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Imaging in the terahertz frequency band is applied in a number of fields, such as security, medical or quality 
control. However, a low resolution or distortions of the images hinder the identification or recognition of the objects. 
To cope with the processing of visual information, artificial neural networks are broadly employed. In this work, 
the  monochromatic radiation of 253  GHz was used to collect the  image set of the  investigated objects either in 
the air or covered with a packing material. Such a set was later used to train convolutional and generative adversarial 
neural networks poised for three tasks: (i)  the classification of objects; (ii)  the enhancement of image resolution; 
(iii) the identification of cover material. The obtained results demonstrated that the packaging materials were identi-
fied with an accuracy of 83.33%, while the investigated objects were classified with an accuracy of 89.42%. The PSNR 
metric of images with improved resolution reached up to 22.44 dB. The optical properties such as refractive indices 
and absorption coefficients of the packaging materials were also defined using terahertz time-domain spectroscopy, 
and it was found that the accuracy of object and material classification in general does not depend on the physical 
properties and type of a package.
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1. Introduction

One of the  most prominent applications of tera-
hertz (THz) waves (electromagnetic range from 
100 GHz to 10 THz) was found to be THz imaging 
of various materials and objects [1, 2]. Since THz 
radiation penetrates dielectric materials [3–5], it 
can be employed for non-invasive packaging in-
spection while searching for concealed objects [6, 
7]. Moreover, organic materials have their spectral 
footprints in the THz range, therefore such radia-
tion can be used in the identification of drugs and 
plastic explosives [8, 9], gas sensing [10] or cancer 
diagnostics [11]. The wavelength of the THz waves 
typically used for imaging is in the  order of mil-
limetres or sub-millimetres. Therefore, the  spatial 
resolution of the image is limited, leading to limita-
tions in detectable object size and edge sharpness. 
What is more, if the  object is concealed by some 
sort of packaging material, then the  absorption/
reflection of THz waves by the  material lowers 
the  signal-to-noise ratio and thus the  contrast of 
the image significantly deteriorates. In the simplest 
THz imaging approach  – a  direct THz imaging, 

an object is placed in the  focus of the THz beam 
coming from the  source, and the  signal is regis-
tered in transmission and/or reflection geometries. 
In this case, to ensure image quality, it is crucial 
that the investigated object stays in the focus plane 
all the time. Moreover, low-frequency commercial 
THz sources are more compact, user-friendly, and 
have higher optical output power, but suffer from 
limited spatial resolution in imaging applications. 
As an example, field-effect transistor-based sources 
can operate at 253 GHz at room temperature, and 
still be relatively compact [12]. On the other hand, 
if, for example, the edges of the objects need to be 
emboldened, dark-field imaging might be a  solu-
tion [13]; however, the additional complexity of fil-
ter selection and positioning arises, and the prob-
lem of correct sample placement persists.

Artificial neural networks (ANN) allow for ex-
tended capabilities in image processing. Starting 
from the  original idea of employing the  percep-
tron algorithm [14] and adding the contemporary 
calculation resources, the applications of artificial 
neural networks (ANNs) are expanding rapidly, 
offering a  plethora of new tools and applications. 
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ANNs are successfully applied in computer vision, 
mostly on visible light images, where a fast process-
ing of large amounts of data is required. For such 
tasks, convolutional neural networks [15] are often 
used. In THz imaging, ANNs are used for automat-
ic edge and feature detection [16], which, however, 
represents only a small fraction of processing tasks 
that can be performed. It is worth noting that at-
tempts have been made to use neural networks to 
increase the resolution of terahertz images [17, 18]. 
Most efforts of THz image processing with ANNs 
are constrained to imaging of uncovered objects, 
thus employing the well-established ANN models 
to the image processing of concealed objects makes 
it an attractive subject of study.

