y; ¢)
with three variables as

min(n,m)

_ z c'nlm!

= N\(n—1)(m—1)!

]H]n,m(x’ y; g) =

- exp(—s> =72 +GST+SX+7TY)| =

os"ot"
x y
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min(n,m)
so their generating functions are

s c'nlm!

= (n=D!(m-1)!




75 ISSN 1648-8504 eISSN 2424-3647

An-peng Wang and Yi-xing Wang / Lith. J. Phys. 65, 73-80 (2025)

exp(—s> — 17 +CST+Ssx+7y) =

*© Snz_m
=2 = H,, (x5 (15)

n,m=0 n:m ‘

Obviously, the expansions of the polynomials
H, . (x, y; ¢) and their generating functions are
completely different from those of the usual Her-
mite polynomials H (x) and H_ (x, y). For exam-
ple, in the case of ¢ = 0, Eq. (14) becomes the pro-
duct of two single-variable Hermite polynomials,
that is H  (x, 3 0) = H (x/2) H (y/2). However,
the polynémials H, . (x, y;¢) obey some properties
(e.g. differential relation and recurrence relation)
similar to those of the usual Hermite polynomials
H  (x, y). Now, the differential relation is taken
as an example to illustrate. In terms of the relation
H' (x) =2mH__ (x)belonging to the single-variable
Hermite polynomials H (x), we can give the iden-
tities as

0
_]H[n,m (‘x’ y’ g): n]H[n—l,m(xﬂ J’a g))
Ox

0

— M, (xy;6)=ml, ., (x ;) (16)
oy

leading to the high-order differential relation of
H, (%, y5 ©), that is,

an'ﬂn'
——H (Xa 5 ):
axn 8ym n,m y g
nlm!

(=) lm =) 17)

]H[n—n’,m—m’(xﬁ y9 g)

It is thus clear that the polynomials H  (x, y; ¢)
possess the same forms as the well-known differen-
tial relations of the two-variable Hermite polynomi-
alsH  (x,) []. As verification, using the mathe-
matical method, taking the direct partial differential
of arbitrary order on the variables s and 7, we also
prove that exp(-s® - 7° + ¢s7 + sx + 7y) is just the gen-
erating function of the generalized Hermite polyno-
mials H (x, y; ¢), as shown in the Appendix.

3. New operator identities and integral formulas
related to ]HIn)m(x, ¥56)

In this section, we show how the generalized Her-
mite polynomials H  (x, y; ¢) and their generat-

ing functions can be used to deduce some new op-
erator identities and integral formulas. On the one
hand, making the substitutions x > iX and y > iY
in Eq. (14) and adding the term (-1)" (-i)"*", thus
comparing with Eq. (9), we obtain the normal or-
dering product of Hn) (X Y5 0), that s,

H, X Yo =) :H, (XiY;-¢):. (18)

From Egs. (7) and (15), using the Glauber op-
erator formula, we therefore have

o0

> 2 (X Eg)=
o nlm! "

=exp(gsT+sX +7Y) =
=iexp(—s’ — 1’ +¢sTHsX +7Y)i=
= Y S, (K E 9

n,m=0 n 'm .

(19)

where the symbol : i denotes the anti-normal or-
dering, having ordering rules that are opposite to
the normal ordering. In other words, anti-normal
ordering products require that all the annihilation
operators are to the left of all the creation opera-
tors. Thus, we find that the anti-normal ordering
product of H, .. (X, Y; ¢) reads

H, ., X, YV;0)=: H, . (X, Y;0) (20)
Also, noting the completeness of two-mode coordi-
nate states |g,, q,), i.e.

1= J..Lodqldqz | 41,9245, |

:““” dg,dg, e @0 @0 (21)

where Q, =(a+a')/ J2 is the coordinate op-
erator of a mode that yields the eigenequation
Q,lq,) = q,19,)» and Q, =(b+b")/~/2 of b mode
satisfies Q, | q,) = q,| g,) and using Eq. (18), we
thus obtain

How (X V36) =

= I Lo dg,dq, | 4,,9,)(q,9, 11, (24,29,;6) =

_ 1 L B
_;Ij_mdqldqz ‘e (00" ~(4:-0,) :H”,m(quzqz;g)_

=(-)"":H,,(1X,iY;~¢):. (22)
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Further, letting Q, > x and Q, > y, Eq. (22) can
lead to the following new integral formula

1 0 L —x V(g — )2
_IJ._ dqldq2 s (@) ~(e2702) :Hn,m(ququ;g)
7Z' 00

=(-1)""H, , (2x,i2y;~¢). (23)

