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The method based on the second-order perturbation theory to identify the most important configuration
state functions of various correlations is extended to include valence-valence correlations, which are described by
the three-particle Feynman diagram. The extension presented in this work complements the core-valence, core, core—
core and valence—valence correlations which were developed in a series of previous papers by G. Gaigalas, P. Rynkun,
and L. Kitoviené. Whereas these valence-valence correlations are described by the three-particle Feynman diagram,
additional developments to calculate the spin-angular parts of this diagram have been made to the program library

librang of the Grasp. As an example of the application of the developed method, the atomic calculations of
the energy structure for the Se IIT ion are presented. In the present work, this method was also used to select the most
significant configuration state functions and to use this basis to solve the self-consistent field equations.

Keywords: configuration interaction, spin-angular integration, perturbation theory, tensorial algebra, va-
lence-valence correlations, core—valence correlations, core correlations, core—core correlations

1. Introduction

An approach based on a combination of the relativis-
tic configuration interaction method and the station-
ary second-order Rayleigh-Schrodinger many-body
perturbation theory (RSMBPT) in an irreducible
tensorial form has recently been developed [Q]. It
allows us to analyze effectively core-valence (CV),
core (C), core—core (CC) and valence—valence (VV)
correlations using the General Relativistic Atomic
Structure Package GRASP [E] , which are described by
vacuum, one- and two-particle Feynman diagrams.
At the same time, this theory extends the potential of
the methodology [H, ﬂ] used worldwide.

The formulation of this theory is based on the
second-order linked-diagram theorem (Ref. [E],
Section 12.5.2), where the lines of the Feynman
diagrams corresponding to the electronic excita-
tions are linked together to form a solid line. Based
on this theorem, we further develop the capabilities

* Dedicated to the memory of professor Zenonas Rokus Rudzikas

(1940-2011) on the occasion of his birth anniversary.

of the theory in this paper. For completeness, we
include in the paper (Section 2) the three-particle
Feynman diagram describing the valence-valence
correlations. Since the spin-angular part of this dia-
gram is much more complex, a major part of the pa-
per is devoted to the calculation of the spin-angular
coeflicients (Section 3). The final expressions are
presented in Section 4 of the paper. Section 5 con-
tains the calculations showing that the expressions
and the examination of valence-valence correla-
tions presented in the paper are correct and usable.
The conclusions are presented in Section 6.

2. Relativistic second-order effective
Hamiltonian of an atom or ion in an irreducible
tensorial form for the remaining valence-
valence correlations

New Feynman diagrams are used to describe va-
lence-valence correlations, which were not avail-
able for core—valence, core and core-core correla-
tions. We discuss this in detail below.
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Fig. 1. The VV Feynman diagram of the second-order effective Hamiltonian for the third
and fourth types of valence-valence correlations (n, ¢ )j*m (n € )jn > (n € )j*m*" (n € )
Jr(nf)j and (n € )j¥m(nt)jn (npfp) j;p >(n € )jrmt(n )t (np{’p) j;”p*‘ (nt)j.

2.1. The third type of valence-valence correlations

The first two types of valence-valence correlations
are already described in the paper [H]. The third
type of valence-valence correlations is presented
through the Feynman diagram VV, from Fig. ,
where all lines with the double arrow of diagram
are renamed in the following way: m’ = p = m and
m=n=n"=p' =n.

(n,€)jrm(nt)jrm->
> (nmfm)J;:m*-l (nnfrl)j;:/}rz (nrff)jr' (1)

The expression of the three-particle Feynman
diagram VYV, like the diagrams described in
the previous papers [] , have the energy denomi-
nator D = X(g, - sup), where e, (sup) is the sin-
gle-particle eigenvalue associated with the down-
(up-)orbital lines to (from) the lowest interaction
line of the diagram. For example, the denominators
for the VV, diagram are

D=(e, + &, =€~ sp), (2)
where the indexes 7', p’ and p belong to the F' set,
and r belongs to the G set of orbitals [Iil].

Also, the following notations are used in the ex-
pressions of this diagram (see Fig. E]):

X, 7' j1) = CTNCPNE, j) <CTNICPI €, %
x R myjis my i), (3)

where R¥(n, j, n.j.n,Jj,n,Jj,) is the radial integral
of the electrostatic interaction between electrons

(Ref. [}, Eqs. (89) and (90)) and (£, ||C¥||€, /) is
the reduced matrix element of the irreducible ten-
sor operator C® in the jj-coupling.

In contrast to the previous diagrams (see
Refs. [Q]), this diagram has six operators of the
second quantization (three pairs of creation and
annihilation operators). This complicates finding
the values of the spin-angular coefficient of this
diagram and therefore makes the program library
librang [E] from GrasP unusable in the most gen-
eral case. This problem will be discussed and solved
in detail in the next section.

2.2. The fourth type of valence-valence correlations

The following type of the correlation
(n,€)jum (L) jun(n L) e >
> (nmfm)j;:mﬂ (nnfn)j:v'n_l (}’lpfp)j[‘:’p_l (nrfr)jr (4)

is described by the same diagram V'V, with four dif-
ferent sets of open lines with double-arrow indices.
Four diagrams A, A, A, and A, from Fig. @ repre-
sent all these different sets. For example, the Feyn-
man diagram A  has the following values: m = p' = n,
m' =p=mandn=n"=p. Therefore, to find the value
of this type of correlation, it is necessary to analyze all
four diagrams: A, A, A, and A,. But it is easy to see
that these diagrams can be converted into a search
for two diagrams A_ (A, = A )and A_(A_ = A)) with
amultiplier (1 +P(...) ), where the notation P(n=p)
means that the diagrams need a substitution of n
to p and p to n. This makes it considerably easier
to carry out the desired calculations. Note that A,
describes the direct part of the correlation under
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Fig. 2. The VV Feynman diagrams of the second-order effective Hamiltonian, expressing
the fourth type of valence-valence correlations (n, £ ) j*m (n £ ) j*» (nt)jre— (nt) Jum

(nnfrz)jy’rl (npgp) j;’;fl (nrfr)jr'

consideration, while A_ describes the exchange part
of the interaction. These A_ and A_ are the three-
particle Feynman diagram for which the program
library librang [H] from Grasp does not support
the calculation of spin-angular parts. It is, therefore,
necessary to extend the capabilities of this program
library to calculate the values of these diagrams.
This problem will be discussed and solved in detail
in the next section.

3. The spin-angular part of the three-particle
Feynman diagram contributing to valence-
valence correlations

The program library librang [E] from GRAsp
evaluates spin-angular coeflicients of any matrix
element with any number of open subshells for
any one- and/or two-particle operators. There-
fore, in previous papers [@], when developing
the combination of the second-order Rayleigh-
Schrédinger perturbation theory and the relativis-
tic configuration interaction method, there was no
problem in using it to find correlations described
by vacuum, one- and two-particle Feynman dia-
grams. However, problems with using this library
arise when dealing with three-particle operators.

n n m m

The program library librang [E] is based on
the spin-angular approach [, ]. The specifics of
this approach (factorization of standard values, in-
teraction strengths and recoupling matrices) makes
it easy enough to extend it to allow the program
library to find the spin-angular part of the VV,
Feynman diagram that is needed to find the cor-
relations that are being studied in this paper. This
can be done by using ideas published in the pa-
per [], where the second quantization operators
are grouped according to their action on the sub-
shell, i.e. so that the second quantization operators
act on the subshell m first, then on the subshell p (if
there are any), and finally on the subshell n. Below,
we show how this has been done for the different
types of correlations, separately.

3.1. The spin-angular part of the third type of
valence-valence correlations

In this case, the diagram VV, has the tensorial
structure

[[Lat > agm)® x ag > agm) 71" x

A 70
x [adm x o7, (5)
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where the subscript next to the operator indi-
cates the sequence number of the second quanti-
zation operator in the tensorial product. As seen
in the tensorial structure (5), two pairs of second
quantization operators are mixed, i.e. they consist
of second quantization operators acting on differ-
ent subshells. This is a pair consisting of operators
with sequence numbers 1 and 2 and a pair with
sequence numbers 5 and 6. This situation greatly
complicates the study of the spin-angular part of
this operator. But if we replace the tensorial struc-
ture (5) with the

~(Jm) (Um) 71
I:[GZJ xasl 19 %

O Y (0)
x[[agf")xaif")](x)x[a}’”xaé’")]w]“‘)] . (6)

then the situation would change and one could
easily extend the spin-angular approach [,
@] to the study of the three-particle opera-
tor for this type of correlations []. This can
be done by using the commutation rule of sec-
ond quantization operators. This rule allows
us to transform the tensorial product (5) into
(6) using commutations, resulting in a suitable
form for the calculation, in which we have a lin-
ear combination of two sets of tensorial opera-
tors. The first tensorial product [a\/») x al/»])
is the one to which we want to bring the alge-
braic expression, like in (6), and the second one
[[a;jn) = &ijn)](x) x [aijn) x d(jn)](lz)](mconsists of only
two pairs of operators for the second quantization
acting to the same subshell. These two sets of ten-
sorial operators are obtained by applying the op-
erator commutation rule to operators afj”) and
ay). This gives the following expression:

[[[a(m X G900 [ d(m](x)}(k') y
K@t x g\ 1) TO) =3 B [ xa" " x
J

. (i (0) v .
[a"" xau,,)]m] n z B, [[aum) x a1 x
lez

o S O
x[[a”")xa(fn)](“‘)x[a(f")xa(-’")]“”] 1} o)

The coefficients B, and B, in Eq. (7)) are
the easiest ones to represent and their algebraic
expressions are the easiest coefficients to ob-
tain by using the generalized graphical method

Fig. 3. Diagram showing the recoupling coef-
ficient B,.

of the angular momentum theory [B]. In this
graphical representation, the B, multiplier is
shown graphically in Fig. H, and the B, multiplier
in Fig. @

Using the diagrams separation on the three
lines theorem of Jucys, Levinson, and Vanagas (see
Ref. [E], Section 4.1.3), it is possible to split the dia-
gram B, into two diagrams, each representing a 6;-
symbol [B, ]. This rule is general and is used in
all versions of the graphical methods for the an-
gular momentum, whether the graphical method
is applied to the Wigner coefficients [f, [I5-18] or
to the Clebsch-Gordan coeflicients UE |1_4| 17].
In this case, the diagram B, cuts through the hori-
zontal lines j , j and k. Meanwhile, the diagram
B, uses a graphical technique [, @] to represent
the 9j-symbol with additional multipliers. Eq. (7))
can be rewritten as

Fig. 4. Diagram showing the recoupling coef-
ficient B, of the tensorial product from Eq. (5)
to Eq. (6).
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[[[a(/’n) X @9 x[aV x &un)](x)](k') o

X [a(j’”) X d(jn)](k') j|(0) —
= (_l)j”1+1”+k+x [k7 k’, -x] {]m ]n . }X
NN {’ I J}x
J Ju Ju
% [[dum) x a1 x[ a9 Xd(j,,>](J)J<o) N

n (_1)_1',,,+_jn+k+x\/m>< ®

jm jn k
xz,/[Jl,Jz] J, J, x px
JiJa ]m ]n k!

x |:[5(jm) x a(/'m)](fl)><

S L 7@
X[[amxaun)](x)X[aun>xa<jn)]<h>] 1} _

The first term in Eq. (8) corresponds to the spin-
angular part of the two-particle operators. The pro-
gram library 1ibrang [{] is therefore sufficient for
its calculation. The second term, with its three pairs
of second quantization operators, corresponds to
the three-particle operator (6). In this case, adding
new features to the library is necessary, which we
will now discuss.

A peculiarity of the methodology [] is that in
the expression there (Ref. [], Eq. (11)) the recou-
pling matrix R(A, A, A, A, A”, A*, T), the subma-
trix element T(n A, nj)tj, n' A, nj’ )Lj’ Al Akt BT,
the phase factor A and ®' (n.A, n/_)tj, n' A, nj' /\j', B),
which is proportional to the radial part, are easily
separated from each other and can be treated dif-
ferently. This fact makes the methodology flexible
and allows it to be easily extended to include new
class/type operators, such as the three-particle op-
erator (6) that we are considering. In particular, how
the expression (Ref. [], Eq. (11)) is implemented
in the library is described in the paper [E]. Here, we
will now discuss only those aspects of the tensorial
product () of Feynman diagram A, that were not
covered in the paper [E ] and will show which sub-
routines from the program library 1ibrang should
be used and which expressions should be added to it.

Since we can schematically rewrite the tensorial
product (8) as the tensorial product of two opera-
tors AYV(n_j ) and BYV(n_j ) acting on different
subshells

[4Y(n,, j,) * B (n,, j )], (9)

the algebraic expression of the recoupling matrix
can be used from the paper [] (Eq. (19) there)
and can be computed by the subroutine RECO2
(Ref. [E], Section 3.2.4). Therefore, the library’s
librang existing capabilities are entirely sufficient
for calculating R(A, )tj, A, A/f, A Ak T,

As far as the submatrix element T(n A, nj/\j,
n'A, nj' /\j', A, Ak B T) is concerned, the situation
is different. In this case, the tensorial product can
be split into two parts, i.e.