In this work, different models of artificial 
neural networks are employed for the  tasks of 
object classification, spatial image resolution 
improvement, and package material recognition 
from a set of monochromatic THz images obtained 
at 253  GHz frequency. The  set of 276 raw THz 
images was collected, which was later augmented by 
digitally applying such transformations as mirror 
reflection and rotations. Also, a part of those images 
was of objects covered with various packaging 
materials. Terahertz time-domain spectroscopy 
was also used to determine the optical properties of 
those materials at 253 GHz. The precision as high as 
89.42 and 83.33% for object and shielding material 
classification, respectively, were reached. Also, 
the  peak signal-to-noise ratio (PSNR) values of 
the images with increased spatial resolution reached 
22.44  dB. The  obtained results demonstrate clear 
benefits of ANN-based THz images processing.

2. Experiment setup for the image data

In total, 15 different samples containing a variety of 
different objects were processed, which were used 
for THz imaging. The size of one sample is approxi-
mately 15  ×  11  cm. There were 6 different object 
classes: scissors, screwdrivers, pens, knives, guns 
and lighters put in a  random sequence. The sam-
ples were made to imitate the non-transparent ob-
jects that could be put in an airport bag – one sam-
ple containing several objects put in different ways. 
The objects in the sample were made of aluminum 
foil, which reflects THz waves well. Additionally, 
a  set of real objects (door keys and screwdrivers) 
was also imaged, which increases the total number 

of object classes to 7. The  experiment was made 
by performing transmission measurements in free 
space via raster scanning, according to the scheme 
depicted in Fig. 1.

Complementary metal-oxide-semiconductor 
(CMOS) based field-effect transistor source (MB 
Terahercų Technologijos, Vilnius, Lithuania) 
emits THz radiation which is collimated and fo-
cused onto the  sample by high density polyeth-
ylene (HDPE) lenses with 6  cm focal distance, 
L1 and L2, respectively. The light that has passed 
through the sample is focused onto a broadband 
THz CMOS detector (MB Terahercų Technologi-
jos, Vilnius, Lithuania) using another pair (L3 
and L4) of the HDPE lenses. A filter is added to 
suppress the  main, 84  GHz harmonic, and uses 
only 253 GHz, the third harmonic of the source. 
Motorized stages were used to move the samples 
along x and y axes, with a step size of 1.5 mm. High 

Fig. 1. (a) Raster scan experiment scheme for trans-
mission measurements, where L1, L2, L3 and L4 are 
HDPE lenses. (b) Picture of the real-life system which 
was used for the experiment.
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resolution images for the uncovered samples were 
taken with a step size of 1 mm. The obtained im-
age dataset contains 267 raw images, out of which 
10 are high resolution images, 166 low resolution 
and/or concealed images and 91 are images of real 
objects (keys and screwdrivers). An example of an 
imaged sample in THz radiation as well as the cor-
responding photo in visible light are presented in 
Fig. 2(a, b), respectively.

Materials used to cover the samples are listed 
in Table  1 along with corresponding refractive 
indices, absorption coefficients, and thicknesses. 
They were chosen to represent the popular solu-
tions for packaging. Refractive indexes and ab-
sorption coefficients of each material used were 
found by time-domain terahertz spectroscopy. 
A femtosecond fiber laser (Femtofiber Pro, Topti-

ca, Munich, Germany) provides pulses of 780 nm 
wavelength and 90 fs pulse duration, and 150 mW 
output power at 80 MHz pulse repetition rate was 
used to excite photoconductive antenna made 
from a 350 μm-thick LT-GaAs wafer. A THz emit-
ter antenna (Teravil Ltd., Vilnius, Lithuania) had 
the  shape of a  coplanar line made from Ti/Au 
with a width of 20 μm and a gap of 50 μm between 
electrodes. An 8 mm thick and 12 mm in diame-
ter high resistivity hyperhemispherical silicon 
lens with a focal distance of 500 μm was used to 
collimate the  THz radiation. The THz detector 
was a  Hertzian dipole type photoconductive an-
tenna made from LT-GaAs with a 6 μm wide gap. 
The  emitter exhibits a  wide emission spectrum 
ranging from 0.1 to 5 THz. The scheme of the ex-
periment is presented in Fig. 3.

