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Imaging in the terahertz frequency band is applied in a number of fields, such as security, medical or quality
control. However, a low resolution or distortions of the images hinder the identification or recognition of the objects.
To cope with the processing of visual information, artificial neural networks are broadly employed. In this work,
the monochromatic radiation of 253 GHz was used to collect the image set of the investigated objects either in
the air or covered with a packing material. Such a set was later used to train convolutional and generative adversarial
neural networks poised for three tasks: (i) the classification of objects; (ii) the enhancement of image resolution;
(iii) the identification of cover material. The obtained results demonstrated that the packaging materials were identi-
fied with an accuracy of 83.33%, while the investigated objects were classified with an accuracy of 89.42%. The PSNR
metric of images with improved resolution reached up to 22.44 dB. The optical properties such as refractive indices
and absorption coefficients of the packaging materials were also defined using terahertz time-domain spectroscopy,
and it was found that the accuracy of object and material classification in general does not depend on the physical

properties and type of a package.
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1. Introduction

One of the most prominent applications of tera-
hertz (THz) waves (electromagnetic range from
100 GHz to 10 THz) was found to be THz imaging
of various materials and objects [EI, E]. Since THz
radiation penetrates dielectric materials [@], it
can be employed for non-invasive packaging in-
spection while searching for concealed objects [H,

]. Moreover, organic materials have their spectral
footprints in the THz range, therefore such radia-
tion can be used in the identification of drugs and
plastic explosives [E, E], gas sensing [] or cancer
diagnostics []. The wavelength of the THz waves
typically used for imaging is in the order of mil-
limetres or sub-millimetres. Therefore, the spatial
resolution of the image is limited, leading to limita-
tions in detectable object size and edge sharpness.
What is more, if the object is concealed by some
sort of packaging material, then the absorption/
reflection of THz waves by the material lowers
the signal-to-noise ratio and thus the contrast of
the image significantly deteriorates. In the simplest
THz imaging approach - a direct THz imaging,

an object is placed in the focus of the THz beam
coming from the source, and the signal is regis-
tered in transmission and/or reflection geometries.
In this case, to ensure image quality, it is crucial
that the investigated object stays in the focus plane
all the time. Moreover, low-frequency commercial
THz sources are more compact, user-friendly, and
have higher optical output power, but suffer from
limited spatial resolution in imaging applications.
As an example, field-effect transistor-based sources
can operate at 253 GHz at room temperature, and
still be relatively compact []. On the other hand,
if, for example, the edges of the objects need to be
emboldened, dark-field imaging might be a solu-
tion []; however, the additional complexity of fil-
ter selection and positioning arises, and the prob-
lem of correct sample placement persists.

Artificial neural networks (ANN) allow for ex-
tended capabilities in image processing. Starting
from the original idea of employing the percep-
tron algorithm [] and adding the contemporary
calculation resources, the applications of artificial
neural networks (ANNs) are expanding rapidly,
offering a plethora of new tools and applications.
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ANNS are successfully applied in computer vision,
mostly on visible light images, where a fast process-
ing of large amounts of data is required. For such
tasks, convolutional neural networks [@] are often
used. In THz imaging, ANNs are used for automat-
ic edge and feature detection [], which, however,
represents only a small fraction of processing tasks
that can be performed. It is worth noting that at-
tempts have been made to use neural networks to
increase the resolution of terahertz images [@, @].
Most efforts of THz image processing with ANNs
are constrained to imaging of uncovered objects,
thus employing the well-established ANN models
to the image processing of concealed objects makes
it an attractive subject of study.

In this work, different models of artificial
neural networks are employed for the tasks of
object classification, spatial image resolution
improvement, and package material recognition
from a set of monochromatic THz images obtained
at 253 GHz frequency. The set of 276 raw THz
images was collected, which was later augmented by
digitally applying such transformations as mirror
reflection and rotations. Also, a part of those images
was of objects covered with various packaging
materials. Terahertz time-domain spectroscopy
was also used to determine the optical properties of
those materials at 253 GHz. The precision as high as
89.42 and 83.33% for object and shielding material
classification, respectively, were reached. Also,
the peak signal-to-noise ratio (PSNR) values of
the images with increased spatial resolution reached
22.44 dB. The obtained results demonstrate clear
benefits of ANN-based THz images processing.