A9 jy=[a"% x qUnen (10)

and
(V= Tg ) x GV Un) 5 4o
B(n j)=[[a " xa™]® x[a" x a ' ]2]. (11)

These two members should be considered sepa-
rately (because they act on different subshells, and
the binding of the ranks of the tensorial structure
is already included in the recoupling matrix). Sub-
routine WJ1 (Ref. [E], Section 3.3.3)) finds the ma-
trix element of operator (10), while the library
librang has no suitable subroutine for computing
the matrix element of the operator (11). To find
the latter requires the use of an expression such as

((n,0,) 70t || [a xa 1" x

s o) _
x[at x g " ||(n,,€n)],f”a’J’>:

, J, J,
— (_1)J+J +J, \/mz {;' J J”}X

o
x((n,0,) jy e |[a" x a1
(CYRYCME

(050"
om0, @),

()
[a(Jn)xa(/,,)] 2

(12)

Therefore, the library 1ibrang must be extended
by programming the expression ([12).



86 ISSN 1648-8504 eISSN 2424-3647

G. Gaigalas et al. / Lith. J. Phys. 65, 81-106 (2025)

The phase factor A, according to Ref. [], is zero.

The ®'(n,A, n A, nA, n'A; E), which is propor-
tional to the radial part is found in a regular way as
it was found in papers [Q

Note that the above describes how to calculate
the reduced matrix elements of the Feynman dia-
gram V'V _ in the general case for the third type of
valence-valence correlations. But it is possible to
extract the individual parts which are more straight-
forward to calculate, i.e. the coefficient AE  (does
not depend on the term), AF*(n, n) and AF*(m, n)
(regular spin-angular library librang can be used).
The extraction of these expressions is the same as in
the papers [Q]. Therefore, only the reduced ma-
trix element of part of Feynman diagrams A, with a
tensorial product (6) is calculated from the general
expression when the rank k > 0. The part, which is
calculated from the general expression, will be de-
noted by AR®¥9 (mnn) in the future.

3.2. The spin-angular part of the fourth type of
valence-valence correlations

Two different Feynman diagrams A, and A_ from
Fig. Q describe this type of correlation. We will con-
sider each separately as their spin-angular part dif-
fers significantly.

3.2.1. The direct part of the fourth type of valence-
valence correlations

Now let us discuss the diagram A, with a tenso-
rial structure:

[[[aati,n x a;/,,,)]w) [a! Up) x a(/p>]m]

x [alm x 5éjn>]<k'>]<0>. (13)

As in Eq. (5), Eq. (13) is not appropriate to
calculate the spin-angular part because there are
two pairs of secondary quantization operators
acting on different subshells, i.e. [aln) x agim]®
and [aéj’") X a“n 1®. Therefore, this tensorlal pro-
duct has to be transformed into the following, using
the commutation rules of the secondary quantization:

[[[&gjm) X a(sjm)](Jl) % [agjp) x diip)](x)](Jz) «

X [aUn a(/n)](Jz)](O)_ (14)

Fig. 5. Diagram showing the
recoupling coefficient B, of the
tensorial product from Eq. (13)
to Eq. (14).

In this case, the transformation of the tensorial
product from Eq. (13) to Eq. (14) results in only one
member in Eq. (14), where the transformation ma-
trix of the tensorial structure is shown graphically in
F1g s proportional to the coefficient 9j-sym-
bol [ ]. The final expression of this rearrange-
ment of the tensorial structure (113) is the following:

H[au,, x GUn 1% x[a(j”) % dw‘p)](x)](k) %
_ P T0))
x[a(“’)xd(’”)]m] _
)

-3 B, [[[dum) x G [ X&Up)](x)} v

A

o 0)
x[at x @) ] (15)
and
{[[am) X @ [ x du'p)](x)] “
©
x [a(jm) % d(j,,)](k'):l — (_l)jm+j,,+k+x ’[k,k/] x
j’ﬂ jn k
D IN EAVAL AR S {[[d”'") xa' ] x
Ji.Js . . '
Jn Jn K
©
<[ Xaup)](x)]““ « [ x G0 (Jz):| (16)

The program library librang [E] available in
the Grasp package is sufficient for the calcula-
tion of the reduced matrix element of Feynman
diagrams A, but the method of the calculation of
this type of an operator is not described in the pa-
per [[]. We will now discuss it.



87 ISSN 1648-8504 eISSN 2424-3647

G. Gaigalas et al. / Lith. J. Phys. 65, 81-106 (2025)

Since we can schematically rewrite the tensorial
product as the tensorial product of three operators
A (n_ j ), B‘”(npjp) and CY? (n_j ) acting on dif-
ferent subshells

[[A(Jl)(nmjm) x B(X)(npjp)](JZ) x C(JZ)(nn jn)](O)’ (17)

the algebraic expression of the recoupling matrix in
this case is given in the paper [], (Eq. (24) there)
and is computed by the subroutine REC3 (Ref. [E],
Section 3.2.5]) Therefore, the existing capabilities
of the library librang are fully sufficient for calcu-
lating R(A, )t A /\' Al AR T,

As far as the submatrlx element T(n A, n )L
n'A, n )L' AP Ak B T) is concerned, the situation
is different. In this case, the tensorial product can
be split into three parts AW (n.j) B(")(n j ) and

CcY) (n .J.)» where each of these can be expressed as

A(Jl)(n ] ): [&(]m) X a(jm)](Jl) (18)
and
B®(n j) = CO(n j) = [a" x C;(j)](k). (19)

These parts can be considered separately (be-
cause they act on different subshells, and the bind-
ing of the ranks of the tensorial structure is already
included in the recoupling matrix). Subroutine
WJ1 (Ref. [E], Section 3.3.3) finds the matrix ele-
ment of the operator (17).

The phase factor A is zero in this case.

The ®(n,A, n.A, n/A; n'A}, E), which is propor-
tional to the radial part is found in a regular way as
it was found in the papers [ .]

3.2.2. The exchange part of the fourth type of
valence-valence correlations

Now let us discuss the diagram A , with a tensorial
structure

[[[ Gn) x G ™ x [aln x aun)](x)](k)

x [aUm) x d(é"p)](’f')](o’- (20)
This tensorial product is not appropriate to calcu-
late the spin-angular part for the same reason as for
Egs. (5) and ({13). Therefore, this tensorial product
has to be transformed into the following, using
the commutation rules of secondary quantization:

[ ¢ o [ <GP
X [a(ljn) % &ijn)](Jz)](O). (21)

In this case, the transformation of the tensorial
product from Eq. (20) to Eq. (21) results in only
one member in Eq. (21)), where the transformation
matrix of the tensor1al structure is shown graphi-

cally in Fig. s proportlonal to the coeflicient
12j-symbol [[I3 . The final expression of this
rearrangement of the tensorial structure (20) is
the following:

(k)
{[[auﬂ) x AU 1% x @ x 3] (x)} %

(0)

. P K
X[a(./m)xd(JP)]( ):| -
- Z B [[[é(j”’)Xa(/”’)]('/‘)x
4

JiJyy

) . (J2) . ) ©
y [a(_lp) xd('/”)]m] x[aY &(Jn)]uz)} ) (22)

and
H[au,) X @910 x [V x &o,,)](x)](k" »
Un) ¢ 50 1 © ntipthH '
x[a™ "] =(-1) [k, k', x]x

x> (—l)J'”Z NIAIE:

Ji.Jy,y

% [[[awm) x @V 1) x[a"7 d(m](y)]w x

o
x [a(J,,) x d(/n)]('lz):| %

xz[z]{fl j Hy iz HJ H] ke }
z jnyJZ xjp jp kjmk, jn Jljm

(23)

Fig. 6. Diagram showing the recoup-
ling coefficient B, of the tensorial

product from Eq. (20) to Eq. (21)).
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The program library librang [E] available in
the Grasp package is sufficient for the calculation
of the reduced matrix element of the Feynman dia-
gram A_. The use of the library in this case is ex-
actly the same as the one presented in Subsection
3.2.1, dealt with in the diagram A.. In this case, only
the multiplier ®'(n.A, ni, nA, ;11.')5.', 2) differs.

3.2.3. The special cases of fourth type of valence-
valence correlations

The way to calculate the reduced matrix elements
of Feynman diagrams A, and A_ in the general case
is presented in Subsections 3.2.1 and 3.2.2. But it is
possible to extract, as it was shown in Subsection
3.1, the individual parts which are more straightfor-
ward to calculate, i.e. the coefficient A€, (does not
depend on the term) and AF*(n, p) (regular spin-an-
gular library librang can be used). The extraction
of these expressions is the same as in the papers [E
H]. Therefore, only the reduced matrix element of
part of Feynman diagrams A, and A_is calculated
from the general expressions, where the rank k > 0.
The part which is calculated from the general expres-
sion will be denoted by AR® ¥ (mnp) in the future.

In the next section, we will give the final expres-
sions for these two types of correlations (third and
fourth types of valence-valence correlations), as we

did in the papers [].

4. Combination of relativistic configuration
interaction approximation with the stationary
second-order Rayleigh-Schrédinger many-body
perturbation theory

Similar to CV, C, CC, and VV correlations [[l-4],
the admixed configurations from the VV correla-
tions deriving from the three-particle Feynman
diagram V'V, (Egs. ([l)) and (4)) can be added to the
usual energy E (K) of the term yJ of the configura-
tion K and can be expressed as the energy A€ (KJ),
which does not depend on the term, and the sum
of the products of Slater integrals and spin-angular
coeflicients, describing the interaction within and
between the open subshells,

E(K yJ)=E,(KJ)+AE,(KJ) +
N [ (4" Ky DIF (nlj, ntj) + AF* (nlj, ntj)]+

nlj k>0

. {Z LG K ) [Fr(ntj, n'0j") +

nlj n'l'j'>nlj k>0
+AF (ntj, n't’ ")]+
+Z .0 K g NG (nlf, n' ") +

+Z Vk (g]wg‘!]rw ’gjw—2€‘!jlw'+2’KzJK!ZVJ)X
k

x R*(nljntj, n'(’j’n'ﬂ’j')} +

2 (Y
n/_j k>0
n'llj'#nlj k',x

4 x (J)](k):l(k H >

x ARCED(nt j 't 0") +

R ()
_— <\PH [amxam]m [a"" x </>]<.x)J y

nlj k>0
‘P> X

n'lj'#nlj  k'x
x ARS Ot jn'0j'n" 0",

[ xa " ® X[[au') x a1 x

n'"""#nlj

o T(0)
y [a(/)xam]wq

(24)

where f;, g, and ¥, are spin-angular coefficients
from which submatrlx elements (j|| C¥ ||£')") are
extracted. Therefore, the summation over k runs
over all possible values instead of the values which
satisfy the triangular condition (££'k) as it is in
the ordinary case. F* (néj, n't’j"), G* (ntj, n't’j') and
R (nj ntj, n't’j'n'l’j") are the generalized integrals
of the electrostatic interaction between electrons.
The definition of R* (nfj ntj, n'€'j'n't'}") is the fol-
lowing:

R j, 1))
={[1+8GNI [1+8G" /)Y Re(n jn j,njnj)

X <€ijillc(k)||€i’ji’><£/jjllc(k)||£/’j/’>’ (25)

where Rk(n]n] N, ) is the same radial inte-
gral as in Eq. (3) Definitions F* (ntj, n't’j') and
G* (nj, n'€’j") straightforwardly follow from Eq. (25).
Due to the inherent complexity of the three-par-
ticle operator, Eq. (24) does not fully distinguish
all the members that are independent of the term.
Therefore, a very small number of them are re-
tained in the members AR®*9(nfj n'€'j' n'€’j') and
ARl n'€'f 0" €"f").

The contribution deriving from the VV cor-
relations of the configurations K’ to E(KyJ/) in
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Table 1. Expressions for valence-valence corrections to the energy in Egs. (@) and (@), independent of

the term.

A&, corrections

valence subshells

208 =D g
VAYA T

from VV; Feynman diagram

valence subshells

valence subshells virtual subshell

f_j%
(1,0, o (1, 0,) o =, 0,) jo (m,0,) " (n,L,) ],

valence subshells

virtual subshell

0,0, ) I (L) () jr = (m,0,) e (n,

(k]

e UnlZ W mmy o { Pk, np, mr)

s s dp 1 %

v, (n N

+ C(k, np, mr)}(1+P(n =p))

from VV; Feynman diagram

the second order of perturbation theory can be

extracted from Eq. (24) as

AEPT(VVT) =A&, (KJ)+
+ 2 i K g DAF (ntf, ntj) +

nlj k>0

+ > £ 0™ K xJ) AF (nlj, n'0'j") +

nlj n'l'j'>nlj k>0

- <\PH [a(’)xa(”](k)

nlj k>0
n'l'j'#nlj k' x

. o . o n (k) | (0)
x[[a‘“xa(“]("’x[a(”xa(“]”‘)] J

¥)
x AREKD(ntj n't’j' n'tf')

PR 10
I z <\PH [a“)xa(”]“‘) [aV") x NU)](X)J %

nj k>0
‘I’> X

n'l'j'#=nlj  k'.x
X A:R(kk x)(n[] I’l’ff]’ n'e" u) (26)

n""l"j"#nlj

P [())
X[amxam](k)}

Table 2. Expressions for Slater integrals AF*(n, n), AF*(m, n) and ARKKS (mnn) (see Egs. (@) and (@)) cor-
rections corresponding to the third type of valence-valence correlations.