Fig. 2. (a) A high resolution THz image, where the scanning step size is 1 mm; (c) a lower resolution (step 
size 1.5 mm) THz image. (b) Image of the sample as seen in visible light. (d) THz image of the sample cov-
ered with polycarbonate, imaged in a lower resolution case.
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Table 1. All the  materials that were used to cover 
the samples for the THz imaging experiment.

Material
Absorption 
coefficient, 

cm–1

Refractive 
index

Thickness, 
mm

Fabric 0.084 1.025 5.65
Metal mesh – – –
Bubble wrap 0.047 1.021 3.75
Foam rubber 0.828 1.044 10.20
Wood fiber 1.491 1.181 2.91

Polycarbonate 2.412 1.037 4.10
Plywood 3.469 1.362 4.35
EPS foam 0.004 1.009 10.90

3. Material classification

To classify the covering materials, a  simple 3-lay-
er convolutional neural network model was used. 
In total, the  model was trained with 9 different 
classes – all the packaging materials mentioned in 
Table 1 with the addition of a no-cover class. Im-
ages presented to the model were of a single chan-
nel (monochromatic), normalized, and resized to 
160 × 160 pixels (with additional padding if need-
ed). The  complete dataset for this task contained 
90 images for training and 48 images for testing. 
To prevent overfitting such a small dataset, data aug-
mentation methods were used, which included ver-
tical and horizontal flip, random rotation, Gauss-

ian noise, image translation, and zoom. The model 
reached 83.33% accuracy, with a confusion matrix 
shown in Fig. 4 for the testing set, which contained 
images previously unseen by the model.

4. Resolution enhancement

Even though THz waves can penetrate the pack-
aging materials mentioned before, the  visual 

Fig. 3. The arrangement of terahertz time-domain spectroscopy (THz-TDS) 
system which was used to obtain optical characteristics of the materials listed 
in Table 1.

Fig. 4. Confusion matrix for the  material classifica-
tion model.
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clarity of objects in covered samples still suf-
fers – the noise level increases and object edges 
blend with the background thus making it more 
difficult to distinguish each individual object. 
To solve this problem, resolution enhancements 
have to be used. For this task, the  DeblurGan 
[19] neural network architecture was applied. For 
each low-resolution case, a  new generative ad-
versarial network (GAN) [20] model was trained 
to effectively reduce the different background in-
fluence on the objects according to the covering 
material (9 models in total). The GAN architec-
ture usually consists of two neural network mod-
els (generator and discriminator) which compete 
with each other, producing better results for 
generating images that represent training data. 
Each model had 10 high and 10 low resolution 
single channel image pairs in the training set ac-
cordingly. To prevent overfitting, similar data 
augmentation techniques as before were used, 
and each model was strictly monitored during 
training. 

Since there is no high-resolution equivalent for 
the images in the testing set, peak signal-to-noise 
ratio (PSNR) values were calculated for the train-
ing set only (Table 2).

Table 2. PSNR values calculated for each different 
material. Calculations were made using the training 
set, since there are no high-resolution cases for test-
ing images.

Material PSNR, dB

No cover, low resolution 22.44
Fabric 19.07

Metal mesh 17.73
Bubble wrap 21.63
Foam rubber 18.64
Wood fiber 20.02

Polycarbonate 14.67
Plywood 12.45
EPS foam 18.10

Images in the  training set, however, were first 
classified according to the  material classification 
model and then, according to output class, fed to 
the  respective GAN model. Close up example is 
presented in Fig. 5.