2. Experiment setup for the image data

In total, 15 different samples containing a variety of
different objects were processed, which were used
for THz imaging. The size of one sample is approxi-
mately 15 x 11 cm. There were 6 different object
classes: scissors, screwdrivers, pens, knives, guns
and lighters put in a random sequence. The sam-
ples were made to imitate the non-transparent ob-
jects that could be put in an airport bag - one sam-
ple containing several objects put in different ways.
The objects in the sample were made of aluminum
foil, which reflects THz waves well. Additionally,
a set of real objects (door keys and screwdrivers)
was also imaged, which increases the total number

of object classes to 7. The experiment was made
by performing transmission measurements in free
space via raster scanning, according to the scheme
depicted in Fig. EI

Complementary metal-oxide-semiconductor
(CMOS) based field-effect transistor source (MB
Terahercy Technologijos, Vilnius, Lithuania)
emits THz radiation which is collimated and fo-
cused onto the sample by high density polyeth-
ylene (HDPE) lenses with 6 cm focal distance,
L1 and L2, respectively. The light that has passed
through the sample is focused onto a broadband
THz CMOS detector (MB Terahercy Technologi-
jos, Vilnius, Lithuania) using another pair (L3
and L4) of the HDPE lenses. A filter is added to
suppress the main, 84 GHz harmonic, and uses
only 253 GHz, the third harmonic of the source.
Motorized stages were used to move the samples
along x and y axes, with a step size of 1.5 mm. High
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Fig. 1. (a) Raster scan experiment scheme for trans-
mission measurements, where L1, L2, L3 and 14 are
HDPE lenses. (b) Picture of the real-life system which
was used for the experiment.
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resolution images for the uncovered samples were
taken with a step size of 1 mm. The obtained im-
age dataset contains 267 raw images, out of which
10 are high resolution images, 166 low resolution
and/or concealed images and 91 are images of real
objects (keys and screwdrivers). An example of an
imaged sample in THz radiation as well as the cor-
responding photo in visible light are presented in
Fig. (a, b), respectively.

Materials used to cover the samples are listed
in Table 1 along with corresponding refractive
indices, absorption coefficients, and thicknesses.
They were chosen to represent the popular solu-
tions for packaging. Refractive indexes and ab-
sorption coeflicients of each material used were
found by time-domain terahertz spectroscopy.
A femtosecond fiber laser (Femtofiber Pro, Topti-
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ca, Munich, Germany) provides pulses of 780 nm
wavelength and 90 fs pulse duration, and 150 mW
output power at 80 MHz pulse repetition rate was
used to excite photoconductive antenna made
from a 350 ym-thick LT-GaAs wafer. A THz emit-
ter antenna (Teravil Ltd., Vilnius, Lithuania) had
the shape of a coplanar line made from Ti/Au
with a width of 20 ym and a gap of 50 yum between
electrodes. An 8 mm thick and 12 mm in diame-
ter high resistivity hyperhemispherical silicon
lens with a focal distance of 500 ym was used to
collimate the THz radiation. The THz detector
was a Hertzian dipole type photoconductive an-
tenna made from LT-GaAs with a 6 ym wide gap.
The emitter exhibits a wide emission spectrum
ranging from 0.1 to 5 THz. The scheme of the ex-
periment is presented in Fig. E
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Fig. 2. (a) A high resolution THz image, where the scanning step size is 1 mm; (c) a lower resolution (step
size 1.5 mm) THz image. (b) Image of the sample as seen in visible light. (d) THz image of the sample cov-
ered with polycarbonate, imaged in a lower resolution case.
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Fig. 3. The arrangement of terahertz time-domain spectroscopy (THz-TDS)
system which was used to obtain optical characteristics of the materials listed

in Table 1.

Table 1. All the materials that were used to cover
the samples for the THz imaging experiment.

. AbSOl‘RthH Refractive | Thickness,
Material coefficient, .
P index mm
cm
Fabric 0.084 1.025 5.65
Metal mesh - - -
Bubble wrap 0.047 1.021 3.75
Foam rubber 0.828 1.044 10.20
Wood fiber 1.491 1.181 2.91
Polycarbonate 2.412 1.037 4.10
Plywood 3.469 1.362 4.35
EPS foam 0.004 1.009 10.90

3. Material classification

To classify the covering materials, a simple 3-lay-
er convolutional neural network model was used.
In total, the model was trained with 9 different
classes — all the packaging materials mentioned in
Table 1 with the addition of a no-cover class. Im-
ages presented to the model were of a single chan-
nel (monochromatic), normalized, and resized to
160 x 160 pixels (with additional padding if need-
ed). The complete dataset for this task contained
90 images for training and 48 images for testing.
To prevent overfitting such a small dataset, data aug-
mentation methods were used, which included ver-
tical and horizontal flip, random rotation, Gauss-

ian noise, image translation, and zoom. The model
reached 83.33% accuracy, with a confusion matrix
shown in Fig. H for the testing set, which contained
images previously unseen by the model.