Corrections Slater integral | k values
valence subshells valence subshells virtual subshell
- w,, +1 <w,—2 /_/%
(nm m)]m (n )Jn % (nm/gm);] (nnén)]n (nrlgr)]r
(Ln]=w,)
4]l W) g k, nn, mr
! [Jn] ( : AF¥(n, n) k>0
from VV; Feynman diagram
ALY (1) I I K C(k', rm, nn)
= i j k' Y AF*(m, n) k>0
from VV; Feynman diagram
_ —Jpt i tx ' ! ~
2(-1) JIk, k', x1G (k k' x, nn, mr) AT () k>0

from VV; Feynman diagram
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The contribution of the third and fourth type of
the VV correlationsin the second order of perturba-
tion theoryis expres~sed over AE (K]), AF (ntj, ntj),
AFXntj, n'j), AR &K 9(ntj n'lj n'j") and
AR®¥-2) (nfj n'lj' n"€"j") (see Tables 1, 2 and 3).
These formulae are additionally expressed via the
quantities

k k' k k' x
c/l’(x,ij,i’j’)=2{, , H o }?(kk:zy,m,(zn
ok \Ji Ji Ji Jj Jj j/"

k jl j[' P e ofsf
C(k,ij, i) = {k' . }Q(kk,lj,l] ),(28)
k' .]j .]j'

and

G(xx,x,1,1j") =
N (29)
Ty X
:Z(_l)k {kjk,j. } X Xy X “P(kk’aijai'j’)’
Kk Jy .. g
Ji Ji k
where

PUK, 1,1 1) =R 6,7 /) R (0 7, 7) OK', K, (30)

QKK i,1' j') = R (i, ' /) R¥ (I'/',ji) O(K', K), (31)
_ 1
E(K"-E(K)’
where E(K) is the averaged energy of the state for
which calculations are performed. E(K') is the

O(K',K) (32)

Table 3. Expressions for Slater integrals AF*(n, p) and AR®KK (mnp) (see Egs. (@) and (@)) corrections cor-
responding to the fourth type of valence-valence correlations.

Corrections

| Slater integral | k values

valence subshells

valence subshells virtual subshell

- ,_Aﬂ
(1, ) (1,0, ) () iy = () o™, ) ™ ) ™ (nt,) )

TN ] M{(—1)“‘9 (0k k, np, mr)

V]

AFX(n, p)

from VV; Feynman diagram

kysky ks kl k2 -]

from VV; Feynman diagram

.. n<="»o
X C 12Ul Koy, OR} 14P| L~
1

=1,

r

ik
+ Z (_l)kﬁk[ka]{]n Jr .3}Q(k1k2,np, mr)

from VV; Feynman diagram

(=) JTh, K x]{ (=) Gk x, np, mr)

from VV; Feynman diagram

, ok
&3 1 S Qe ky  np, mr)
kl ykz’ks kl k2 J

from VV; Feynman diagram

I

n<=mp
X C 1y (Jdd o lisks, Kk )} 1+P| Ky =k,

’
K'=x

from VV; Feynman diagram

ARKK, A (mnp)
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averaged energy for the admixed configuration
K! For details on how to find E(K) and E(K'), see
Ref. [EI], Section 3. We would like to emphasize that
the energy denominator (32) is defined differently/
opposite to the expressions of Feynman diagrams
(see Fig. El, Egs. (30, 31)):

Cle(Ui’5k1k2k3’ JiJyJ) =

JoJx | (JJj; x
=>[x] 4 Lo X
T Ji I ks e Jy

{J k, XHL k x }
kl Ji kz J/ J| Ji

We would also like to point out that the notation
of ranks such as J,» ], yinthe mulﬁipliers of this sec-
tion under AR® %™ (mnn) and AR%*-9 (mnp) have
been renamed for convenience to make the expres-
sions in Tables 2 and 3 more straightforward and
more understandable.

This theory in an irreducible tensorial form, as
in the papers [], is more suitable to be includ-
ed in such a version of the Grasp which is based
on configuration state function generators [,
@]. This is related to the fact that this version of
the software package allows us to easily distinguish
the F, F" and G sets of orbitals in the process of
computing atomic data. In the following section,
we will present a test case of this implementation.

(33)

5. Calculation of core-valence, core and
valence-valence (including these which are
described by the three-particle Feynman
diagram) correlations with a new approach

The computations in the present work were per-
formed in the regular way and using the method
based on the Rayleigh-Schrédinger perturbation
theory in an irreducible tensorial form [Q],
which was extended to include VV correlations
described by the three-particle Feynman diagram
(VVT). The developed RSMBPT method was ap-
plied to select the most significant configuration
state functions. For the first time in this work,
the configuration state function (CSF) bases con-
structed using the RSMBPT method were used to
solve the self-consistent field equations. It should
be mentioned that in the previous studies [Q,
], the RSMBPT method was only applied with

relativistic configuration interaction (RCI). In
the case of the regular calculations, to include dif-
ferent types of correlations in the multiconfigura-
tion Dirac-Hartree-Fock (MCDHF) calculations
often is a complex task, or even impossible, due to
time and computer resource limitations, especial-
ly for complex systems. Basically, only VV corre-
lations and additionally some limited correlations
from the core (if the CSF bases are not too large)
are included in these calculations. The application
of the RSMBPT method for solving self-consistent
field equations allows one to include the most im-
portant correlations of various types.

For such investigations, the energy structure cal-
culations were performed for the 105 lowest energy
levels of the 4s*4p?, 4p*, 4s*4p{4d, 4f, 5s, 5p, 5d, 6s,
6p}, 4s4p’ and 4s4p*{4d, 5s} configurations of the Se
III using the regular way and the RSMBPT method
when CV, C, VV and VVT correlations were in-
cluded. In further description, the VV correlations
investigated in Ref. [H] and the VV correlations
described by the three-particle Feynman diagram
(VVT) investigated in this work will be marked as
VV. The multireference (MR) set in the present cal-
culations consists of the 4s*4p?, 4p*, 4s*4p{4f, 5p, 6p},
4s4p*{4d, 5s} even and 4s’4p{4d, 5s, 5d, 6s}, 4s4p’
odd configurations. Firstly, the MCDHEF calculation
for the even and odd states of the configurations
belonging to the MR set was done in the extend-
ed optimal level (EOL) scheme [EI]. These radial
wavefunctions were used for further investigations.
The initial calculation was followed by separate cal-
culations in the EOL scheme for the even and odd
parity states using the regular way and the RSMBPT
method. These calculations are described in the sub-
sections below, and the results are presented in Sec-
tion 5.2. The calculations using both methods were
performed including only CSFs that have non-zero
matrix elements in the sets of spin-angular integra-
tion with the CSFs belonging to the configurations
in the MR set. At the RCI calculations step, the Breit
interactions and leading quantum electrodynamic
effects — the vacuum polarization and self-energy
corrections — were included.

5.1. Computational schemes
5.1.1. Regular GRAsP2018 calculations

Regular MCDHF computations including the CV,
C and VV correlations are marked as CV+C+VV
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MCDHEF. In this computational scheme, single-
double (SD) substitutions are allowed from the 4s,
4p , 4p, 4d , 4d, 4f , 4f, 55, 5p , 5p, 5d_, 5d, 65, 6p ,
6p valence orbitals of the MR set and the S substitu-
tions from the 3s, 3p , 3p, 3d_and 3d core orbitals
to the orbital set (OS) OS, = {7s, 7p_, 7p, 6d , 6d,
5f, 5f, 5g_, 5g}, OS, = {8s, 8p_, 8p, 7d_, 7d, 6f , 6f,
6g , 6g}. The 1s, 2s, 2p_and 2p subshells are defined
as inactive core subshells. The radial wavefunctions
of the new OS are estimated using the Thomas-
Fermi potential and further self-consistent field
equations are solved. When a new OS is computed,
the previous orbitals are frozen. Based on the orbit-
als from the MCDHEF calculations, further RCI cal-
culations are performed. Regular RCI calculations
are marked as CV+C+VV RCL

5.1.2. Calculations using the RSMBPT method

The CSF space in the computations using
the RSMBPT method is divided into three sets: F,
F’and G (see Ref. [EI] for details). The 1s, 2s, 2p and
2p subshells are defined as inactive core subshells in
the calculations, the same as it is done in the regu-
lar GRAsP2018 calculations. The 3s, 3p , 3p, 3d_and
3d subshells are defined as core subshells (that cor-
respond to F set), 4s, 4p , 4p, 4d , 4d, 4f , 4f, 55, 5p ,
5p, 5d, 5d, 6s, 6p , 6p as valence subshells (that
correspond to F’ set) and subshells belonging to
0S, and OS, as virtual ones (that correspond to G
set). Such space distribution is consistent with the
regular GRAsP2018 calculations described above.
The RSMBPT calculation procedure is analo-
gous to that used in the previous research [].
The contribution of each K’ configuration for CSF
for which energy needs to be calculated according
to Rayleigh—-Schrodinger perturbation theory in an
irreducible tensorial form is computed according
to Eq. (22) of Ref. [] (for CV correlations), Eq. (6)
of Ref. [] (for C correlations), Eq. (19) of Ref. [H]
(for VV correlations) and Eq. (26) (for VVT cor-
relations). K’ configurations are sorted in a de-
scending order according to the impact of the cor-
relations for each level. Further, K’ configurations
are selected by CV, C and VV correlations impact
with the specified fraction (expressed in the per-
centage: 95, 99, 99.5, 99.95 and 100%) of the total
correlations contribution. It should be noted that
the program gives the contribution of the correla-
tions of K’ configuration with a value greater than

1.0E-11. Contributions of smaller magnitudes are
neglected. The estimation of the correlations using
the stationary second-order Rayleigh-Schrodinger
many-body perturbation theory in an irreducible
tensorial form is done for the Coulomb interac-
tion. The C correlations (Eq. (3) of Ref. []) and
CV correlations (Eq. (4) of Ref. [ﬁ]), which are not
included with the RSMBPT method, were added to
the calculations in a regular way.

Firstly, the radial wavefunctions of OS, are es-
timated using the Thomas-Fermi potential. Then
using the RSMBPT method, the CSF basis is con-
structed by selecting the most important CV, C and
VV correlations with the specified fraction (95, 99,
99.5,99.95 and 100%) for the even and odd parities.
The self-consistent field equations are solved with
the CSF basis for the specified fraction. The com-
puted radial wavefunctions are taken as initial and
the selection procedure of the most significant CV,
C and VV correlations using the RSMBPT meth-
od is performed for the construction of CSF basis.
The variation and selection of CSFs is repeated
a few times to reach the convergence. The results
of these investigations will be presented in the next
section. Further the radial wavefunctions of OS, are
computed. In this step, firstly the radial wavefunc-
tions of OS, and OS, are estimated using the Thom-
as—Fermi potential and the selection procedure of
the most important correlations from OS, and OS,
is performed. This is done so that the contribution
of CSFs from both (OS, and OS)) sets would be esti-
mated with similar accuracy radial wavefunctions.
The constructed CSF basis is used to solve self-con-
sistent field equations for OS,, in which the radial
wavefunctions of OS, are taken from the final OS
calculations and are frozen. The computed radial
wavefunctions are taken as initial and the selec-
tion procedure of CSFs followed by a solution of
the self-consistent field equations is repeated a few
times to achieve the convergence, as it was done
for OS,. The results from MCDHF computations
including CV, C and VV correlations according to
the RSMBPT method are marked as CV+C+VV
MCDHF (RSMBPT).

RCI computations are performed for the OS, and
OS, taking the radial wavefunctions from the speci-
fied fraction (95,99, 99.5,99.95 and 100%) MCDHF
calculations and the CSF basis from the regular
GRrAsp2018 calculations. Additionally, for the OS,
RCI calculations are performed taking the radial
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wavefunctions from the specified fraction (95, 99,
99.5 and 99.95%) MCDHF calculations and the
CSF basis constructed using the RSMBPT method
with the same specified fraction (95, 99, 99.5 and
99.95%) as in MCDHE The results including CV,
C and VV correlations according to the RSMBPT
method are marked as CV+C+VYV RCI (RSMBPT).

5.2. Results
5.2.1. Results from MCDHEF calculations

This section presents the results of the investiga-
tion of the RSMBPT method for solving self-con-
sistent field equations. These results are also com-
pared with the regular GRasP2018 calculations.
In Table 4, the SELF-CONSISTENCY and NORM-1 para-
meters [@] from the MCDHF equations solutions
for the OS, of the even parity states in 95, 99, 99.5,

99.95, 100% and regular cases are presented. For
each step of variation, the initial and final results
of these parameters are given. As seen from Ta-
ble 4, these parameters converge with each varia-
tion step, and after a few variations, the initial and
final results almost do not change in the case of
100%. In other cases of 95, 99, 99.5 and 99.95%,
the convergence is slower, so more variation steps
are needed. The final SELF-CONSISTENCY and NORM-1
parameters are also very good when the most im-
portant CV+C+VV correlations with the specified
fraction (95, 99, 99.5 and 99.95%) are included in
the computations. In these cases, the CSF basis
decreases by up to several times compared to the
regular calculations. Similar trends are observed
for the OS, of odd parity, also for the OS, of both
even and odd parity, therefore only the results for
the boundary computed cases are presented in
Tables 5-7.