5. Object classification

Here, the  3-layer convolutional neural network 
model was used. In this case, images were split into 
individual objects, resized and padded if needed to 
64 × 64 pixels. Images of real objects and sample 
splits were joined into one dataset, which has 197 
images for training and 775 for testing. The  split 
was chosen in a way that the training dataset would 
contain high resolution examples, while the testing 
set has all the low resolution and/or covered cases. 
The testing data were given to a classification mod-
el in two different ways: training set 1 contains im-
ages that were edited by the trained GAN models 

Fig. 5. A  close up of (a)  low resolution THz image, 
where objects are hidden by wood and (b) the same 
THz image edited by a GAN model. The close up pre-
sents parts of a lighter and a gun.
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and set 2 contains raw images of the  objects. As 
mentioned before, there are 7 object classes overall. 
Since in real life scenarios the visibility of individ-
ual objects can become complicated, for example, 
besides being hidden by various materials, they can 
also overlap with each other. To account for these 
cases the  data augmentation methods were used. 
Besides the  methods mentioned before, Gaussian 
blur and random change of contrast were added 
to simulate effects that covering objects with dif-
ferent materials have. Furthermore, random size 
blobs in random locations were generated to ac-
count for the cases where the object of interest is 
covered by another secondary object. The accuracy 
of the model was tested in two cases – case 1 con-
tains images which have their resolution changed 
by one of the respective GAN models, while case 2 
contains images which were not edited in any way. 
Case 1 reached 89.42% overall prediction accuracy, 
while case 2 reached 81.03% prediction accuracy. 
Confusion matrices for both cases are presented in 
Fig. 6. Precise accuracy values for each material are 
presented in Table 3.

Table 3. Summary of accuracies based on a  specific 
material that covers classifiable objects.

Material Accuracy, 
test set 1

Accuracy, 
test set 2

Fabric 86.7% 88.9%
Metal mesh 90.0% 91.1%
Bubble wrap 91.1% 87.8%
Foam rubber 88.9% 92.2%
Floor-cover 95.0% 90.0%

Polycarbonate 89.5% 76.8%
Plywood 88.9% 31.1%
EPS foam 93.3% 89.9%

6. Discussion

The 83.33% prediction accuracy for classifying ma-
terials shows that material recognition could be 
still improved. The  confusion matrix depicted in 
Fig. 4 shows that the best classified materials pro-
vide strong visual traits  –  metal mesh has a  clear 
grid pattern, polycarbonate has stripes, and wood 
absorbs the most amount of radiation. The materi-
als that are misclassified do not have distinct simi-
larities in their absorbance coefficients or refractive 
indices. Even though there are cases where mis-

classified materials have similar refractive indexes 
(fabric, which was classified as bubble wrap), most 
of the mismatched cases have no direct correlation 
between the  model output class and their optical 
properties. This means that while classifying, neu-
ral network models rather consider visual proper-
ties of those materials than optical ones.

After classifying the materials, images are then 
put into a  respective GAN model, which should 
improve the quality. Generally, even if the material 

Fig. 6. (a)  Confusion matrix for the  classification 
model using the first testing set, where images were 
edited with a  respective material GAN network. 
(b)  Confusion matrix for the  classification model 
using a second testing set that contains raw, unedited 
images.
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is wrongly identified, the result is still positive, as 
a respective GAN model still manages to decrease 
the background influence and thus the object itself 
is better visible than in the original picture. Though 
the quality of GAN output depends on a material, if 
the original low-resolution image is similar to high 
resolution image, the  model will produce good 
results with higher probability. This can be seen 
from Table 2, as the model that reached the highest 
PSNR value takes non-covered objects as an input, 
while the model with the lowest PSNR value takes 
objects covered by wood as an input; this material 
has higher absorption than the  rest and therefore 
the  highest background influence. In this case, 
PSNR values also do not have any correlation with 
the physical properties of materials.

During the object classification, objects that had 
their resolution previously improved by a  respec-
tive GAN model reached higher (89.42%) accuracy 
than unedited ones (81.03%). From confusion ma-
trices (Fig. 6) it can be seen that the most often mis-
classified objects (pens, screwdrivers and knives) 
have a similar distinctive shape (Fig. 7): they are all 
long and thin, thus, with no colour or other sup-
plementary information it is difficult to distinguish 
between them.

Another observation is that in the  second test 
set, lighter class is guessed significantly larger 
number of times than in the  first test set, which 
might be due to bigger background influence on 
the image – it is too difficult to separate the object 
form the  background, and the  shade that looks 
like a noisy rectangular box might be perceived by 
the model as lighter class. 