4. Resolution enhancement

Even though THz waves can penetrate the pack-
aging materials mentioned before, the visual

Fig. 4. Confusion matrix for the material classifica-
tion model.
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clarity of objects in covered samples still suf-
fers — the noise level increases and object edges
blend with the background thus making it more
difficult to distinguish each individual object.
To solve this problem, resolution enhancements
have to be used. For this task, the DeblurGan
[] neural network architecture was applied. For
each low-resolution case, a new generative ad-
versarial network (GAN) [@] model was trained
to effectively reduce the different background in-
fluence on the objects according to the covering
material (9 models in total). The GAN architec-
ture usually consists of two neural network mod-
els (generator and discriminator) which compete
with each other, producing better results for
generating images that represent training data.
Each model had 10 high and 10 low resolution
single channel image pairs in the training set ac-
cordingly. To prevent overfitting, similar data
augmentation techniques as before were used,
and each model was strictly monitored during
training.

Since there is no high-resolution equivalent for
the images in the testing set, peak signal-to-noise
ratio (PSNR) values were calculated for the train-
ing set only (Table 2).

Table 2. PSNR values calculated for each different
material. Calculations were made using the training
set, since there are no high-resolution cases for test-
ing images.

Material PSNR, dB
No cover, low resolution 22.44
Fabric 19.07
Metal mesh 17.73
Bubble wrap 21.63
Foam rubber 18.64
Wood fiber 20.02
Polycarbonate 14.67
Plywood 12.45
EPS foam 18.10

Images in the training set, however, were first
classified according to the material classification
model and then, according to output class, fed to
the respective GAN model. Close up example is
presented in Fig. E
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Fig. 5. A close up of (a) low resolution THz image,
where objects are hidden by wood and (b) the same
THz image edited by a GAN model. The close up pre-
sents parts of a lighter and a gun.

5. Object classification

Here, the 3-layer convolutional neural network
model was used. In this case, images were split into
individual objects, resized and padded if needed to
64 x 64 pixels. Images of real objects and sample
splits were joined into one dataset, which has 197
images for training and 775 for testing. The split
was chosen in a way that the training dataset would
contain high resolution examples, while the testing
set has all the low resolution and/or covered cases.
The testing data were given to a classification mod-
el in two different ways: training set 1 contains im-
ages that were edited by the trained GAN models
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and set 2 contains raw images of the objects. As
mentioned before, there are 7 object classes overall.
Since in real life scenarios the visibility of individ-
ual objects can become complicated, for example,
besides being hidden by various materials, they can
also overlap with each other. To account for these
cases the data augmentation methods were used.
Besides the methods mentioned before, Gaussian
blur and random change of contrast were added
to simulate effects that covering objects with dif-
ferent materials have. Furthermore, random size
blobs in random locations were generated to ac-
count for the cases where the object of interest is
covered by another secondary object. The accuracy
of the model was tested in two cases — case 1 con-
tains images which have their resolution changed
by one of the respective GAN models, while case 2
contains images which were not edited in any way.
Case 1 reached 89.42% overall prediction accuracy,
while case 2 reached 81.03% prediction accuracy.
Confusion matrices for both cases are presented in
Fig. E Precise accuracy values for each material are
presented in Table 3.

Table 3. Summary of accuracies based on a specific
material that covers classifiable objects.

Material | T | e
Fabric 86.7% 88.9%
Metal mesh 90.0% 91.1%
Bubble wrap 91.1% 87.8%
Foam rubber 88.9% 92.2%
Floor-cover 95.0% 90.0%
Polycarbonate 89.5% 76.8%
Plywood 88.9% 31.1%
EPS foam 93.3% 89.9%

6. Discussion

The 83.33% prediction accuracy for classifying ma-
terials shows that material recognition could be
still improved. The confusion matrix depicted in
Fig. H shows that the best classified materials pro-
vide strong visual traits — metal mesh has a clear
grid pattern, polycarbonate has stripes, and wood
absorbs the most amount of radiation. The materi-
als that are misclassified do not have distinct simi-
larities in their absorbance coefficients or refractive
indices. Even though there are cases where mis-

Fig. 6. (a) Confusion matrix for the classification
model using the first testing set, where images were
edited with a respective material GAN network.
(b) Confusion matrix for the classification model
using a second testing set that contains raw, unedited
images.

classified materials have similar refractive indexes
(fabric, which was classified as bubble wrap), most
of the mismatched cases have no direct correlation
between the model output class and their optical
properties. This means that while classifying, neu-
ral network models rather consider visual proper-
ties of those materials than optical ones.

After classifying the materials, images are then
put into a respective GAN model, which should
improve the quality. Generally, even if the material
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is wrongly identified, the result is still positive, as
a respective GAN model still manages to decrease
the background influence and thus the object itself
is better visible than in the original picture. Though
the quality of GAN output depends on a material, if
the original low-resolution image is similar to high
resolution image, the model will produce good
results with higher probability. This can be seen
from Table 2, as the model that reached the highest
PSNR value takes non-covered objects as an input,
while the model with the lowest PSNR value takes
objects covered by wood as an input; this material
has higher absorption than the rest and therefore
the highest background influence. In this case,
PSNR values also do not have any correlation with
the physical properties of materials.