Table 4. SELF-CONSISTENCY and NORM-1 parameters solving the MCDHF equations of the OS, for even parity
states in 95, 99, 99.5, 99.95, 100% and regular cases. Columns with X’ var. mean the number of variations
with the constructed CSF basis. In. and Fin. mean the initial and final results of these parameters solving the

MCDHEF equations.
1 var. 2 var. 3 var. 4 var.
Subshell In_ | Fn In_ | Fn In. | Fn In._ | Fin
SELF-CONSISTENCY in case 95%
7s 1.81E-02 2.64E-06 2.28E-04 4.33E-07 5.38E-06  3.79E-07 1.67E-06 8.78E-08
7p. 1.15E-02 3.14E-06 1.27E-03 3.15E-07 4.69E-05 3.75E-07  6.12E-06 1.63E-07
7p 1.90E-02 3.92E-06 1.00E-03 443E-07 6.31E-05 5.47E-07  4.24E-06 1.70E-07
6d 3.98E-02 3.11E-06 8.25E-04 3.94E-07 3.24E-05  3.95E-07 1.54E-06 1.31E-07
6d 5.43E-02 3.86E-06 7.64E-04 4.15E-07 5.49E-05 4.54E-07 5.82E-06 1.40E-07
5f 2.10E-02 1.02E-06 1.14E-03 9.71E-08  5.72E-05  1.34E-07 1.26E-05 1.02E-07
5f 2.66E-02 1.33E-06 1.03E-03 1.10E-07  8.63E-05  1.95E-07 1.26E-05 9.47E-08
5g 8.45E-03 1.15E-07 4.24E-04 1.90E-08 5.72E-05 1.45E-07  7.87E-07 8.94E-09
5g 9.43E-03 1.24E-07 4.46E-04 1.33E-08 3.22E-05 4.11E-08  3.22E-08 1.28E-08
NORM-1 in case 95%
7s 3.78E-01 -3.58E-05 -2.72E-03 -5.36E-06 6.35E-05 -4.69E-06 1.76E-05 -1.12E-06
7p. 1.44E-01 -2.25E-05 -9.27E-03 -3.82E-06 -4.61E-04 -4.38E-06 -6.77E-05 -1.81E-06
7p 1.57E-01 -2.86E-05 -6.43E-03 -347E-06 -4.94E-04 -4.58E-06 -3.22E-05 -1.41E-06
6d 1.35E-01  -1.60E-05 -4.55E-03 -247E-06 -7.01E-06 -2.25E-06 4.48E-06 -7.90E-07
6d 1.67E-01  -1.70E-05 -2.03E-03 -1.99E-06 -1.25E-05 -2.05E-06 3.47E-06 -6.43E-07
5f 8.54E-02 -8.77E-06 -7.73E-03 -8.07E-07 -5.17E-04 -1.10E-06 -9.83E-05 -8.04E-07
5f 1.03E-01 -9.51E-06 -5.84E-03 -7.81E-07 -6.61E-04 -1.37E-06 -8.08E-05 -6.57E-07
5g 4.80E-01 3.68E-06 -1.28E-02 6.16E-07 -2.00E-03 -5.38E-06 -2.47E-05  2.81E-07
5g 4.81E-01 345E-06  -1.20E-02  3.69E-07 -8.74E-04 -1.38E-06 -7.48E-07  3.76E-07
SELF-CONSISTENCY in case 99%

7s 1.92E-02 7.24E-07 1.64E-04 9.53E-07 9.41E-06  1.35E-07 747E-07  4.56E-08
7p. 1.24E-02 6.64E-07 2.68E-04 596E-07 5.82E-05 7.63E-08 2.82E-06 1.17E-08
7p 2.11E-02 8.21E-07 3.03E-04 8.41E-07 9.31E-05  1.05E-07 9.87E-07 2.15E-08
6d 2.56E-02 6.85E-07 2.47E-04 3.81E-06 2.96E-04 1.66E-07 1.86E-06 9.85E-08
6d 4.41E-02 8.19E-07 2.41E-04 1.33E-06  2.06E-04  1.70E-07 1.53E-06 9.87E-08
5f 2.24E-02 2.02E-07 3.59E-04 1.62E-06  490E-04 5.25E-08 7.38E-06 2.95E-08
5f 2.78E-02 2.48E-07 1.45E-04 9.31E-07 3.17E-04  4.95E-08 3.34E-06 3.02E-08
5g 8.80E-03 4.91E-08 2.15E-03 1.20E-05 1.97E-03  5.89E-08 3.80E-05 8.28E-08
5g 9.88E-03 1.37E-07 3.60E-03 1.22E-06  1.49E-03  4.08E-08 2.87E-05 6.17E-08
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Table 4. (Continued)

1 var. 2 var. 3 var. 4 var.
Subshell In_ | Fin In. Fin. In. Fin. In. Fin.
NORM-1 in case 99%
7s 3.91E-01 -8.96E-06 -2.02E-03 -1.13E-05  7.13E-05 -1.64E-06 -7.87E-06 -5.79E-07
7p. 1.59E-01 -7.29E-06 -2.77E-03 -7.13E-06 4.68E-04 -9.49E-07 2.29E-05 -1.87E-07
78 1.74E-01 -6.59E-06 -2.33E-03 -6.80E-06 6.17E-04 -8.16E-07 5.24E-06 -1.92E-07
6d 6.12E-02 -3.77E-06  -3.08E-04 -2.20E-05 -1.41E-03 -1.00E-06 -9.33E-06 -5.80E-07
6d 1.08E-01 -3.71E-06 -4.03E-04 -6.41E-06 -8.06E-04 -8.36E-07 5.40E-07 -4.62E-07
5f 9.73E-02 -1.65E-06 -2.31E-03 -9.94E-06 4.06E-03 -3.88E-07 4.95E-05 -1.93E-07
5f 1.13E-01 -1.73E-06  -7.25E-04 -5.95E-06 2.23E-03 -3.21E-07 1.99E-05 -1.76E-07
5g 5.00E-01 1.66E-06 -3.60E-02 -4.65E-04 -3.18E-02 -1.38E-06 -8.93E-04 -1.88E-06
5g 5.06E-01 427E-06 -4.14E-02 -3.23E-05 -2.05E-02 -8.61E-07 -5.73E-04 -1.25E-06
SELF-CONSISTENCY in case 99.5%
7s 1.93E-02 6.49E-06 1.15E-04 295E-07 546E-06 5.36E-07 1.50E-07 1.67E-08
7p. 1.26E-02 6.41E-06 1.30E-04 1.92E-07 8.84E-05 9.95E-07 1.45E-06 8.38E-08
7p 2.13E-02 8.14E-06 8.27E-05  2.71E-07 1.09E-04 1.34E-06  6.88E-07 5.94E-08
6d 3.16E-02 6.06E-06 6.97E-05 3.20E-07 5.33E-05 3.97E-07 1.13E-06 2.56E-08
6d 4.21E-02 7.14E-06 6.84E-05 3.70E-07 6.56E-05 4.99E-07 4.49E-07 8.16E-08
5f 2.26E-02 2.02E-06 1.08E-04 1.12E-07 2.66E-04 2.33E-07 1.31E-05 1.21E-07
5f 2.79E-02 2.46E-06 2.86E-05 1.20E-07 297E-04 4.18E-07 1.96E-06 2.39E-08
5g 8.96E-03 1.20E-06 3.90E-03 1.45E-07 7.09E-04 1.16E-06 1.02E-05 7.05E-08
5g 1.00E-02 1.55E-06 4.84E-03 1.13E-07 7.95E-04 1.14E-06  2.10E-05 2.03E-07
NORM-1 in case 99.5%
7s 3.92E-01 -7.81E-05 -1.28E-03 -3.54E-06 -5.68E-05 6.43E-06 1.67E-06 8.67E-08
7p. 1.61E-01 -7.22E-05 -1.43E-03 -2.33E-06 6.94E-04 1.03E-05 1.50E-05 8.08E-07
7p 1.76E-01 -6.60E-05 -6.09E-04 -2.17E-06 7.30E-04 1.09E-05 5.30E-06 4.38E-07
6d 8.43E-02 -3.20E-05 -2.60E-04 -1.95E-06 -1.71E-04 -2.88E-07 3.55E-06 -5.37E-08
6d 9.89E-02 -3.10E-05 -1.17E-04 -1.83E-06 -1.76E-04 -5.19E-07 1.40E-06 -2.68E-07
5f 9.88E-02 -1.63E-05 -7.45E-04 -8.47E-07 2.16E-03 1.95E-06 9.44E-05 9.55E-07
5f 1.14E-01 -1.71E-05 -9.50E-05 -7.93E-07 2.06E-03 3.05E-06 1.15E-05 -5.87E-08
5g 5.07E-01 429E-05 -4.09E-02 -4.16E-06 -7.40E-03 -2.52E-05 -2.05E-04 -1.42E-06
5¢g 5.08E-01 494E-05 -4.02E-02 -2.81E-06 -822E-03 -2.23E-05 -4.16E-04 -4.00E-06
SELF-CONSISTENCY in case 99.95%
7s 1.94E-02 1.75E-06 2.75E-05 1.79E-07 1.35E-06 4.58E-08  4.49E-08 1.01E-08
7p. 1.28E-02 1.37E-06 2.53E-05 1.27E-07 1.97E-05 2.34E-08  2.43E-07 7.49E-09
7p 2.13E-02 1.76E-06 6.87E-05 1.53E-07 1.38E-05 1.78E-08  6.42E-08 3.92E-09
6d 3.38E-02 1.23E-06 1.79E-04 2.51E-07 8.53E-06 1.79E-07 4.04E-08 1.48E-09
6d 4.15E-02 3.24E-06 2.51E-04 1.85E-07 1.17E-05 1.00E-07 1.31E-07 1.60E-09
5f 2.27E-02 7.84E-07 2.80E-04 841E-08 5.83E-06 1.10E-07 8.15E-08 3.00E-09
5f 2.80E-02 1.16E-06 3.26E-04 5.49E-08 2.16E-05 5.17E-09  7.15E-07 4.76E-09
5g 9.15E-03 1.73E-06 5.88E-03 1.06E-07 3.92E-04 2.19E-07 7.32E-07 6.65E-09
5g 1.03E-02 2.95E-06 1.56E-03 2.89E-08 4.87E-05 7.88E-09 6.51E-08 1.33E-09
NORM-1 in case 99.95%
7s 3.93E-01 -2.07E-05 -2.80E-04 -2.16E-06 -1.58E-05 -5.74E-07 -5.60E-07 -7.78E-08
7p. 1.61E-01 -1.55E-05 -2.35E-04 -1.47E-06 1.53E-04 -3.07E-07 2.19E-06 -1.29E-08
7p 1.75E-01 -1.41E-05 2.65E-04 -1.16E-06 1.06E-04 -8.40E-09 3.84E-08 2.13E-09
6d 9.46E-02 -6.52E-06 -7.54E-04 -1.51E-06 -5.04E-06 -9.93E-07 -1.77E-07 -2.39E-08
6d 9.57E-02 -1.62E-05 -1.08E-03 -9.25E-07 1.19E-05 -4.52E-07 -3.58E-07 5.35E-10
5f 9.95E-02 -6.06E-06 2.25E-03 -6.12E-07 3.98E-05 -7.68E-07 -4.43E-07 -2.38E-08
5f 1.14E-01 -7.27E-06 2.26E-03 -3.64E-07 1.38E-04 2.05E-08 4.57E-06 3.06E-08
5g 5.13E-01 7.14E-05 -4.42E-02 -2.58E-06 -6.85E-03 -4.94E-06 -1.51E-05 -1.59E-07
5g 5.19E-01 -1.01E-04 -192E-02 -6.30E-07 9.48E-04 1.40E-07 8.64E-07 2.64E-08
SELF-CONSISTENCY in case 100%
7s 1.94E-02 4.89E-07 1.88E-07  2.35E-08 1.36E-08 8.83E-09 9.51E-09 9.53E-09
7p. 1.28E-02 4.18E-07 1.35E-07 1.69E-08 1.03E-08 6.14E-09 6.13E-09 6.09E-09
7p 2.13E-02 5.04E-07 3.60E-07 1.30E-08 7.12E-09 1.75E-09 1.11E-09 9.85E-10
6d 3.24E-02 4.18E-07 4.74E-07  5.52E-08 2.02E-08 3.56E-09 1.70E-09 9.10E-10
6d 4.15E-02 5.01E-07 6.14E-07 4.81E-08 1.83E-08 2.93E-09 1.53E-09 4.09E-10
5f 2.28E-02 1.29E-07 1.33E-06  3.12E-08 1.01E-08 1.70E-09 7.70E-10 1.74E-10
5f 2.80E-02 1.48E-07 1.66E-06 1.33E-08 5.49E-09 1.00E-09 7.17E-10 1.62E-10
5g 9.34E-03 7.80E-08 1.26E-04  6.54E-08 2.30E-08 2.62E-09 8.96E-10 2.35E-10
5g 1.04E-02 7.64E-08 8.66E-05 2.27E-08 8.22E-09 9.91E-10 6.20E-10 1.70E-10
NORM-1 in case 100%
7s 3.93E-01 -5.84E-06 9.35E-07 -3.17E-07 -1.98E-07 -1.08E-07 -9.15E-08 -9.11E-08
7p. 1.61E-01 -4.62E-06 -9.80E-07 -2.15E-07 -1.32E-07 -6.79E-08 -5.58E-08 -5.52E-08
7p 1.75E-01 -391E-06 -1.72E-06 -1.20E-07 -7.58E-08 -3.25E-08 -2.36E-08 -2.34E-08
6d 8.79E-02 -2.45E-06 -1.03E-06 -3.35E-07 -1.36E-07 -3.99E-08 -2.84E-08 -2.30E-08
6d 9.59E-02 -2.44E-06 -1.77E-06 -2.27E-07 -893E-08 -1.66E-08 -9.43E-09 -3.20E-09
5f 9.98E-02 -9.94E-07 -2.54E-06 -2.18E-07 -7.45E-08 -1.60E-08 -8.72E-09 -3.90E-09
5 1.14E-01 -9.86E-07 -7.48E-06 -7.72E-08 -3.42E-08 -6.92E-09 -4.82E-09 5.80E-10
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Table 4. (Continued)