Furthermore, the  question arises whether it is 
beneficial to edit images with GAN models in all 
material cases. Referring to Table  3, one can see 
that in most cases, after editing the  picture with 
a  respective GAN, the  accuracy increases signifi-
cantly, for instance, in the wood case, the difference 
in accuracy is above 50%. On the other hand, there 
are cases which have lower accuracy (up to 4%) af-
ter editing them with GAN models, namely fabric, 
metal mesh, and foam rubber. Though the differ-
ence is not large (less than 4%), it is worth men-
tioning.

7. Conclusions 

In this work, three different databases of THz imag-
es for training and testing neural network models 
were created and used in concealed object classifi-
cation. The first problem that was tackled is material 
classification – the accuracy of 83.33% was reached, 
while classifying material from single channel THz 
images only and using a convolutional neural net-
work model without any additional information. 
Furthermore, as THz images, especially those that 
capture objects covered in different packing ma-
terials, have a  low resolution and are blurry, nine 
different GAN models were trained, which were 
meant to improve the  low-resolution THz images 
based on each material class. The  GAN models 
successfully decreased the  background influence 
in the  images that led to improved object classi-
fication, which reached 89.42% of overall accu-
racy, while the classification of raw low-resolution 
THz images was performed with 81.03% accuracy. 

Fig. 7. Examples of registered THz images: screwdriver, knife and pen. All of those images were classified 
wrongly.
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The PSNR metric of images with improved resolu-
tion reached up to 22.44 dB. Also, refraction indi-
ces and absorption coefficients of the covering ma-
terials were found using the THz-TDS technique. It 
was found that the accuracy of object and material 
classification generally does not depend on the op-
tical properties of covering material. 
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PASLĖPTŲ OBJEKTŲ KLASIFIKACIJA NAUDOJANT TERAHERCINĮ VAIZDINIMĄ 
IR DIRBTINIUS NEURONINIUS TINKLUS

U. Šilingaitė, I. Grigelionis

Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Santrauka
Terahercinį (THz, bangos ilgiai 0,3–3  mm) vaiz

dinimą galima taikyti daugelyje sričių, pavyzdžiui, me-
dicinoje, kokybės kontrolės ar saugumo srityse, nes šio 
dažnio bangos gali prasiskverbti pro įvairias dielektrines 
medžiagas. Tačiau THz vaizdams būdinga maža vaizdo 
raiška ir didelis triukšmas, todėl sudėtinga panaudoti 
šį bangos ilgį objektų atpažinimui ir klasifikavimui. Šią 
problemą galima spręsti pasitelkiant dirbtinius neuro-
ninius tinklus, gebančius apdoroti vizualinę informa-
ciją. Šiame darbe objektų vaizdų duomenų bazė buvo 
surinkta naudojant monochromatinę 253  GHz dažnio 
spinduliuotę. Vaizdinami objektai buvo arba atviri, arba 
uždengti įvairiomis pakavimo medžiagomis. Surinkta 

duomenų bazė buvo naudojama skirtingiems neuro-
niniams tinklams apmokyti, kurie atlieka tris užduo-
tis: (i)  klasifikuoja objektus; (ii)  gerina vaizdo kokybę; 
(iii) klasifikuoja objektus dengiančias pakavimo medžia-
gas. Gauti rezultatai parodė, kad pakavimo medžiagos 
yra klasifikuojamos 83,33  % tikslumu, o individualūs 
objektai – 89,42 % tikslumu. Vaizdų raiškos gerinimas 
priklauso nuo pakavimo medžiagos, o geriausia gauta 
signalo ir triukšmo santykio vertė siekia 22,44 dB. Nau-
dojant THz-TDS sistemą nustatytos pakavimo medžia-
gų optinės savybės, tačiau tyrimo metu paaiškėjo, kad 
jos nekoreliuoja su objektų ir medžiagų klasifikacijos 
rezultatais.
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