Influence of surface passivation on electric properties of individual GaAs nanowires studied by current–voltage AFM measurements

  • P. Geydt
  • P.A. Alekseev
  • M.S. Dunaevskiy
  • T. Haggrén
  • J.-P. Kakko
  • E. Lähderanta
  • H. Lipsanen
Keywords: nanowires, passivation, GaAs, AFM, current–voltage characteristics


Current–voltage (I–V) characteristics of vertical p-GaAs nanowires (NWs) covered by different surface passivation materials were experimentally measured by conductive atomic force microscopy (C-AFM). The obtained I–V curves for individual NWs with a diameter of 100 nm covered with AlGaAs, GaN, GaP or InP shell layers were compared to analyse the influence of surface passivation on the density of surface states and choose the most beneficial passivating material for technological applications. We have found the absence of a Schottky barrier between the golden catalytic cap on the top of a NW and the nanowire situated below and covered with an ultrathin GaP passivating layer. It was suggested that passivating material can arrange the heterostructure configuration with the GaAs NW near the Au cap. The latter mechanism was proposed to explain a strong energy barrier found in nanowires covered with InP passivation. AlGaAs passivation affected the forward threshold voltage of nanowires for NWs, which was measured simultaneously with the resistivity of each individual vertical structure from an array by means of AFM in the regime of measuring the I–V curves and onefold calculations. We made an attempt to develop the methodology of measurement and characterization of electric properties of passivated NWs.
Condensed Matter Physics and Technology