1 var. 2 var. 3 var. 4 var.
Subshell In_ | Fin In. Fin. In. Fin. In. Fin.
5g 5.26E-01 -1.88E-06 -1.58E-03 -1.47E-06 -5.10E-07 -7.15E-08 -3.15E-08 -1.50E-08
5g 5.28E-01 -1.66E-06 -1.90E-04 -4.56E-07 -1.64E-07 -2.25E-08 -1.47E-08 1.37E-09
SELF-CONSISTENCY in case regular

78 1.94E-02 4.89E-07

7p. 1.28E-02 4.18E-07

7p 2.13E-02 5.04E-07

6d 3.24E-02 4.16E-07

6d 4.15E-02 5.00E-07

5f 2.28E-02 1.29E-07

5{ 2.80E-02 1.47E-07

58 9.34E-03 7.36E-08

5g 1.04E-02 7.39E-08

NORM-1 in case regular

78 3.93E-01 -5.83E-06

7p_ 1.61E-01 -4.62E-06

7p 1.75E-01 -3.90E-06

6d 8.79E-02 -2.44E-06

6d 9.59E-02 -2.43E-06

5f 9.97E-02 -9.92E-07

5f 1.14E-01 -9.83E-07

5g 5.26E-01 -1.73E-06

5g 5.28E-01 -1.57E-06

Table 5. SELF-CONSISTENCY and NORM-1 parameters solving the MCDHF equations of the OS, for odd parity
states in 95, 100% and regular cases. Columns marked as in Table 4.

1 var. 2 var. 3 var. 4 var.
Subshell In._ | Fin. In_ | Fn In. Fin. In_ | Fn
SELF-CONSISTENCY in case 95%
7s 1.92E-02 1.08E-07 4.18E-04 4.77E-07 8.10E-06 1.39E-06 8.11E-07 5.80E-08
7p. 1.16E-02 8.61E-07 1.26E-03 2.79E-07 9.60E-05 7.68E-07 1.23E-05 1.55E-08
7p 1.78E-02 3.04E-07 9.97E-04 4.09E-07 6.92E-05 1.07E-06 7.17E-06 5.51E-08
6d 1.83E-01 2.68E-07 8.83E-04 4.75E-07 2.89E-04 2.99E-06 3.19E-05 2.29E-07
6d 1.94E-01 3.63E-07 8.31E-04 1.92E-06 1.81E-04 2.26E-06 3.81E-05 1.37E-07
5f 1.99E-02 2.38E-07 1.05E-03 7.91E-08 2.60E-04 1.17E-06 9.20E-05 9.07E-08
5f 2.27E-02 2.36E-07 8.93E-04 7.19E-07 3.06E-04 4.88E-07 1.30E-04 6.20E-08
5g 7.07E-03 2.94E-09 2.59E-03 4.39E-06 4.98E-03 4.11E-06 3.18E-04 3.76E-07
5g 7.90E-03 2.06E-09 5.45E-03 4.60E-06 2.14E-03 7.15E-07 5.45E-05 5.56E-08
NORM-1 in case 95%
7s 3.65E-01 -1.45E-06 -4.76E-03 -5.55E-06 -7.63E-05 -1.60E-05 9.20E-06 -7.06E-07
7p. 1.79E-01 -542E-06 -8.38E-03 -3.17E-06 -8.29E-04 -8.94E-06 7.31E-05 4.21E-08
7p 1.89E-01 -2.05E-06 -6.57E-03 -3.26E-06 -5.06E-04 -8.06E-06 2.95E-05 3.04E-07
6d 1.83E+00 -9.93E-07 -4.95E-03 -3.05E-06 -1.37E-03 -1.78E-05 -1.47E-04 -1.26E-06
6d 1.46E+00 -1.42E-06 -2.16E-03 -9.17E-06 -8.14E-04 -1.10E-05 -1.35E-04 -5.60E-07
5f 4.72E-02 -1.85E-06 -6.49E-03 -3.34E-07 1.89E-03 -7.85E-06 6.27E-04 -5.76E-07
5f 3.05E-02 -1.54E-06 -4.18E-03 -3.97E-06 1.97E-03 -2.94E-06 8.32E-04 4.01E-07
5g 8.36E-01 9.30E-08 -3.50E-02 -1.34E-04 -2.75E-02 -1.08E-04 -4.02E-03 -9.23E-06
5g 8.22E-01 5.39E-08 -1.03E-02 -1.27E-04 -3.20E-02 -1.53E-05 -1.21E-03 -1.13E-06
SELF-CONSISTENCY in case 100%
7s 2.06E-02 1.46E-07 3.39E-07 5.99E-08 3.10E-08 9.52E-09 7.99E-09 8.46E-09
7p. 1.31E-02 1.21E-07 2.23E-07 3.39E-08 1.90E-08 6.53E-09 5.31E-09 5.26E-09
7p 1.97E-02 1.36E-07 7.69E-07 3.39E-08 1.83E-08 4.13E-09 1.90E-09 1.01E-09
6d. 1.47E-01 1.37E-07 4.23E-07 1.59E-07 6.22E-08 9.39E-09 3.69E-09 1.69E-09
6d 1.68E-01 1.73E-07 5.19E-07 1.43E-07 5.62E-08 8.55E-09 3.20E-09 1.22E-09
5f 2.16E-02 4.63E-08 1.35E-06 7.82E-08 2.80E-08 3.64E-09 1.35E-09 5.35E-10
5f 2.40E-02 5.77E-08 1.61E-06 3.46E-08 1.42E-08 2.18E-09 8.58E-10 3.28E-10
5g 8.94E-03 4.19E-08 1.35E-04 2.45E-07 7.65E-08 7.04E-09 2.24E-09 7.69E-10
5g 9.77E-03 4.81E-08 8.24E-05 1.01E-07 2.93E-08 2.86E-09 9.56E-10 3.26E-10
NORM-1 in case 100%

7s 3.77E-01 -1.69E-06 2.44E-06 -7.16E-07 -3.95E-07 -1.43E-07 -1.08E-07 -9.36E-08
7p. 1.98E-01 -1.24E-06 -1.29E-06 -4.06E-07 -2.32E-07 -8.90E-08 -6.73E-08 -5.80E-08
7p 2.00E-01 -1.08E-06 -3.43E-06 -2.81E-07 -1.62E-07 -5.15E-08 -3.39E-08 -2.63E-08
6d 1.28E+00 -8.67E-07 -8.32E-07 -9.26E-07 -3.78E-07 -7.50E-08 -4.16E-08 -2.94E-08
6d 1.15E+00 -8.61E-07 -1.11E-06 -6.61E-07 -2.66E-07 -4.35E-08 -1.80E-08 -8.51E-09
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Table 5. (Continued)

1 var. 2 var. 3 var. 4 var.
Subshell In. | Fin. In. Fin. In. Fin. In. Fin.
5f 5.71E-02 -3.29E-07 -3.17E-06 -4.88E-07 -1.82E-07 -2.68E-08 -1.18E-08 -6.40E-09
56 3.72E-02 -3.51E-07 -6.58E-06 -1.78E-07 -7.81E-08 -1.29E-08 -528E-09 -2.14E-09
5g 1.05E+00 -9.23E-07 -1.84E-03 -5.08E-06 -1.60E-06 -1.56E-07 -5.66E-08 -2.57E-08
5¢g 1.03E+00 -9.39E-07 -4.28E-04 -1.85E-06 -542E-07 -5.54E-08 -1.97E-08 -7.67E-09
SELE-CONSISTENCY in case regular

78 2.06E-02 1.45E-07

7p_ 1.31E-02 1.21E-07

7p 1.97E-02 1.36E-07

6d 1.47E-01 1.36E-07

6d 1.68E-01 1.71E-07

5f 2.16E-02 4.57E-08

5f 2.40E-02 5.75E-08

58 8.94E-03 3.86E-08

5g 9.77E-03 4.67E-08

NORM-1 in case regular

7s 3.77E-01 -1.68E-06

7p_ 1.98E-01 -1.24E-06

7p 2.00E-01 -1.08E-06

6d 1.28E+00 -8.57E-07

6d 1.15E+00 -8.54E-07

5f 5.71E-02  -3.25E-07

5f 3.72E-02  -3.50E-07

5g 1.05E+00 -8.35E-07

5g 1.03E+00 -8.94E-07

Table 6. SELF-CONSISTENCY and NORM-1 parameters solving the MCDHF equations of OS, for even parity states
in 95, 99, 99.5, 99.95% and regular cases. Columns marked as in Table 4.

1 var. 2 var. 3 var. 4 var.
Subshell In. Fin. In. Fin. In. Fin. In. | Fin.
SELF-CONSISTENCY in case 95%
8s 1.30E-02 2.78E-06  1.44E-03 1.13E-06 1.10E-04  4.00E-07 1.98E-06  2.99E-07
8p. 2.00E-02 3.11E-06  4.88E-03 1.17E-06 1.37E-04  3.17E-07 3.15E-06  4.07E-07
8p 2.34E-02 3.33E-06  4.32E-03 1.52E-06 1.81E-04  4.38E-07 8.81E-06  3.75E-07
7d. 1.62E-02 443E-06  1.92E-03 2.12E-06 2.47E-04 1.38E-06 8.28E-05 1.66E-06
7d 2.00E-02 6.67E-06  2.54E-03 2.79E-06 2.10E-04  1.19E-06 1.11E-05  6.28E-07
6f 2.48E-02 7.65E-07 1.64E-03 1.54E-06 6.15E-04  6.54E-06 2.21E-04  9.37E-06
6f 2.89E-02 1.99E-06 1.45E-03 3.01E-06 6.99E-04  1.09E-05 1.24E-04  6.61E-06
6g 2.53E-03 1.29E-08  7.80E-03 2.10E-08 8.40E-04  2.05E-07 1.14E-04 1.88E-07
6g 2.90E-03 2.51E-08 9.87E-03 5.07E-08 1.14E-03  3.92E-07 6.57E-05  4.17E-07
NORM-1 in case 95%
8s 2.77E+00 -1.82E-04 -6.46E-02 -7.35E-05 -7.06E-03 -2.54E-05 -1.11E-04 -1.88E-05
8p. 4.62E+00 -2.33E-04 -9.37E-03 -7.25E-05 -7.56E-03 5.53E-06 -1.91E-04 1.44E-05
8p 3.89E+00 -1.59E-04 -4.01E-02 -5.88E-05 -6.25E-03  2.44E-06 -2.68E-04  6.65E-06
7d. 6.39E+00 -9.60E-05 -3.47E-02 -4.91E-05 -6.43E-03 -4.04E-05 -2.25E-03 -4.96E-05
7d 6.49E+00 -1.14E-04 -3.47E-02 -5.31E-05 -1.96E-03 -2.61E-05 5.77E-07 -1.16E-05
6f 2.26E+00 -1.77E-05 -2.90E-02 -3.32E-05 -1.38E-02 -1.50E-04 -5.39E-03 -2.17E-04
of 2.24E+00 -3.83E-05 -2.40E-02 -5.83E-05 -141E-02 -2.23E-04 -247E-03 -1.36E-04
6g 2.32E+00 -6.24E-07 193E-01 -4.76E-07 -1.29E-02 -542E-06 -2.73E-03 -4.43E-06
6g 2.34E+00 -1.90E-06 2.22E-01 -1.06E-06 -1.76E-02 -9.07E-06 -1.53E-03 -9.76E-06
SELF-CONSISTENCY in case 99.95%