During the object classification, objects that had
their resolution previously improved by a respec-
tive GAN model reached higher (89.42%) accuracy
than unedited ones (81.03%). From confusion ma-
trices (Fig. E) it can be seen that the most often mis-
classified objects (pens, screwdrivers and knives)
have a similar distinctive shape (Fig. ﬁ): they are all
long and thin, thus, with no colour or other sup-
plementary information it is difficult to distinguish
between them.

Another observation is that in the second test
set, lighter class is guessed significantly larger
number of times than in the first test set, which
might be due to bigger background influence on
the image - it is too difficult to separate the object
form the background, and the shade that looks
like a noisy rectangular box might be perceived by
the model as lighter class.

Furthermore, the question arises whether it is
beneficial to edit images with GAN models in all
material cases. Referring to Table 3, one can see
that in most cases, after editing the picture with
a respective GAN, the accuracy increases signifi-
cantly, for instance, in the wood case, the difference
in accuracy is above 50%. On the other hand, there
are cases which have lower accuracy (up to 4%) af-
ter editing them with GAN models, namely fabric,
metal mesh, and foam rubber. Though the differ-
ence is not large (less than 4%), it is worth men-
tioning.

7. Conclusions

In this work, three different databases of THz imag-
es for training and testing neural network models
were created and used in concealed object classifi-
cation. The first problem that was tackled is material
classification — the accuracy of 83.33% was reached,
while classifying material from single channel THz
images only and using a convolutional neural net-
work model without any additional information.
Furthermore, as THz images, especially those that
capture objects covered in different packing ma-
terials, have a low resolution and are blurry, nine
different GAN models were trained, which were
meant to improve the low-resolution THz images
based on each material class. The GAN models
successfully decreased the background influence
in the images that led to improved object classi-
fication, which reached 89.42% of overall accu-
racy, while the classification of raw low-resolution
THz images was performed with 81.03% accuracy.
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Fig. 7. Examples of registered THz images: screwdriver, knife and pen. All of those images were classified

wrongly.
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The PSNR metric of images with improved resolu-
tion reached up to 22.44 dB. Also, refraction indi-
ces and absorption coefficients of the covering ma-
terials were found using the THz-TDS technique. It
was found that the accuracy of object and material
classification generally does not depend on the op-
tical properties of covering material.
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PASLEPTU OBJEKTU KLASIFIKACIJA NAUDOJANT TERAHERCIN] VAIZDINIMA
IR DIRBTINIUS NEURONINIUS TINKLUS

U. Silingaité, I. Grigelionis

Fiziniy ir technologijos moksly centras, Vilnius, Lietuva

Santrauka

Terahercinj (THz, bangos ilgiai 0,3-3 mm) vaiz-
dinimg galima taikyti daugelyje sri¢iy, pavyzdziui, me-
dicinoje, kokybés kontrolés ar saugumo srityse, nes $io
daznio bangos gali prasiskverbti pro jvairias dielektrines
medziagas. Taciau THz vaizdams budinga maza vaizdo
rai$ka ir didelis triuk$mas, todél sudétinga panaudoti
$i bangos ilgj objekty atpazinimui ir klasifikavimui. Sig
problema galima spresti pasitelkiant dirbtinius neuro-
ninius tinklus, gebancius apdoroti vizualing informa-
cijg. Siame darbe objekty vaizdy duomeny bazé buvo
surinkta naudojant monochromatine 253 GHz daznio
spinduliuote. Vaizdinami objektai buvo arba atviri, arba
uzdengti jvairiomis pakavimo medziagomis. Surinkta

duomeny bazé buvo naudojama skirtingiems neuro-
niniams tinklams apmokyti, kurie atlieka tris uzduo-
tis: (i) klasifikuoja objektus; (ii) gerina vaizdo kokybe;
(iii) klasifikuoja objektus dengiancias pakavimo medzia-
gas. Gauti rezultatai parodé, kad pakavimo medziagos
yra klasifikuojamos 83,33 % tikslumu, o individualas
objektai - 89,42 % tikslumu. Vaizdy raiSkos gerinimas
priklauso nuo pakavimo medziagos, o geriausia gauta
signalo ir triuk§mo santykio verté siekia 22,44 dB. Nau-
dojant THz-TDS sistema nustatytos pakavimo medzia-
gy optinés savybés, taciau tyrimo metu paaiskéjo, kad
jos nekoreliuoja su objekty ir medziagy klasifikacijos
rezultatais.
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