4. Applications of the polynomials H  (x,y; c)

4.1. Normalization

The normalization of a quantum state is of
great importance for characterizing the prob-
ability of a successful preparation of this state.
Using the new generalized Hermite polynomials
H, (% 5 6), we can calculate the normalization of
some quantum states, e.g. the photon-modulated
state (ta + ra")*|0), where r and t are respectively
the ratios of the photon addition and subtraction
that yield the relation r* + #* = 1. Indeed, the state
(ta + ra")¥|0) can be generated theoretically via
repeatedly applying a coherent superposition of
photon addition and subtraction upon vacuum
state for k times l . ]. Noting that the normal
ordering product of the photon-modulated opera-

tor (ta + ra’)* reads []
;
+
ta+ra j:’ (24)

v (L) o (s
(ta+ra)—( 1\/:J .Hk(1\/2_ﬁ

we can therefore rewrite the state (ta + ra")*|0) as

(ta+raT)k|O>:[—i\/%7J Hk(l\/z_v]m) (25)

So, using the completeness of coherent states
|3), the generating function in Eq. (3) and the defi-
nition of the generalized polynomials H  (x, y;¢),
its normalization factor is obtained as

rt\ d’p . r*p LB e
S g ) -

ML LV
2k os*ort V4
XCXP( |BI - J\/z?ﬂ \/\?Sﬁ]

_Inf o* ex —52—72+2|r‘sr
2 ostort ¥ 7

k
g (00,21,
2 ]

which is just proportional to the new generalized
Hermite polynomials H, (0, 0; 2|r|/|t]) as a func-
tion of the ratio of r and t. Obviously, in terms of
the expansions of the polynomials H  (x, y; ¢) in
Eq. (14), the factor D, can be dlrectly calculated,
which avoids performmg the partial differential
operations.

s=7=0

(26)

4.2. Wigner functions for squeezed number states

The Wigner function for a quantum state in
the phase space is an indicator for determining
whether this state exhibits non-classicality. Here
we calculate the analytical Wigner functions for
the squeezed number states via the polynomials
H (x, y; ¢) and numerically investigate the non-
claésicality of the states.

A squeezed number state p can be gener-
ated theoretically via operating the single-mode
squeezing operator S(r) = exp[r(a*-a™)/2] with
the squeezing r on a pure number state p, = |i)(i.
Using the squeezing transformation S(r)a’S'(r) = a
cosh 7 + a' sinh r and the normal ordering product
of the vacuum projector, that is [0)(0] = : e=: [[L5],
we easily obtain the normal ordering form of p, i.e.

p,=c:H, (c,a"H, (ca) exp[c(a® +a*) - a'a] :, (27)
where ¢ = sechr (- tanh r)'/(2'1!), ¢, =1//=sinh 2r
and ¢, = (- tanh r)/2. In the coherent state
representatlon, the ngner operator reads
AMa, af) = mle 2|a|2J’d2 o)~ | ela-a'a) [E]
the Wigner function for the state p_is obtained as

W (a) = tr[p Aa, a”)]
2 1

= ce?f jd—?e“““'*’“*“') (-a'|:H,(c,a")x
T

x H, (c,a) exp[c,(a™ + a?) - a'a] : |&). (28)

Further, using the inner product (~a’|o’) = 2% I,
the generating function (2) and the mathematical

integration formula [E]
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2
jd—zexp(g|z|2 +Ez+nz*+gz’ +hz*2):
T

1 —cEn+Eh+n’
— exp[ FUAR: ngj’ (29)
N £ agh

which holds for Re(¢c + g + h) < 0, we have

2i

W(x)=d ~exp[—d (s> +77)+

0s'ot’
+dyst+ds+dir]|_._,=

=dd'H, (d,/d,,d;/d;d,/d}), (30)

where we have used the standard definition of
the polynomials H  (x, y; ¢), and the parameters
d,d, d,and d, are, respectively,

d=—"5"exp [2—Lj|a|2+
N 1-4c;

4c, ) 0

—2 (" +a )|,

1—4c§( )}

4 P 1/2 4 P
d=1-29% | g :_Lz,
1-4c;

+

1-4c;
J - de,(a” —2c,a) 31)
3 1-4c]

Obviously, the Wigner functions W (a) for
the squeezed number states are just related to
the generalized Hermite polynomials H, (d,/d,,
djd;d/d}).

Using the generalized Hermite polynomi-
als H  (x, y; ¢) as new “Wolfram’ functions like
usual Hermite functions, we can more easily
and quickly investigate the Wigner functions for
the squeezed number states in the phase space. In
Fig. [ll, we present the Wigner functions for differ-
ent values of i and r. Obviously, quantum squeez-
ing, as a non-classical property, always occurs and
gradually increases with the increase of the pa-
rameter r. Also, there is always an upward main
peak for an even i, while a downward main peak
for an odd i. This means that the Wigner functions
for the squeezed number states with an odd i pos-
sess stronger negativity, that is, these states have
stronger non-classicality.