8s 1.27E-02 2.00E-06 6.35E-04 1.12E-07 7.33E-06 1.78E-07 2.02E-07  8.76E-08
8p. 4.49E-02 1.22E-06 1.37E-04 1.51E-07 7.95E-06  2.51E-07 2.77E-07 1.19E-07
8p 4.23E-02 1.64E-06 1.68E-04 2.57E-07 5.89E-06  4.78E-07 448E-07  2.95E-07
7d 1.78E-02 2.34E-06 2.53E-04 6.28E-07 424E-06  9.84E-07 8.12E-07  6.07E-07
7d 2.18E-02 3.05E-06 2.10E-04 7.80E-07 5.18E-06 1.26E-06 9.68E-07  9.19E-07
6f 2.63E-02 1.21E-06 8.76E-04 3.36E-06 1.22E-05 4.67E-06 3.00E-06 2.41E-06
of 3.01E-02 1.52E-06 9.79E-04 3.93E-06 1.33E-05  5.62E-06 5.03E-06  3.84E-06
6g 8.88E-03 2.13E-07 1.49E-03 1.07E-05 1.40E-04 1.51E-05 2.23E-05  6.71E-06
6g 1.00E-02 1.33E-07 1.56E-03 1.27E-05 1.76E-04  1.93E-05 5.99E-05 1.69E-05
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Table 6. (Continued)

1 var. 2 var. 3 var. 4 var.
stlsslng! In. Fin. In. Fin. In. Fin. In. Fin.
NORM-1 in case 99.95%
8s 2.71E+00 -8.54E-05 3.99E-03 2.44E-06 -2.48E-04 4.17E-06 3.15E-06 1.69E-06
8p. 1.22E+01 -6.57E-05 -3.70E-03 5.97E-06 3.09E-04 1.01E-05 1.31E-05 4.09E-06
8p 6.02E+00 -5.35E-05 -5.57E-03 6.31E-06 1.78E-04 1.38E-05 1.61E-05 8.44E-06
7d. 7.52E+00 -5.59E-05 -6.65E-03 -1.27E-05 3.82E-05 -2.05E-05 -1.64E-05 -1.24E-05
7d 7.70E+00 -5.93E-05 -1.83E-03 -1.24E-05 4.84E-05 -2.10E-05 -1.51E-05 -1.58E-05
6f 2.29E+00 -2.60E-05 -1.81E-02 -7.60E-05 2.51E-06 -1.07E-04 -7.22E-05 -5.54E-05
6f 2.26E+00 -2.86E-05 -1.78E-02 -7.78E-05 -1.59E-04 -1.12E-04 -1.03E-04 -7.69E-05
6g 1.41E+00 1.02E-05 -5.35E-02 -8.23E-04 -1.10E-02 -1.22E-03 -1.30E-03 -5.44E-04
6g 1.41E+00 5.52E-06 -5.17E-02 -8.79E-04 -1.25E-02 -1.41E-03 -3.49E-03 -1.26E-03
SELF-CONSISTENCY in case regular

8s 1.28E-02 1.81E-07

8p_ 2.78E-02 2.98E-07

8p 5.61E-02 4.20E-07

7d 1.83E-02 9.36E-07

7d 2.22E-02 1.14E-06

6f 2.67E-02 4.32E-06

6f 3.06E-02 4.99E-06

6g. 9.08E-03 1.41E-05

6g 1.01E-02 1.68E-05

NORM-1 in case regular

8s 2.72E+00 2.38E-06

8p_ 6.76E+00 1.29E-05

8p 8.44E+00 1.17E-05

7d 7.66E+00 -2.02E-05

7d 7.81E+00 -1.93E-05

6f 2.31E+00 -9.90E-05

6f 2.28E+00 -9.98E-05

6g 1.42E+00 -1.15E-03

6g 1.42E+00 -1.23E-03

Table 7. SELF-CONSISTENCY and NORM-1 parameters solving the MCDHF equations of OS, for odd parity states in
95, 99.95% and regular cases. Columns marked as in Table 4.

1 var. 2 var. 3 var. 4 var.
Subshell In. | Fin. In. | Fin. In. | Fin. In. | Fin.
SELF-CONSISTENCY in case 95%
8s 1.92E-02 4.01E-06 1.98E-03 1.43E-06 1.65E-04 7.28E-07 4.93E-06 1.19E-06
8p. 1.09E-02 2.59E-06 1.74E-03 2.10E-06 2.12E-04 9.39E-07 1.54E-05 1.40E-06
8p 1.63E-02 3.55E-06 4.05E-03 3.37E-06 1.63E-02 1.58E-06 1.74E-05 2.05E-06
7d 1.86E-02 6.64E-06 2.29E-03 3.25E-06 5.33E-03 1.77E-06 1.52E-04 5.03E-06
7d 2.31E-02 9.54E-06 2.99E-03 4.47E-06 7.52E-03 2.28E-06 4.07E-05 2.44E-06
6f 2.89E-02 2.02E-07 2.12E-03 4.43E-07 1.11E-04 3.54E-07 1.83E-05 7.14E-07
6f 3.34E-02 8.92E-07 2.05E-03 1.36E-06 1.13E-04 5.80E-07 3.85E-05 1.74E-06
6g 8.53E-03 6.13E-08 1.75E-03 3.53E-07 4.19E-04 6.46E-07 5.46E-05 2.85E-06
6g 9.63E-03 8.86E-08 2.16E-03 8.10E-07 3.84E-04 7.26E-07 6.01E-05 2.01E-06
NORM-1 in case 95%
8s 3.63E+00 -2.58E-04 -6.68E-02 -8.99E-05 -9.85E-03 -4.62E-05 -3.20E-04 -7.49E-05
8p_ 5.19E+00 -1.85E-04 -597E-02 -1.29E-04 -1.11E-02 -5.63E-05 -8.60E-04 -8.37E-05
8p 5.17E+00 -1.64E-04 -5.06E-02 -1.22E-04 2.82E-01 -597E-05 -5.73E-04 -7.13E-05
7d 5.04E+00 -1.70E-04 -3.48E-02 -5.82E-05 5.12E-02 -3.62E-05 -290E-03 -1.24E-04
7d 5.17E+00 -1.76E-04 -3.46E-02 -6.88E-05 6.55E-02 -3.72E-05 -6.31E-04 -3.74E-05
6f 2.78E+00 -3.47E-06 -3.24E-02 -3.85E-06 6.74E-04 -4.65E-06 -2.17E-04 -1.03E-05
6f 2.78E+00 -1.31E-05 -2.87E-02 -1.91E-05 -1.78E-03 -7.56E-06 -5.30E-04 -2.62E-05
6g_ 1.97E+00 -3.76E-06 -6.62E-02 -1.78E-05 -2.31E-02 -3.69E-05 -3.58E-03 -1.70E-04
6g 2.02E+00 -4.56E-06 -6.46E-02 -3.66E-05 -2.00E-02 -3.55E-05 -2.80E-03 -9.97E-05
SELF-CONSISTENCY in case 99.95%

8s 1.53E-02 3.30E-06 2.55E-04 1.88E-07 1.35E-06 5.54E-07 3.44E-07 5.66E-08
8p_ 1.20E-02 2.25E-06 2.44E-04 2.85E-07 8.84E-06 8.65E-07 4.29E-07 5.76E-08
8p 1.71E-02 3.40E-06 2.40E-04 4.50E-07 4.45E-06 7.99E-07 6.02E-07 8.28E-08
7d. 1.92E-02 3.28E-06 2.99E-04 1.19E-06 2.30E-05 1.13E-06 6.49E-07 7.88E-08
7d 2.35E-02 4.30E-06 3.41E-04 1.09E-06 1.65E-05 1.20E-06 7.19E-07 1.12E-07
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Table 7. (Continued)

1 var. 2 var. 3 var. 4 var.
Subshell 7 7 In. Fin. In. Fin. In. Fin.
6f 3.02E-02  3.54E-07  8.60E-04  8.35E-06  5.17E-06 1.75E-06 1.15E-06  2.96E-07
6f 346E-02  4.51E-07  9.02E-04  8.88E-06  6.05E-06 1.27E-06  7.21E-07 1.47E-07
6g_ 8.90E-03 1.26E-07  1.78E-03  9.31E-06  4.81E-05  8.40E-06 5.37E-06  9.23E-07
6g 1.01E-02  1.71E-07  1.79E-03 1.12E-05 1.04E-05  7.38E-07  2.53E-07  6.98E-08
NORM-1 in case 99.95%
8s 2.66E+00 -1.18E-04 -6.42E-03 -8.82E-06 -5.44E-05 2.21E-05 1.43E-05 2.12E-06
8p_ 5.34E+00 -1.11E-04 -9.91E-03 3.64E-06  4.06E-04  4.27E-05  2.14E-05  2.58E-06
8p 5.26E+00 -9.00E-05 -7.23E-03 6.23E-06 1.37E-04  2.18E-05 1.89E-05 2.33E-06
7d 5.42E+00 -6.43E-05 -6.71E-03 -2.60E-05 3.43E-04 1.15E-05  4.94E-06 -9.51E-08
7d 548E+00 -6.98E-05 -1.51E-03 -1.64E-05 1.99E-04 1.11E-05 5.70E-06  7.73E-07
6f 2.80E+00 -5.35E-07 -1.55E-02 -1.59E-04 -8.71E-05 -3.41E-05 -2.26E-05 -5.72E-06
6f 2.81E+00 -1.19E-06 -1.43E-02 -1.47E-04 -1.00E-04 -2.19E-05 -1.24E-05 -2.51E-06
6g_ 2.03E+00 -6.29E-06 -6.56E-02 -5.26E-04 -2.78E-03 -4.85E-04 -3.20E-04 -5.34E-05
6g 2.07E+00 -7.34E-06 -6.15E-02 -5.68E-04 -1.41E-04 -3.83E-05 -1.41E-05 -3.59E-06
SELF-CONSISTENCY in case regular

8s 1.52E-02  7.14E-05

8p. 1.20E-02  2.44E-06

8p 1.71E-02  3.49E-06

7d 1.91E-02  3.88E-06

7d 2.34E-02  4.78E-06

6f 3.05E-02  5.63E-06

6f 3.48E-02  6.17E-06

6g 9.44E-03 6.03E-06

6g 1.05E-02  6.39E-06

NORM-1 in case regular

8s 2.65E+00 -1.51E-04

8p_ 5.37E+00 -1.20E-04

8p 5.28E+00 -1.12E-04

7d 5.50E+00 -8.91E-05

7d 5.55E+00 -8.59E-05

6f 2.80E+00 -1.05E-04

6f 2.81E+00 -9.94E-05

6g_ 2.05E+00 -3.45E-04

6g 2.12E+00 -3.23E-04

Table 8 summarizes the CSF bases used in the MCDHF computations of OS, and OS,. The number of CSFs
is given for each variation step using the RSMBPT method with a different fraction, as well as in the regular
GRrAsP2018 calculations. It is seen that the largest change in the number of CSFs occurs after the first variation
when the selection procedure is based on radial wavefunctions estimated using the Thomas-Fermi potential.
After a few variations, the CSF basis almost does not change.

Table 8. Number of CSF in the MCDHF computations of OS, and OS, using the regular way and the RSMBPT method.

OSI OSZ
Case
1 var. | 2 var. | 3 var. | 4 var. 1 var. 2 var. 3 var. 4 var.
Even
95% 508364 569574 570467 571019 733794 1023336 1141939 1147646
99% 689625 785778 898767 897052 1194590 1746407 1806590 1847202

99.5% 772411 880322 980963 981664 1398101 1979519 2071879 2111506
99.95% 966043 1144631 1173196 1173442 1944852 2525688 2567785 2567315
100% 1287673 1303671 1303659 1303659

Regular 1303709 2923523

Odd
95% 197074 226517 245285 248960 280434 422802 439826 442597
99% 269522 322049 340528 340543 465186 685001 700179 700938

99.5% 303520 353355 371760 371834 550123 783504 799867 799302
99.95% 380829 444754 450637 450656 764152 973620 974618 974715
100% 500591 507233 507231 507231

Regular 507234 1126622
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Table 9 presents the total energies from the reg-
ular CV+C+VV MCDHF and the differences be-
tween the CV+C+VV MCDHF (RSMBPT 95%)
and CV+C+VV MCDHF calculations. In the last
lines of the table, the smallest (AE_. ) and the larg-
est (AE__ ) differences with the results of the regular
GRraAsp2018 calculations (CV+C+VV MCDHEF), as
well as the root-mean-square (rms), are given for
each computation. This table shows the results for
all computed even states of OS,.

As seen from the table, the results converge and
almost do not change after few variations. The dif-
ferences between both (regular and RSMBPT 95%)
computations are similar for most levels at the same
variation. The rms in the ‘case 95% is equal to
0.00847 a.u. at the final variation step, the AE__
is 0.00586 a.u. (or 0.00024%) and AE__ is 0.01143
a.u. (or 0.00047%).

Since the trends are similar, only a summary of
the AE_ , AE_ and rms is presented in Table 10

for the remaining computed cases. It is seen that
by including the most significant CV+C+VV cor-
relations — increasing the amount of these correla-
tions (95, 99, 99.5, 99.95 and 100%) - the results
converge to the regular GRAsp2018 results, and in
the case of ‘100%) reproduce them.

Furthermore, the results with the specified
amount (95, 99, 99.5, 99.95%) of correlations also
show good agreement with the regular GrRasp2018
data, but the CSF bases are significantly smaller
compared to the regular ones, and this is relevant
for complex systems when CSF bases grow rapidly
with each new OS and each opened core shell. It
should be noted that in some cases, especially when
the specified fraction of correlations is smaller,
the order of levels that are very close to each other
can differ from the regular computations.

Based on the results of the above investigations,
it can be concluded that the RSMBPT method can
be successfully applied to solve the self-consistent

Table 9. The total energies (in a.u.) from CV+C+VV MCDHEF calculations and differences (in a.u.) between CV+

C+VV MCDHEF (RSMBPT 95%) and CV+C+VV MCDHF energies (AE

(CV+C+VV MCDHF (RSMBPT 95%))-(CV+C+VV MCDHF))

for the OS, even states of Se III are given when CV, C and V'V correlations are included in the computations.
"Pos’ means numbering of the levels for specific parity and J value in the spectra. ‘Pos’ means numbering of the

levels for specific parity and ] value in the spectra.

No Pos ] CV+C+VV MCDHF AE(Cv+C+VV MCDHF (RSMBPT 95%))-(CV+C+VV MCDHEF)
1 var. | 2 var. | 3 var. | 4 var.
1 1 0 —2427.69766 0.01720 0.01069 0.01064 0.01063
2 1 1 -2427.68992 0.01376 0.00967 0.00965 0.00965
3 1 2 -2427.67956 0.01392 0.00928 0.00929 0.00925
4 2 2 -2427.62985 0.01449 0.00987 0.00988 0.00982
5 2 0 -2427.55745 0.01781 0.01153 0.01143 0.01143
6 2 1 -2427.01492 0.01389 0.00996 0.00988 0.00990
7 3 1 -2427.00375 0.01349 0.00948 0.00940 0.00941
8 3 2 -2427.00215 0.01374 0.00942 0.00938 0.00938
9 3 0 -2426.99672 0.01417 0.00981 0.00978 0.00978
10 4 1 -2426.98955 0.01317 0.00942 0.00940 0.00940
11 1 3 -2426.98713 0.01389 0.01011 0.01011 0.01009
12 4 2 -2426.98275 0.01314 0.00937 0.00939 0.00938
13 5 1 -2426.97557 0.01318 0.00960 0.00961 0.00961
14 5 2 -2426.96569 0.01317 0.00948 0.00948 0.00947
15 4 0 -2426.93852 0.01453 0.01000 0.00995 0.00998
16 2 3 -2426.83386 0.01186 0.00832 0.00821 0.00826
17 3 3 -2426.83285 0.01175 0.00816 0.00804 0.00806
18 6 2 -2426.83227 0.01176 0.00828 0.00823 0.00823
19 1 4 -2426.83154 0.01181 0.00804 0.00795 0.00794
20 4 3 -2426.81616 0.01089 0.00811 0.00812 0.00812
21 2 4 -2426.81479 0.01092 0.00801 0.00796 0.00796
22 1 5 -2426.81101 0.01158 0.00834 0.00836 0.00836
23 5 3 -2426.81033 0.01087 0.00801 0.00803 0.00803
24 7 2 -2426.81002 0.01143 0.00789 0.00790 0.00789
25 8 2 -2426.80844 0.01203 0.00791 0.00795 0.00794
26 6 1 -2426.80686 0.01211 0.00898 0.00897 0.00897
27 3 4 -2426.80572 0.01076 0.00789 0.00789 0.00789
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Table 9. (Continued)

No Pos ] CV+C+VV MCDHF AE(Cv+C+VV MCDHE (RSMBPT 95%))-(CV+C+VV MCDHE)
1 var. 2 var. 3 var. 4 var.

28 7 1 -2426.80439 0.01323 0.00884 0.00879 0.00879
29 9 2 -2426.80383 0.01119 0.00828 0.00831 0.00831
30 8 1 -2426.80260 0.01277 0.00797 0.00798 0.00798
31 5 0 -2426.80242 0.01371 0.00916 0.00911 0.00912
32 9 1 -2426.80136 0.01186 0.00802 0.00798 0.00798
33 10 2 -2426.79932 0.01146 0.00661 0.00660 0.00659
34 11 2 -2426.79862 0.01317 0.00918 0.00918 0.00918
35 10 1 -2426.79633 0.01297 0.00863 0.00724 0.00859
36 6 3 -2426.79576 0.01180 0.00671 0.00802 0.00668
37 6 0 -2426.79175 0.01333 0.00870 0.00868 0.00868
38 4 -2426.79069 0.01191 0.00686 0.00682 0.00680
39 11 1 -2426.78465 0.01285 0.00947 0.00942 0.00938
40 5 -2426.78375 0.01248 0.00707 0.00710 0.00711
41 12 2 -2426.78245 0.01310 0.00953 0.00948 0.00950
42 7 3 -2426.78179 0.01322 0.00997 0.00998 0.00997
43 12 1 -2426.77863 0.01289 0.00954 0.00949 0.00944
44 13 2 -2426.77630 0.01292 0.00948 0.00945 0.00944
45 13 1 -2426.77491 0.01309 0.00774 0.00771 0.00771
46 7 0 -2426.77373 0.01223 0.00760 0.00762 0.00761
47 14 1 -2426.77325 0.01326 0.00733 0.00732 0.00731
48 14 2 -2426.77270 0.01185 0.00720 0.00720 0.00719
49 8 3 -2426.77095 0.01267 0.00747 0.00745 0.00745
50 5 4 -2426.76765 0.01243 0.00764 0.00762 0.00760
51 15 2 -2426.76742 0.01176 0.00750 0.00746 0.00747
52 8 0 -2426.76382 0.01384 0.00995 0.00992 0.00990
53 9 3 -2426.75799 0.01235 0.00773 0.00773 0.00773
54 16 2 -2426.75562 0.01261 0.00805 0.00801 0.00799
55 9 0 -2426.73726 0.01430 0.00817 0.00816 0.00816
56 17 2 -2426.73526 0.01045 0.00590 0.00589 0.00586
57 15 1 -2426.73136 0.01341 0.00763 0.00758 0.00758
58 10 3 -2426.72985 0.01039 0.00617 0.00614 0.00613
59 11 3 -2426.72832 0.01190 0.00706 0.00704 0.00704
60 18 2 -2426.72492 0.01117 0.00670 0.00670 0.00669
61 16 1 -2426.72245 0.01133 0.00678 0.00679 0.00679
62 6 4 -2426.72195 0.01087 0.00639 0.00637 0.00634
63 19 2 -2426.72081 0.01223 0.00756 0.00753 0.00753
AE,., (in a.u) 0.01039 0.00590 0.00589 0.00586
AE,.. (in a.u.) 0.01781 0.01153 0.01143 0.01143
rms (in a.u.) 0.01274 0.00850 0.00848 0.00847

field equations. Using this method, the most im-
portant chosen correlations with the specified
fraction can be selected, since to include different
types of correlations in the MCDHEF calculations in
the regular way is often a complex task, especially
for complex systems. The radial wavefunctions (ob-
tained using the RSMBPT method) which them-
selves include the most significant correlations can
be used for further RCI calculations.

5.2.2. Results from RCI calculations

Tables 11 and 12 present the results of the RCI
computations. As it was described above (see Sec-
tion 5.1), the RCI computations were performed
in the regular way and using two different proce-
dures within the framework of RSMBPT method.
In the first procedure using the RSMBPT meth-
od, the radial wavefunctions were taken from
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Table 10. The smallest (AE_, in a.u.) and the largest (AE__ in a.u.) differences and rms of total energies from
the MCDHF computations of OS, and OS, comparing the results from the regular way and the RSMBPT method.

Even

Odd

1 var. | 2 var. | 3 var. |

4 var.

1 var. | 2 var. | 3 var. | 4 var.

(0N

Case 95%
AE . (in a.u.) 0.01039475 0.00589933 0.00588704 0.00586482 0.01078587 0.00619445 0.00410314 0.00378723

AE_  (inau.) 0.01781291
rms (in a.u.)

0.01153240 0.01143447 0.01143258 0.01615159 0.00844032 0.00543860 0.00506363
0.01274465 0.00850122 0.00847525 0.00847151

0.01345016 0.00724574 0.00455746 0.00430101

Case 99%

AE_ (ina.u.) 0.00479198 0.00241481

0.00044516 0.00044752 0.00444358 0.00147206 0.00072496 0.00072521

AE_ (inau.) 0.01010324 0.00488030 0.00122598 0.00123373 0.00864969 0.00231023 0.00107323 0.00105647

rms (in a.u.)

0.00692783 0.00366682 0.00081360 0.00081380 0.00723871

0.00182232 0.00086627 0.00086609

Case 99.5%

AE,_ (inau.) 0.00403621

0.00124726 0.00022377 0.00022392 0.00322708 0.00075465 0.00036678 0.00035865

AE_ (ina.u.) 0.00892285 0.00265308 0.00078628 0.00078657 0.00729924 0.00126755 0.00055566 0.00054793

rms (in a.u.)

0.00591419 0.00182666 0.00046031 0.00045983 0.00602911

0.00094146 0.00044813 0.00044605

Case 99.95%
AE_  (ina.u.) 0.00248536 0.00011430 0.00002831 0.00002734 0.00352790 0.00005336 0.00003057 0.00003065

AE_  (inau.) 0.00591823 0.00032153 0.00017859 0.00017856 0.00581758 0.00013347 0.00007381
0.00422965 0.00021375 0.00007648 0.00007318 0.00479534 0.00009420 0.00005156 0.00005162

rms (in a.u.)

0.00007382

Case 100%

AE__ (in a.u.) 0.00003567 0.00000000 0.00000000 0.00000000 0.00003871
AE_ (ina.u.) 0.00008260 0.00000078 0.00000078 0.00000078 0.00007884 0.00000001
0.00006240 0.00000015 0.00000015 0.00000015 0.00006174 0.00000001

rms (in a.u.)

0.00000000 0.00000000 0.00000000
0.00000003 0.00000003
0.00000001 0.00000001

(0N

2

Case 95%
AE . (in a.u.) 0.01514835 0.00565667 0.00465128 0.00476963 0.01905315 0.00664994 0.00635027 0.00628709

AE_ (inau.) 0.02611409 0.01186351
rms (in a.u.)

0.00944572 0.00948070 0.02458143 0.00895267 0.00824978 0.00825399
0.01959744 0.00889209 0.00680218 0.00676645 0.02082576 0.00747281

0.00703090 0.00698012

Case 99%
AE_ (ina.u.) 0.00879110 0.00085163 0.00081118 0.00076419 0.01077293 0.00157237 0.00150440 0.00150264
AE_ (in a.u.) 0.01554800 0.00279595 0.00235952 0.00232113 0.01502497 0.00238582 0.00228452 0.00228469

rms (in a.u.)

0.01167577 0.00205255 0.00177316 0.00168195 0.01235068 0.00183188 0.00177058 0.00177014

Case 99.5%

AE_. (ina.u.) 0.00770291

0.00034064 0.00041791 0.00041622 0.00862058 0.00093582 0.00081631

0.00081282

AE_ (inau.) 0.01361750 0.00188676 0.00154804 0.00153272 0.01279172 0.00150648 0.00140862 0.00140949

rms (in a.u.)

0.00996782 0.00133000 0.00107452 0.00101776 0.01058859 0.00111489 0.00104843 0.00104674

Case 99.95%

AE_  (ina.u.) 0.00388888 0.00005463 0.00007514 0.00007001
0.00040230 0.00040681
0.00571790 0.00033027 0.00026441 0.00026029 0.00624877 0.00024094 0.00026036 0.00026023

AE_ (inau.) 0.00911764 0.00047941
rms (in a.u.)

0.00450417 0.00014034 0.00012899 0.00012840
0.00806687 0.00040195 0.00038392 0.00038297

the CV+C+VV MCDHF (RSMBPT) calcula-
tions and the CSF basis was taken from the regu-
lar GrAsP2018 calculations. In the second proce-
dure, the radial wavefunctions were taken from
the CV+C+VV MCDHF (RSMBPT) calcula-
tions and the CSF basis was constructed using
the RSMBPT method with the same specified frac-
tion as in the MCDHE

Table 11 presents the summary of rms, of
the smallest (AE_ ) and the largest (AE_ ) dif-

ferences comparing the total energies from
the CV+C+VV RCI (RSMBPT) method with
the regular GraspP2018 calculations (CV+C+VV
RCI). As seen from the table, the results (these in
columns 2 and 4) from the first procedure using
the RSMBPT method in the case of ‘100%’ repro-
duce the results from the regular calculations. Using
the radial wavefunctions from the CV+C+VV
MCDHF (RSMBPT) calculations with a decreased
amount of these correlations (99.95, 99.5, 99, 95%),
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Table 11. The smallest (AE__ in a.u.) and the largest (AE__in a.u.) differences and rms of total energies from
the RCI computations of OS, and OS, comparing the results from the regular way and using the RSMBPT
method.