4.3. Evolutions of squeezed number states for
amplitude decay

Amplitude decay as a purely dissipative noise can
cause the non-classicality deterioration in the sys-
tems. In the interaction picture, the density op-
erator evolution of the system for amplitude decay
reads

Fig. 1. The Wigner functions for the squeezed number states for different pa-
rameters i and r, where the values of (i, r) are, respectively, (a) (2, 0.03), (b) (2,

0.3), (c) (3,0.03) and (d) (3, 0.5).
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% = ’((2apzaT - aTapz - ptaTa),

& (32)

where « is the decay rate. Using the thermal entan-
gled state |n) = D(n)|n = 0) representation, where
| =0) = e*'@|0, 0) and D(z) = e is the displace-
ment operator, a' is a fictitious mode accompanying
the real photon creation operator a’, the operator
master Eq. (10) can be changed into the evolution
equation for p|1 = 0) = |p), and the Kraus operator-
sum reﬁesentation for p, is analytically obtained
|

as [,

pi=2M M, (33)
=0

where p is the density operator for the initial state,

and Mj = (7/j!)"?etegi is the Kraus operator cor-

responding to the operator p, for amplitude decay,

T=1-e"

Substituting the normal ordering product of
the density operator p_in Eq. (27) into Eq. (33)
leads to

0 Tj )
2, :cZ—e”““T”a’ :H,(c,a")H,(c,a)
o J! ' l

—kta'a

xexp[c,(a” +a’)—a'a]:a"e (34)

Inserting the completeness relations of coherent
states |a) and |B) into Eq. (34) and summing over
j, as well as using the generating function (2), we
have

82i _32g? dzadzﬂ 2 2
C - -C exXp| —|a| — +
6Slafl J‘J. 7Z_2 p|: | | | ﬁ |

‘e, (o + )T TaB*t2ca* s+ 2¢ fr]X

x:exp(ae™ad" + p*e ™ a—a'a)|

pi=

(35)

s=r=0 *

Further, using the mathematical integration
(29) repeatedly and the definition of the polynomi-
als ]H[n’m(x, ¥; ¢), we obtain

c 2i

a 2 2 2.2
= ——exp(—f,"s"— ftT+
P 1_402272 os'ot' p(=/, A

FSTH L8+ [T |y X

2Kt 2

G° 2 2 1_4C2T Tl

X Xp| ———=a +ta)———=aa|=
p[l—4c§7’2( ) 14671

= f KU BB A0

(36)

where the parameters f, f,, f, and f, read, respec-
tively,

_ sechrtanh’r
2/iIN1-T" tanh® r
(@™ +a*)e™ tanhr —2(1— 7T tanh* r)a'a
X1 exp 5 3 *
2(1-T tanh® r)

- )" AT
h= T 22| 2 /= 2 2 - >
1-7 ~ tanh~ r (1-7" tanh” r)sinh 2r
_ 2e™(a"+7Tatanhr)
(1-77 tanh® r)v/sinh 21

/s (37)

Clearly, the analytical evolutions of the squeezed
number states in the amplitude decay process can
be simplified as the forms of the generalized Her-

mite polynomials H,  (£./f,, fi/f;; £,/f).
5. Conclusions

In sum, using the operator ordering method in
quantum optics, we have introduced new general-
ized Hermite polynomials with three variables and
their generating functions, and presented some
new operator identities and integral formulas. As
applications, the normalization, Wigner functions
and evolutions of some quantum states can be sim-
plified as the forms of the new generalized Hermite
polynomials instead of calculating the high-order
partial differential, which brings us conveniences
for further discussing their properties and applica-
tions. In the near future, we believe that the new
generalized Hermite polynomials could be used
more widely in the fields of physics and mathemat-
ics like the usual Hermite polynomials, and more
new special polynomials with multiple variables
can also be found.

Appendix
The derivation of Eq. (7) reads as follows:

Hn,m (x9 Y; g) =
os"ot”

n
sX
€

exp(gst+sX +7Y)| _ =

am
€ +Y =
2 S 3o xpl(gs +Y)7]|_.,

an 5. m
=—1[e" (gs+Y)"]|,=
Os
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> (1) sy S| =

l ! n—1
= Os Os o

min(n,m)

c'n'm!

- ]Z(; IN(n—=1)\(m—1)!

n—Iyrm-I|

The derivation of Eq. (14) is the following:

n+m

os"ot"
n m

exp(—s* + sx
os”" p( )61'”’

i exp(—s” + H(ﬂj
5@”{ p(=s"+sx)H, >

min(r,m) -l "

n a 2 6 y + gsj

= exp(—s“+sx)—H | ——
= (I ) os™! o ) os" " [ 2

exp(—s’ =1’ +¢sT+sx+1y)|

s=r=0"

exp[—7* +(y+¢8)7]|, o=

s=0

O A= L E R AR
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