Even Odd
First procedure | Second procedure | First procedure [Second procedure
oS,
Radial wavefunctions from case 95%
AEmin (in a.u.) 0.00304085 0.00000286
AEmax (in a.u.) 0.00769594 0.00009646
rms (in a.u.) 0.00494324 0.00004479
Radial wavefunctions from case 99%
AEmin (in a.u.) 0.00000019 0.00000016
AEmax (in a.u.) 0.00001724 0.00001468
rms (in a.u.) 0.00000680 0.00000555
Radial wavefunctions from case 99.5%
AE__(inau) 0.00000001 0.00000034
AE__(inau) 0.00001541 0.00001237
rms (in a.u.) 0.00000398 0.00000637
Radial wavefunctions from case 99.95%
AEmin (in a.u.) 0.00000002 0.00000003
AEmaX (in a.u.) 0.00000178 0.00000189
rms (in a.u.) 0.00000074 0.00000083
Radial wavefunctions from case 100%
AE__ (inau.) 0.00000000 0.00000000
AEmax (in a.u.) 0.00000006 0.00000003
rms (in a.u.) 0.00000003 0.00000001
0S,
Radial wavefunctions from case 95%
AEmin (in a.u.) 0.00005090 0.00478032 0.00004574 0.00630025
AEmax (in a.u.) 0.00197267 0.00952692 0.00094435 0.00826736
rms (in a.u.) 0.00098455 0.00678775 0.00043676 0.00698827
Radial wavefunctions from case 99%
AEmin (in a.u.) 0.00000458 0.00074870 0.00000710 0.00151110
AEmax (in a.u.) 0.00023362 0.00232700 0.00029347 0.00229393
rms (in a.u.) 0.00014306 0.00167533 0.00009579 0.00177984
Radial wavefunctions from case 99.5%
AEmin (in a.u.) 0.00000024 0.00041214 0.00000244 0.00081798
AEmaX (in a.u.) 0.00008720 0.00154291 0.00014983 0.00141603
rms (in a.u.) 0.00004940 0.00102058 0.00004814 0.00105443
Radial wavefunctions from case 99.95%
AEmin (in a.u.) 0.00000018 0.00007105 0.00000004 0.00012925
AEmax (in a.u.) 0.00002741 0.00041042 0.00001590 0.00038453
rms (in a.u.) 0.00000952 0.00026222 0.00000824 0.00026121

the differences increase, but the results are still in
good agreement with the regular calculations.

In the second procedure, when the RSMBPT
method is applied to obtain the radial wavefunc-
tions and the CSF basis (results in columns 3 and
5), the differences between the two calculations
are even larger. The rms in the case when 95%
of the CV, C and VV correlations are included in
both (MCDHF and RCI) computations, is equal

to 0.00678775 a.u. and AE__ for this computa-
tion is equal to 0.00952692 a.u. (or 0.00039276%).
By increasing the amount of these correlations
the differences decrease, and in the case when
99.95% of the CV, C and VV correlations are in-
cluded in both (MCDHF and RCI) computations,
the rms is equal to 0.00026222 a.u. and AE__ for
this computation is equal to 0.00041042 a.u. (or
0.00001693%).
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Table 12. Energy levels (in cm™) from CV+C+VV RCI calculations and differences (in cm™) between
CV+C+VV RCI (RSMBPT) and CV+C+VV RCI energies (AE(cv+c+vv rar Rsmepm)-(cv+c+vv rep) for the OS, even
states of Se III are given when CV, C and VV correlations are included in the computations.

AE(cv+c+vv RCI (RSMBPT))-(CV+C+VV RCI)

No [Pos| ] | CV+C+VV RCI First procedure Second procedure
95% | 99.95% 95% | 99.95%
1 1 0 0.00 0.00 0.00 0.00 0.00
2 1 1 1682.62 3.75 -0.32 -330.09 -21.68
3 1 2 3889.34 6.04 -0.88 -411.08 -24.74
4 2 2 13797.80 23.17 1.86 -312.40 -20.79
5 2 0 29482.86 82.02 2.96 152.76 -4.49
6 2 1 151160.29 -98.23 -390 -257.70 27.52
7 3 1 153592.00 -99.55 -2.97 -330.38 25.41
8 3 2 153914.82 -102.93 -3.31 -325.03 25.14
9 3 0 155152.31 -89.78 -1.29 -193.47 34.01
10 4 1 156676.51 -91.53 -2.96 -341.68 26.93
11 1 3 157184.53 -103.16 -4.01 -140.65 35.61
12 4 2 158137.34 -89.27 -3.00 -322.07 27.12
13 5 1 159722.61 -95.52 -3.69 -354.90 26.77
14 5 2 161643.32 -86.43 -2.54 -314.04 26.27
15 4 0 167467.38 -75.92 -3.37 -122.41 27.77
16 2 3 191065.56 -528.12 -0.05 -485.28 43.60
17 3 3 191311.15 -529.97 1.45 -514.99 41.16
18 6 2 191438.47 -548.76 -0.15 -507.27 4548
19 1 4 191591.48 -539.72 1.80 -517.79 40.19
20 4 3 194890.31 -530.86 -1.54 -551.92 41.63
21 7 2 195071.18 -165.89 0.05 -521.09 -10.96
22 2 4 195200.75 -530.91 -0.13 -546.13 39.68
23 1 5 196006.00 -515.51 0.22 -393.95 49.73
24 5 3 196208.59 -536.94 0.38 -561.74 40.04
25 8 2 196466.68 -548.38 -1.25 -570.10 43.26
26 6 1 196813.18 -252.84 -0.55 -503.12 0.60
27 7 1 197037.20 -284.25 -2.11 -540.48 35.23
28 3 4 197214.70 -598.63 -0.45 -518.21 47.03
29 8 1 197246.38 -290.55 -0.44 -544.53 -10.35
30 5 0 197413.53 -119.00 -0.72 -335.69 7.73
31 9 2 197572.23 -505.66 0.61 -759.66 24.24
32 10 2 197711.31 -314.91 0.10 -526.22 4.17
33 9 1 197869.14 -249.40 -2.31 -296.61 40.00
34 6 3 198439.99 -280.51 0.28 -741.17 -12.80
35 10 1 198691.21 -122.59 -1.98 -323.69 18.69
36 11 2 198745.26 -161.50 -2.13 -319.87 29.04
37 6 0 199454.22 -118.96 -1.28 -229.36 24.29
38 4 4 199536.16 -265.27 0.51 -655.89 -8.93
39 2 5 201028.11 -254.34 0.55 -510.49 5.09
40 11 1 201813.06 -100.54 -4.12 -318.12 31.11
41 12 2 20229591 -102.62 -4.02 -253.44 32.55
42 7 3 202470.62 -103.20 -394 -152.60 34.19
43 12 1 203148.82 -105.64 -3.87 -546.49 30.00
44 7 0 203351.47 -215.51 -0.54 -610.10 -12.55
45 13 1 203404.08 -206.94 -0.46 -552.38 -15.50
46 13 2 203527.76 -181.36 -1.88 -766.05 1.90
47 14 2 203618.74 -137.47 -1.61 -322.28 10.36
48 8 3 203950.72 -203.44 0.25 -665.57 -12.78
49 14 1 204211.81 -110.85 -0.82 -593.82 -16.51
50 5 4 204652.02 -190.72 0.44 -547.98 -6.71
51 15 2 205754.78 -110.57 -1.17 -678.00 -16.14
52 8 0 206137.41 -88.19 -4.35 -133.73 29.68
53 16 2 206141.26 -139.46 1.66 -386.88 147
54 9 3 207759.36 -115.37 -1.37 -591.68 -11.84
55 17 2 211050.37 -339.75 5.05 -888.99 0.95
56 9 0 212148.21 -122.03 -4.03 -457.05 -12.15
57 10 3 212253.84 -336.77 3.95 -783.63 7.51
58 11 3 213384.11 -189.00 1.09 -690.00 -14.25
59 15 1 213402.16 -123.00 -391 -636.39 -14.85
60 6 4 213959.74 -332.19 2.60 -651.72 11.21
61 18 2 214098.17 -219.75 -0.92 -870.78 -19.97
62 16 1 214627.71 -237.65 -2.08 -854.12 -20.46
63 19 2 215656.63 -125.53 -3.35 -658.07 -14.78
N 2923523 2923523 1148711 2567016

CSFs

rms (incm™) 276.96 2.32 509.08 25.92
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Table 12 shows the comparison of energy lev-
els from the regular Grasp2018 calculations and
the calculations using the RSMBPT method for
the OS, even states. In the Table, energy levels
from the regular calculations and the differences
between the CV+C+VV RCI (RSMBPT) and
CV+C+VV RCI calculations are given. The results
of the CV+C+VV RCI (RSMBPT) calculations
are given only for two boundary cases (when ra-
dial wavefunctions are taken from the CV+C+VV
MCDHF (RSMBPT) calculations in two cases,
99.95 and 95%). The rms deviations obtained for
the first procedure RCI calculations from the regu-
lar Grasp2018 data are 276.96 and 2.32 cm™, re-
spectively, when 95 or 99.95% of the CV, Cand VV
correlations are included in the MCDHE It should
be noted that the energies of the computed states
are up to 216000 cm™. The differences increase
when the RSMBPT method is used for the MCDHF
and RCI computations (the second procedure). In
this procedure, the rms deviations from the regular
GRrasP2018 data are 509.08 and 25.92 cm™, respec-
tively, when 95 or 99.95% of the CV, C and VV cor-
relations are included in both (MCDHF and RCI)
computations. The largest difference between the
regular calculations and calculations when 95%
of the CV, C and VV correlations are included in
both (MCDHF and RCI) computations is equal to
888.99 cm™! (or 0.421%), and in the case of 99.95%
it is equal to 49.73 cm™ (or 0.025%).

6. Conclusions

The method, based on the Rayleigh-Schrodinger
perturbation theory in an irreducible tensorial
form, is extended to estimate the valence-valence
correlations, which are described by the three-
particle Feynman diagram. The expressions to
calculate the influence of these correlations are
provided, also additional developments to calcu-
late the spin-angular parts of the three-particle
Feynman diagram have been made to the pro-
gram library librang of the Grasp. This extended
RSMBPT method allows one to estimate the con-
tribution of any K’ configuration of the CV, C, CC
and VV correlations with a preferred core, virtual
orbitals sets, and with any number of valence elec-
trons for any atom or ion.

This is the first time that CSF bases constructed
using the RSMBPT method have been used to solve

the self-consistent field equations. Previously, this
method was only applied to RCI computations.
Thus, this work demonstrates the third way of
the application of the RSMBPT method in atomic
calculations (other two ways of its application are
presented in a series of previous papers by G. Gai-
galas, P. Rynkun, and L. Kitoviené).

The use of the RSMBPT method in the MCDHF
computations enables the inclusion of the most sig-
nificant correlations of various types, which is not
very feasible in regular GrasP calculations, espe-
cially for complex systems. Based on the results ob-
tained in this study work, it can be concluded that
the RSMBPT method can be successfully applied to
solve the self-consistent field equations.

The radial wavefunctions obtained using
the RSMBPT method can be used in the RCI
computations in several procedures: i) these can
be used with the extended CSF basis; or ii) these
can be used with the CSF basis constructed using
the RSMBPT method with the specified fraction
as in the MCDHE The results of both RCI compu-
tations are in good agreement with the results of
the regular RCI computations.
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ANTROSIOS EILES RELEJAUS IR SREDINGERIO TRIKDYMU TEORIJA GrRAsp2018
PROGRAMINIAM PAKETUIL: TRIJU DALELIY FEINMANO DIAGRAMOS JTAKA
VALENTINEMS-VALENTINEMS KORELIACIJOMS*

G. Gaigalas, P. Rynkun, L. Kitoviené

Vilniaus universiteto Fizikos fakulteto Teorinés fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Antrosios eilés trikdymy teorija paremtas me-
todas, skirtas jvairiy koreliacijy vertei nustatyti,
i$pléstas jtraukiant valentines—valentines koreliacijas,
kurios apraomos trijy daleliy Feinmano diagrama.
Sis igplétimas papildo kamieno-valentines, kamieno,
kamieno-kamieno ir valentines—valentines koreliaci-
jas, kurios buvo i$plétotos ankstesniuose G. Gaigalo,
P. Rynkuno ir L. Kitovienés darbuose. Kadangi $ios
valentinés—valentinés koreliacijos yra apra§omos trijy

* Skiriama akad. Zenono Rokaus Rudziko (1940-2011) gimimo

sukakéiai paminéti.

daleliy Feinmano diagrama, buvo atlikti papildomi
pakeitimai ir i$plétimai GrRAsP programos bibliote-
koje ,librang®, leidZiantys apskaiciuoti Sios diagra-
mos sukinines-kampines dalis. Darbe, kaip metodo
taikymo pavyzdys, taip pat pateikiami Se III energi-
jos struktiiros skaic¢iavimai. Be to, i§pléstasis metodas
buvo pritaikytas atrinkti svarbiausias konfigaraciniy
buseny funkcijas ir panaudoti jas suderintinio lauko
lygtims spresti.
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